Package ‘ocf’

September 14, 2023

Type Package

Title Ordered Correlation Forest

Version 1.0.0

Description Nonparametric estimator for ordered non-numeric outcomes. The estimator modifies a standard random forest splitting criterion to build a collection of forests, each estimating the conditional probability of a single class. The package also implements a nonparametric estimator of the covariates’ marginal effects.

License GPL-3

Encoding UTF-8

Depends R (>= 3.4.0)

Imports Rcpp, Matrix, stats, utils, stringr, orf, glmnet, ranger

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://riccardo-df.github.io/ocf/

Biarch TRUE

NeedsCompilation yes

Author Riccardo Di Francesco [aut, cre, cph]

Maintainer Riccardo Di Francesco <difrancesco.riccardo96@gmail.com>

Repository CRAN

Date/Publication 2023-09-14 18:20:02 UTC

R topics documented:
marginal_effects .. 2
mean_squared_error ... 4
marginal_effects

Marginal Effects for Ordered Correlation Forest

Description

Nonparametric estimation of marginal effects using an ocf object.

Usage

marginal_effects(
 object,
 data = NULL,
 which_covariates = c(),
 eval = "atmean",
 bandwidth = 0.1,
 inference = FALSE
)

Arguments

object An ocf object.

data Data set of class data.frame to estimate marginal effects. It must contain at least the same covariates used to train the forests. If NULL, marginal effects are estimated on object$full_data.

which_covariates Character vector storing the names of the covariates for which marginal effect estimation is desired. If empty (the default), marginal effects are estimated for all covariates.

eval Evaluation point for marginal effects. Either "mean", "atmean" or "atmedian".

bandwidth How many standard deviations x_up and x_down differ from x.

inference Whether to extract weights and compute standard errors. The weights extraction considerably slows down the program.
marginal_effects

Details

marginal_effects can estimate mean marginal effects, marginal effects at the mean, or marginal effects at the median, according to the eval argument.

The routine assumes that covariates with more than ten unique values are continuous. Otherwise, covariates are assumed to be discrete.

Value

Object of class ocf.marginal.

Author(s)

Riccardo Di Francesco

See Also

ocf

Examples

Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
oda <- odata[1:100,] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

Fit ocf. Use large number of trees.
forests <- ocf(y, X, n.trees = 4000)

Marginal effects at the mean.
me <- marginal_effects(forests, eval = "atmean")
print(me)
summary(me)

LATEX.
print(me, latex = TRUE)

Compute standard errors. This requires honest forests.
honest_forests <- ocf(y, X, n.trees = 4000, honesty = TRUE)
honest_me <- marginal_effects(honest_forests, eval = "atmean", inference = TRUE)
honest_me$standard.errors
honest_me$p.values # These are not corrected for multiple hypotheses testing!

print(honest_me, latex = TRUE)
Accuracy Measures for Ordered Probability Predictions

Description

Accuracy measures for evaluating ordered probability predictions.

Usage

- `mean_squared_error(y, predictions, use.true = FALSE)`
- `mean_absolute_error(y, predictions, use.true = FALSE)`
- `mean_ranked_score(y, predictions, use.true = FALSE)`
- `classification_error(y, predictions)`

Arguments

- `y`: Either the observed outcome vector or a matrix of true probabilities.
- `predictions`: Predictions.
- `use.true`: If TRUE, then the program treats `y` as a matrix of true probabilities.

Details

MSE, MAE, and RPS:

When calling one of `mean_squared_error`, `mean_absolute_error`, or `mean_ranked_score`, predictions must be a matrix of predicted class probabilities, with as many rows as observations in `y` and as many columns as classes of `y`.

If `use.true == FALSE`, the mean squared error (MSE), the mean absolute error (MAE), and the mean ranked probability score (RPS) are computed as follows:

\[
MSE = \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{M} (1(Y_i = m) - \hat{p}_m(x))^2
\]

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{M} |1(Y_i = m) - \hat{p}_m(x)|
\]

\[
RPS = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M-1} \sum_{m=1}^{M} (1(Y_i \leq m) - \hat{p}_m^*(x))^2
\]

If `use.true == TRUE`, the MSE, the MAE, and the RPS are computed as follows (useful for simulation studies):
$MSE = \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{M} (p_m(x) - \hat{p}_m(x))^2$

$MSE = \frac{1}{n} \sum_{i=1}^{n} \sum_{m=1}^{M} |p_m(x) - \hat{p}_m(x)|$

$RPS = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{M-1} \sum_{m=1}^{M} (p^*_m(x) - \hat{p}^*_m(x))^2$

where:

$p_m(x) = P(Y_i = m|X_i = x)$

$p^*_m(x) = P(Y_i \leq m|X_i = x)$

Classification error:
When calling `classification_error`, predictions must be a vector of predicted class labels.

