Package ‘oasis’
February 21, 2018

Type Package
Title Multiple Sclerosis Lesion Segmentation using Magnetic Resonance Imaging (MRI)
Version 3.0.4
Date 2018-02-20
Description Trains and makes predictions from the OASIS method, described in detail in the paper "OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI" <doi:10.1016/j.nicl.2013.03.002>, OASIS is a method for multiple sclerosis (MS) lesion segmentation on structural magnetic resonance image (MRI) studies. OASIS creates probability maps of lesion presence using the FLAIR, T2, T1, and PD structural MRI volumes. This packages allows for training of the OASIS model and prediction of OASIS probability maps from a trained model with user supplied studies that have a gold standard lesion segmentation masks. The package will also create OASIS probability maps for MRI studies using the OASIS model from the OASIS paper if no gold standard lesion segmentation masks are available.

Depends R (>= 2.10)
Imports neurobase, fslr (>= 2.13), methods, stats, parallel, oro.nifti, mmand
Suggests httr, covr, ROCR
License GPL-2
LazyLoad yes
LazyData yes
Encoding UTF-8
RoxygenNote 6.0.1
NeedsCompilation no
Author Elizabeth M. Sweeney [aut, cre], John Muschelli [aut], R. Taki Shinohara [aut]
Maintainer Elizabeth M. Sweeney <elizabethmargaretsweeney@gmail.com>
correct_image_dim

Image Dimension Correction

Description
This function takes an image and drops dimensions until the volume is a user specified dimension.

Usage
correct_image_dim(image, dim = 3)

Arguments
image volume of class nifti
dim scalar value of desired image dimension

Value
Returns a volume of class nifti of desired dimension.

Examples
Not run:
library(neurobase)
flair <- readnii('path/to/flair', reorient = FALSE)
flair <- correct_image_dim(flair, dim = 3)
End(Not run)
example_oasis_df

Example data frame of MS voxels

Description

A data frame of MS voxels for OASIS prediction

Usage

`example_oasis_df`

Format

A data frame with 100 rows and 13 columns, corresponding to the predictors of the OASIS model.

nopd_oasis_model

Updated OASIS glm Object

Description

A glm object containing the OASIS model from the updated, corrected data.

Usage

`nopd_oasis_model`

Format

A glm object

oasis_erode

OASIS Erode Mask

Description

An alternative to using fslerode for mask erosion of a brain mask by a box kernel defined by millimeter

Usage

`oasis_erode(mask, mm = c(5, 5, 5))`
Arguments

mask: object of class nifti

mm: Number of erosion (in millimeters)

Value

Object of class nifti

Examples

```r
library(neurobase)
library(fslr)
library(oasis)
niis = tempfile(fileext = ".nii.gz")
if (require(httr)) {
  url = paste0("https://s3.us-east-2.amazonaws.com/brainder/software/",
               "flair/templates/GG-853-FLAIR-2.0mm.nii.gz")
  req <- httr::GET(url,
                   httr::write_disk(path = niis))
  httr::stop_for_status(req)
  
  flair <- fast_readnii(niis)
  res = oasis_erode(flair > 50, mm = c(2, 2, 2))
}
```

oasis_model
Updated OASIS glm Object

Description

A glm object containing the OASIS model from the updated, corrected data. The original model from the OASIS paper is located at original_oasis_model.

Usage

oasis_model

Format

A glm object
OASIS Prediction

Description
This function creates the OASIS probability map from a single MRI study with FLAIR, T1, T2, and PD volumes.