Classification error (CE) is computed as follows:

$CE = \frac{1}{n} \sum_{i=1}^{n} 1(Y_i \neq \hat{Y}_i)$

where Y_i are the observed class labels.

Value
The MSE, the MAE, the RPS, or the CE of the method.

Author(s)
Riccardo Di Francesco

See Also
`mean_ranked_score`

Examples
```r
# Load data from orf package.
set.seed(1986)
library(orf)
data(odata)
oda <- odata[1:100, ] # Subset to reduce elapsed time.
y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])
```
Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))
y_tr <- y[train_idx]
X_tr <- X[train_idx, ,]
y_test <- y[-train_idx]
X_test <- X[-train_idx, ,]

Fit ocf on training sample.
forests <- ocf(y_tr, X_tr)

Accuracy measures on test sample.
predictions <- predict(forests, X_test)
mean_squared_error(y_test, predictions$probabilities)
mean_ranked_score(y_test, predictions$probabilities)
classification_error(y_test, predictions$classification)

multinomial_ml
Multinomial Machine Learning

Description

Estimation strategy to estimate conditional choice probabilities for ordered non-numeric outcomes.

Usage

```r
multinomial_ml(y = NULL, X = NULL, learner = "forest", scale = TRUE)
```

Arguments

- **y**: Outcome vector.
- **X**: Covariate matrix (no intercept).
- **learner**: String, either “forest” or “l1”. Selects the base learner to estimate each expectation.
- **scale**: Logical, whether to scale the covariates. Ignored if learner is not “l1”.

Details

Multinomial machine learning expresses conditional choice probabilities as expectations of binary variables:

\[
p_m(X_i) = \mathbb{E}[1(Y_i = m)|X_i]
\]
This allows us to estimate each expectation separately using any regression algorithm to get an estimate of conditional probabilities.

`multinomial_ml` combines this strategy with either regression forests or penalized logistic regression with an L1 penalty, according to the user-specified parameter `learner`.

If `learner == "l1"`, the penalty parameters are chosen via 10-fold cross-validation and `model.matrix` is used to handle non-numeric covariates. Additionally, if `scale == TRUE`, the covariates are scaled to have zero mean and unit variance.

Value

Object of class `mml`.

Author(s)

Riccardo Di Francesco

See Also

`ordered_ml`, `ocf`

Examples

```r
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
odata <- odata[1:100, ] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))
y_tr <- y[train_idx]
X_tr <- X[train_idx, ]
y_test <- y[-train_idx]
X_test <- X[-train_idx, ]

## Fit multinomial machine learning on training sample using two different learners.
multinomial_forest <- multinomial_ml(y_tr, X_tr, learner = "forest")
multinomial_l1 <- multinomial_ml(y_tr, X_tr, learner = "l1")

## Predict out of sample.
predictions_forest <- predict(multinomial_forest, X_test)
predictions_l1 <- predict(multinomial_l1, X_test)
```
Compare predictions.
cbind(head(predictions_forest), head(predictions_l1))

ocf
Ordered Correlation Forest

Description
Nonparametric estimator for ordered non-numeric outcomes. The estimator modifies a standard random forest splitting criterion to build a collection of forests, each estimating the conditional probability of a single class.

Usage

```r
ocf(
  y = NULL,
  X = NULL,
  honesty = FALSE,
  honesty.fraction = 0.5,
  inference = FALSE,
  alpha = 0,
  n.trees = 2000,
  mtry = ceiling(sqrt(ncol(X))),
  min.node.size = 5,
  max.depth = 0,
  replace = FALSE,
  sample.fraction = ifelse(replace, 1, 0.5),
  n.threads = 1
)
```

Arguments

- **y**
 Outcome vector.

- **X**
 Covariate matrix (no intercept).

- **honesty**
 Whether to grow honest forests.

- **honesty.fraction**
 Fraction of honest sample. Ignored if `honesty = FALSE`.

- **inference**
 Whether to extract weights and compute standard errors. The weights extraction considerably slows down the routine. `honesty = TRUE` is required for valid inference.

- **alpha**
 Controls the balance of each split. Each split leaves at least a fraction `alpha` of observations in the parent node on each side of the split.

- **n.trees**
 Number of trees.
ocf

- **mtry**: Number of covariates to possibly split at in each node. Default is the square root of the number of covariates.
- **min.node.size**: Minimal node size.
- **max.depth**: Maximal tree depth. A value of 0 corresponds to unlimited depth, 1 to "stumps" (one split per tree).
- **replace**: If TRUE, grow trees on bootstrap subsamples. Otherwise, trees are grown on random subsamples drawn without replacement.
- **sample.fraction**: Fraction of observations to sample.
- **n.threads**: Number of threads. Zero corresponds to the number of CPUs available.

Value

Object of class `ocf`.

Author(s)

Riccardo Di Francesco

See Also

- `marginal_effects`

Examples

```r
## Load data from orf package.
set.seed(1986)
library(orf)
data(odata)
odata <- odata[1:100, ]  # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))

y_tr <- y[train_idx]
X_tr <- X[train_idx, ]

y_test <- y[-train_idx]
X_test <- X[-train_idx, ]

## Fit ocf on training sample.
forests <- ocf(y_tr, X_tr)

## We have compatibility with generic S3-methods.
print(forests)
summary(forests)
```
predictions <- predict(forests, X_test)
head(predictions$probabilities)
table(y_test, predictions$classification)

Compute standard errors. This requires honest forests.
honest_forests <- ocf(y_tr, X_tr, honesty = TRUE, inference = TRUE)
head(honest_forests$predictions$standard.errors)

ordered_ml

Ordered Machine Learning

Description

Estimation strategy to estimate conditional choice probabilities for ordered non-numeric outcomes.

Usage

```
ordered_ml(y = NULL, X = NULL, learner = "forest", scale = TRUE)
```

Arguments

- **y**: Outcome vector.
- **X**: Covariate matrix (no intercept).
- **learner**: String, either "forest" or "l1". Selects the base learner to estimate each expectation.
- **scale**: Logical, whether to scale the covariates. Ignored if **learner** is not "l1".

Details

Ordered machine learning expresses conditional choice probabilities as the difference between the cumulative probabilities of two adjacent classes, which in turn can be expressed as conditional expectations of binary variables:

\[
p_m(X_i) = E[1(Y_i \leq m) | X_i] - E[1(Y_i \leq m - 1) | X_i]
\]

Then we can separately estimate each expectation using any regression algorithm and pick the difference between the m-th and the (m-1)-th estimated surfaces to estimate conditional probabilities.

ordered_ml combines this strategy with either regression forests or penalized logistic regression with an L1 penalty, according to the user-specified parameter **learner**.

If **learner** == "forest", then the orf function is called from an external package, as this estimator has already been proposed by Lechner and Okasa (2019).

If **learner** == "l1", the penalty parameters are chosen via 10-fold cross-validation and **model.matrix** is used to handle non-numeric covariates. Additionally, if **scale** == TRUE, the covariates are scaled to have zero mean and unit variance.
Value

Object of class oml.

Author(s)

Riccardo Di Francesco

See Also

multinomial_ml, ocf

Examples

```r
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
odata <- odata[1:100,]  # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))

y_tr <- y[train_idx]
X_tr <- X[train_idx,]

y_test <- y[-train_idx]
X_test <- X[-train_idx,]

## Fit ordered machine learning on training sample using two different learners.
ordered_forest <- ordered_ml(y_tr, X_tr, learner = "forest")
ordered_l1 <- ordered_ml(y_tr, X_tr, learner = "l1")

## Predict out of sample.
predictions_forest <- predict(ordered_forest, X_test)
predictions_l1 <- predict(ordered_l1, X_test)

## Compare predictions.
cbind(head(predictions_forest), head(predictions_l1))
```
Description

Prediction method for class \texttt{mml}.

Usage

S3 method for class 'mml'
predict(object, data = NULL, ...)

Arguments

\begin{itemize}
\item \textbf{object} \hspace{1cm} An \texttt{mml} object.
\item \textbf{data} \hspace{1cm} Data set of class \texttt{data.frame}. It must contain the same covariates used to train the base learners. If data is \texttt{NULL}, then \texttt{object$X} is used.
\item \textbf{...} \hspace{1cm} Further arguments passed to or from other methods.
\end{itemize}

Details

If \texttt{object$learner == "l1"}, then \texttt{model.matrix} is used to handle non-numeric covariates. If we also have \texttt{object$scaling == TRUE}, then data is scaled to have zero mean and unit variance.

Value

Matrix of predictions.