Usage
```
oasis_predict(flair, t1, t2, pd = NULL, brain_mask = NULL, model = NULL, return_preproc = FALSE, binary = FALSE, threshold = 0.16, verbose = TRUE, oasis_dataframe = NULL, voxel_selection = NULL, ...)```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flair</td>
<td>flair volume of class nifti</td>
</tr>
<tr>
<td>t1</td>
<td>t1 volume of class nifti</td>
</tr>
<tr>
<td>t2</td>
<td>t2 volume of class nifti</td>
</tr>
<tr>
<td>pd</td>
<td>pd volume of class nifti</td>
</tr>
<tr>
<td>brain_mask</td>
<td>brain mask of class nifti, if NULL a brain mask will be created using fslbet. Note that provided brain masks should be in the same space as the T1 volume if preproc = TRUE, as all volumes will be registered to this space</td>
</tr>
<tr>
<td>model</td>
<td>an object of class glm used to make the OASIS predictions</td>
</tr>
<tr>
<td>return_preproc</td>
<td>is a logical value that indicates whether the preprocessed images should be returned, if NULL then the model from the OASIS paper will be used</td>
</tr>
<tr>
<td>binary</td>
<td>logical indicating whether a binary map should be returned by thresholding the probability map</td>
</tr>
<tr>
<td>threshold</td>
<td>numeric indicating the threshold value for the probability map, with default of 0.16 for the OASIS paper</td>
</tr>
<tr>
<td>verbose</td>
<td>print diagnostic messages</td>
</tr>
<tr>
<td>oasis_dataframe</td>
<td>if oasis_train_dataframe was already run, specify the data.frame and voxel_selection and brain_mask to make prediction</td>
</tr>
<tr>
<td>voxel_selection</td>
<td>image of selected voxels. If oasis_train_dataframe was already run, specify the data.frame and voxel_selection and brain_mask to make prediction</td>
</tr>
</tbody>
</table>

Value
A list of volumes: the OASIS probability map, the preprocessed volumes (if return_preproc = TRUE), the brain mask for the subject, the voxel selection mask, and a thresholded, binary mask (if binary = TRUE).
Examples

```
library(ROCR)
p = predict(oasis::oasis_model,
 newdata = example_oasis_df,
 type = 'response')
nopd_p = predict(oasis::nopd_oasis_model,
 newdata = example_oasis_df,
 type = 'response')
y = example_oasis_df$GOLD_lesions
pred = ROCR::prediction(p, y)
perf = ROCR::performance(pred, "tpr", "fpr")
plot(perf)
```

```
library(neurobase)
dl_file = function(url) {
 tfile = tempfile(fileext = "nii.gz")
 req <- http::GET(url,
 http::write_disk(path = tfile))
 http::stop_for_status(req)
 tfile
}
in_ci <- function() {
 nzchar(Sys.getenv("CI"))
}
on_cran = function() {
 identical(Sys.getenv("NOT_CRAN"), "false")
}
if (in_ci() || on_cran()) {
 if (fslr::have.fsl() && require(httr)) {
 mods = c("FLAIR", "T1W", "T2W", "consensus_gt", "brainmask")
 base_url = file.path(
 "https://raw.githubusercontent.com/muschellij2/open_ms_data/"
 "master/cross_sectional/coregistered/patient01/"
)
 files = sapply(files, dl_file)
 names(files) = mods
 flair <- readnii(files["FLAIR"])
 t1 <- readnii(files["T1W"])
 t2 <- readnii(files["T2W"])
 brain_mask <- readnii(files["brainmask"])
 gold_standard = readnii(files["consensus_gt"])
 oasis_preprocessed_data <- oasis_predict(flair, t1, t2,
 brain_mask = brain_mask, preproc = TRUE)
 }
}
```
Description

This function does the required preprocessing for OASIS for the FLAIR, T2, T1, and PD volumes using FSL through fslr. The preprocessing steps are (1) inhomogeneity correct using fsl_biascorrect and (2) rigid registration using flirt to the T1 space.

Usage

oasis_preproc(flair, t1, t2, pd = NULL, brain_mask = NULL, verbose = TRUE, cores = 1)

Arguments

flair FLAIR volume of class nifti
t1 T1 volume of class nifti
t2 T2 volume of class nifti pd PD volume of class nifti
brain_mask binary mask volume of class nifti
verbose a logical value for printing diagnostic output
cores numeric indicating the number of cores to be used (no more than 4 is useful for this software implementation)

Value

Returns a list of objects of class nifti, namely the inhomogeneity corrected FLAIR, T1, T2, and PD registered to the space of the T1 volume.

Examples

library(neurobase)
dl_file = function(url) {
  tfile = tempfile(fileext = ".nii.gz")
  req <- http::GET(url, http::write_disk(path = tfile))
  http::stop_for_status(req)
  tfile
}
in_ci <- function() {
  nzchar(Sys.getenv("CI"))
}
on_cran = function() {
  identical(Sys.getenv("NOT_CRAN"), "false")
}
if (in_ci() || on_cran()) {
  if (fslr::have.fsl() & require(httr)) {
    mods = c("FLAIR", "T1W", "T2W", "consensus_gt", "brainmask")
    base_url = file.path(
      "https://raw.githubusercontent.com/muschellij2/open_ms_data/
      "master/cross_sectional/coregistered/patient01/"
    )
    files = paste0(base_url, mods, ".nii.gz")
  
}
files = sapply(files, dl_file)
names(files) = mods

flair <- readnii(files["FLAIR"])
t1 <- readnii(files["T1W"])
t2 <- readnii(files["T2W"])
brain_mask <- readnii(files["brainmask"])
gold_standard = readnii(files["consensus_gt"])

oasis_preprocessed_data <- oasis_preproc(flair, t1, t2, brain_mask = brain_mask)

---

### oasis_training OASIS Training

#### Description
This function trains the OASIS model from a data frame produced by an element from the output of the function `oasis_train_dataframe`.

#### Usage