Author(s)

Riccardo Di Francesco

See Also

\texttt{multinomial_ml, ordered_ml}

Examples

Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
odata <- odata[, seq_len(100)] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))

y_tr <- y[train_idx]
X_tr <- X[train_idx,]
y_test <- y[-train_idx]
X_test <- X[-train_idx]

Fit multinomial machine learning on training sample using two different learners.
multinomial_forest <- multinomial_ml(y_tr, X_tr, learner = "forest")
multinomial_l1 <- multinomial_ml(y_tr, X_tr, learner = "l1")

Predict out of sample.
predictions_forest <- predict(multinomial_forest, X_test)
predictions_l1 <- predict(multinomial_l1, X_test)

Compare predictions.
cbind(head(predictions_forest), head(predictions_l1))

predict.ocf

Prediction Method for ocf Objects

Description

Prediction method for class `ocf`.

Usage

```r
## S3 method for class 'ocf'
predict(object, data = NULL, type = "response", ...)
```

Arguments

- `object` An `ocf` object.
- `data` Data set of class `data.frame`. It must contain at least the same covariates used to train the forests. If `data` is `NULL`, then `object$full_data` is used.
- `type` Type of prediction. Either "response" or "terminalNodes".
- `...` Further arguments passed to or from other methods.

Details

If `type == "response"`, the routine returns the predicted conditional class probabilities and the predicted class labels. If forests are honest, the predicted probabilities are honest.

If `type == "terminalNodes"`, the IDs of the terminal node in each tree for each observation in data are returned.

Value

Desired predictions.
Author(s)
Riccardo Di Francesco

See Also
ocf, marginal_effects

Examples

```
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
data <- odata[1:100, ] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))
y_tr <- y[train_idx]
X_tr <- X[train_idx, ]

y_test <- y[-train_idx]
X_test <- X[-train_idx, ]

## Fit ocf on training sample.
forests <- ocf(y_tr, X_tr)

## Predict on test sample.
predictions <- predict(forests, X_test)
head(predictions$probabilities)
predictions$classification

## Get terminal nodes.
predictions <- predict(forests, X_test, type = "terminalNodes")
predictions$forest.1[1:10, 1:20] # Rows are observations, columns are forests.
```

predict.oml

Prediction Method for oml Objects

Description

Prediction method for class oml.
Usage

```r
## S3 method for class 'oml'
predict(object, data = NULL, ...)
```

Arguments

- **object**: An oml object.
- **data**: Data set of class `data.frame`. It must contain the same covariates used to train the base learners. If `data` is `NULL`, then `object$X` is used.
- **...**: Further arguments passed to or from other methods.

Details

If `object$learner == "l1"`, then `model.matrix` is used to handle non-numeric covariates. If we also have `object$scaling == TRUE`, then data is scaled to have zero mean and unit variance.

Value

Matrix of predictions.

Author(s)

Riccardo Di Francesco

See Also

- `multinomial_ml`
- `ordered_ml`

Examples

```r
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
oda <- odata[1:100, ] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))

y_tr <- y[train_idx]
X_tr <- X[train_idx, ]

y_test <- y[-train_idx]
X_test <- X[-train_idx, ]
```
Fit ordered machine learning on training sample using two different learners.
ordered_forest <- ordered_ml(y_tr, X_tr, learner = "forest")
ordered_l1 <- ordered_ml(y_tr, X_tr, learner = "l1")

Predict out of sample.
predictions_forest <- predict(ordered_forest, X_test)
predictions_l1 <- predict(ordered_l1, X_test)

Compare predictions.
cbind(head(predictions_forest), head(predictions_l1))

Description
Prints an `ocf` object.

Usage
```r
## S3 method for class 'ocf'
print(x, ...)
```

Arguments
- `x` An `ocf` object.
- `...` Further arguments passed to or from other methods.

Value
Prints an `ocf` object.

Author(s)
Riccardo Di Francesco

See Also
`ocf`

Examples
```r
## Load data from orf package.
set.seed(1986)
library(orf)
data(odata)
```
odata <- odata[1:200,] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

Fit ocf.
forests <- ocf(y, X)

Print.
print(forests)

print.ocf.marginal

Print Method for ocf.marginal Objects

Description

Prints an `ocf.marginal` object.

Usage

```r
## S3 method for class 'ocf.marginal'
print(x, latex = FALSE, ...)
```

Arguments

- `x`
 An `ocf.marginal` object.
- `latex`
 If `TRUE`, prints LATEX code.
- `...`
 Further arguments passed to or from other methods.

Details

Compilation of the LATEX code requires the following packages: `booktabs`, `float`, `adjustbox`. If standard errors have been estimated, they are printed in parenthesis below each point estimate.