```
oasis_training(..., formula = GoldStandard ~ FLAIR_10 * FLAIR + FLAIR_20 * FLAIR + PD_10 * PD + PD_20 * PD + T2_10 * T2 + T2_20 * T2 + T1_10 * T1 + T1_20 * T1, remove_preproc = FALSE)
```

#### Arguments

- `...` data frame(s) produced by the `oasis_train_dataframe` function
- `formula` formula to be fit by glm model
- `remove_preproc` a logical stating if `oasis_dataframe` needs to be extracted from the list of objects. Will call `list$oasis_dataframe`

#### Value
Returns a glm object containing the trained OASIS coefficients to be used by the function `oasis_predict`.

#### Examples

```
df = oasis::example_oasis_df
df$GoldStandard = df$GOLD_Lesions
oasis_training(df)
```

**Description**

This function creates the training vectors from a single MRI study that has FLAIR, T1, T2, and PD volumes as well as binary masks of lesions. The function can create a brain mask for the data (or the user can supply a brain mask), can preprocess the data, and the user may supply already normalized data if they wish to use an alternative normalization method.

**Usage**

```r
oasis_train_dataframe(flair, t1, t2, pd = NULL, gold_standard = NULL, brain_mask = NULL, preproc = FALSE, normalize = TRUE, slices = NULL, orientation = c("axial", "coronal", "sagittal"), return_preproc = FALSE, cores = 1, sigma = c(10, 20), verbose = TRUE, eroder = c("fsl", "oasis"))
```

**Arguments**

- `flair`: FLAIR volume of class `nifti`
- `t1`: T1 volume of class `nifti`
- `t2`: T2 volume of class `nifti`
- `pd`: PD volume of class `nifti`
- `gold_standard`: gold standard lesion segmentation mask of class `nifti`
- `brain_mask`: brain mask of class `nifti`, if NULL a brain mask will be created using `fslbet`
- `preproc`: is a logical value that determines whether to call the `oasis_preproc` function and performs the necessary preprocessing steps for OASIS
- `normalize`: is a logical value that determines whether to perform z-score normalization of the image over the brain mask, should be `TRUE` unless you train model using an alternative normalization
- `slices`: vector of desired slices to train on, if NULL then train over the entire brain mask
- `orientation`: string value telling which orientation the training slices are specified in, can take the values of "axial", "sagittal", or "coronal"
- `return_preproc`: is a logical value that indicates whether the preprocessed images should be returned
- `cores`: numeric indicating the number of cores to be used (no more than 4 is useful for this software implementation)
- `sigma`: Sigmats used to smooth the data, default is 10,20
- `verbose`: print diagnostic output
- `eroder`: Should `fslerode` or `oasis_erode` be used
Value

If return_preproc = FALSE the function returns a data.frame for use with the oasis_training function. Otherwise, the function returns a list containing: a data.frame for use with the oasis_training function, the FLAIR volume, the T1 volume, the T2 volume, the PD volume, the brain mask for the subject, and the voxel selection mask.

See Also

oasis_training

Examples

library(neurobase)
dl_file = function(url) {
  tfile = tempfile(fileext = ".nii.gz")
  req <- httr::GET(url,
                 httr::write_disk(path = tfile))
  httr::stop_for_status(req)
  tfile
}
in_ci <- function() {
  nzchar(Sys.getenv("CI"))
}
on_cran = function() {
  identical(Sys.getenv("NOT_CRAN"), "false")
}
if (in_ci() || on_cran()) {
  if (fslr::have_fsl() && require(httr)) {
    mods = c("FLAIR", "T1W", "T2W", "consensus_gt", "brainmask")
    base_url = file.path(
      "https://raw.githubusercontent.com/muschellij2/open_ms_data",
      "master/cross_sectional/coregistered/patient01/"
    )
    files = paste0(base_url, mods, ".nii.gz")
    files = sapply(files, dl_file)
    names(files) = mods
    flair <- readnii(files["FLAIR"])
    t1 <- readnii(files["T1W"])
    t2 <- readnii(files["T2W"])
    brain_mask <- readnii(files["brainmask"])
    gold_standard = readnii(files["consensus_gt"])
    oasis_preprocessed_data <- oasis_train_dataframe(flair, t1, t2,
                                                    brain_mask = brain_mask, gold_standard = gold_standard)
  }
}

---

original_oasis_model  OASIS glm Object
voxel_selection

Description

A glm object containing the OASIS model from the OASIS paper.

Usage

original_oasis_model

Format

A glm object

Voxel Selection Procedure

Description

This function creates a binary mask for the voxel selection procedure for OASIS.

Usage

voxel_selection(flair, brain_mask, cutoff)

voxel_selection_with_erosion(flair, brain_mask, verbose = TRUE, eroder = c("fsl", "oasis"))

Arguments

flair FLAIR volume of class nifti
brain_mask brain mask of class nifti
cutoff the percentile cutoff for the thresholding, passed to quantile
verbose print diagnostic output
eroder Should fsl_erode or oasis_erode be used

Value

Returns the voxel selection mask as an object of class nifti.

Examples

library(neurobase)
library(fslr)
library(oasis)
niis = tempfile(fileext = ".nii.gz")
if (require(httr)) {
  url = paste0("https://s3.us-east-2.amazonaws.com/brainder/software/",
      "flair/templates/CC-853-FLAIR-2.0mm.nii.gz")
  req <- http::GET(url,
...
```r
httr::write_disk(path = niis)
httr::stop_for_status(req)

flair <- readnii(niis)
if (have.fsl()) {
 brain_mask = fslbet(niis) > 0
} else {
 ind = list(c(10L, 81L), c(12L, 101L), c(3L, 78L))
 all.ind = lapply(ind, function(x) seq(x[1], x[2]))
 brain_mask = niftiarr(flair, 0)
 eg = expand.grid(all.ind)
 eg = as.matrix(eg)
 brain_mask[eg] = 1
}

voxel_selection_mask <- voxel_selection(flair,
 brain_mask, cutoff = .85)
```
Index

*Topic datasets
  example_oasis_df, 3
  nopd_oasis_model, 3
  oasis_model, 4
  original_oasis_model, 10

  correct_image_dim, 2
  example_oasis_df, 3

  flirt, 7
  fsl_biascorrect, 7
  fslibet, 5, 9
  fslerode, 9, 11

  glm, 5

  nifti, 2, 4, 5, 7, 9, 11
  nopd_oasis_model, 3

  oasis_erode, 3, 9, 11
  oasis_model, 4
  oasis_predict, 5, 8
  oasis_preproc, 6, 9
  oasis_train_dataframe, 5, 8, 9
  oasis_training, 8, 10
  original_oasis_model, 4, 10

  quantile, 11

  voxel_selection, 11
  voxel_selection_with_erosion
    (voxel_selection), 11