Value

Prints an `ocf.marginal` object.

Author(s)

Riccardo Di Francesco

See Also

`ocf.marginal_effects`
Examples

```r
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
oda data <- odata[1:100, ] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Fit ocf. Use large number of trees.
forests <- ocf(y, X, n.trees = 4000)

## Marginal effects at the mean.
me <- marginal_effects(forests, eval = "atmean")
print(me)
print(me, latex = TRUE)

## Add standard errors.
honest_forests <- ocf(y, X, n.trees = 4000, honesty = TRUE)
honest_me <- marginal_effects(honest_forests, eval = "atmean", inference = TRUE)
print(honest_me, latex = TRUE)
```

summary.ocf

Summary Method for ocf Objects

Description

Summarizes an `ocf` object.

Usage

```r
## S3 method for class 'ocf'
summary(object, ...)
```

Arguments

- `object` An `ocf` object.
- `...` Further arguments passed to or from other methods.

Value

Summarizes an `ocf` object.

Author(s)

Riccardo Di Francesco
See Also

* `ocf.marginal_effects`

Examples

```r
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
odata <- odata[1:100, ] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Fit ocf.
forests <- ocf(y, X)

## Summary.
summary(forests)
```

summary.ocf.marginal
Summary Method for ocf.marginal Objects

Description

Summarizes an `ocf.marginal` object.

Usage

```r
## S3 method for class 'ocf.marginal'
summary(object, latex = FALSE, ...)
```

Arguments

- `object`: An `ocf.marginal` object.
- `latex`: If `TRUE`, prints LATEX code.
- `...`: Further arguments passed to or from other methods.

Details

Compilation of the LATEX code requires the following packages: `booktabs`, `float`, `adjustbox`. If standard errors have been estimated, they are printed in parenthesis below each point estimate.

Value

Summarizes an `ocf.marginal` object.
Examples

```r
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
odata <- odata[1:100, ] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Fit ocf. Use large number of trees.
forests <- ocf(y, X, n.trees = 4000)

## Marginal effects at the mean.
me <- marginal_effects(forests, eval = "atmean")
summary(me)
summary(me, latex = TRUE)

## Add standard errors.
honest_forests <- ocf(y, X, n.trees = 4000, honesty = TRUE)
honest_me <- marginal_effects(honest_forests, eval = "atmean", inference = TRUE)
summary(honest_me, latex = TRUE)
```

tree_info

Tree Information in Readable Format

Description

Extracts tree information from a `ocf.forest` object.

Usage

`tree_info(object, tree = 1)`

Arguments

- `object` : `ocf.forest` object.
- `tree` : Number of the tree of interest.
Details

Nodes and variables IDs are 0-indexed, i.e., node 0 is the root node.

All values smaller than or equal to splitval go to the left and all values larger go to the right.

Value

A data.frame with the following columns:

- `nodeID`: Node IDs.
- `leftChild`: IDs of the left child node.
- `rightChild`: IDs of the right child node.
- `splitvarID`: IDs of the splitting variable.
- `splitvarName`: Name of the splitting variable.
- `splitval`: Splitting value.
- `terminal`: Logical, TRUE for terminal nodes.
- `prediction`: One column with the predicted conditional class probabilities.

Author(s)

Riccardo Di Francesco

See Also

ocf

Examples

```r
## Load data from orf package.
set.seed(1986)

library(orf)
data(odata)
oda <- odata[1:200, ] # Subset to reduce elapsed time.

y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])

## Fit ocf.
forests <- ocf(y, X)

## Extract information from tenth tree of first forest.
info <- tree_info(forests$forests.info$forest.1, tree = 10)
head(info)
```
Index

classification_error, 5
classification_error
 (mean_squared_error), 4

marginal_effects, 2, 3, 9, 14, 17, 19, 20
mean_absolute_error, 4
mean_absolute_error
 (mean_squared_error), 4
mean_ranked_score, 4, 5
mean_ranked_score (mean_squared_error),
 4
mean_squared_error, 4, 4
model.matrix, 7, 10, 12, 15
multinomial_ml, 6, 7, 11, 12, 15

ocf, 2, 3, 7, 8, 11, 13, 14, 16-21
ordered_ml, 7, 10, 10, 12, 15
orf, 10

predict.mml, 11
predict.ocf, 13
predict.oml, 14
print.ocf, 16
print.ocf.marginal, 17

summary.ocf, 18
summary.ocf.marginal, 19

tree_info, 20