Package ‘od’

September 9, 2020

Title Manipulate and Map Origin-Destination Data

Version 0.0.1

Description The aim of ‘od’ is to provide tools and example datasets for working with origin-destination (‘OD’) datasets of the type used to describe aggregate urban mobility patterns (Carey et al. 1981) <doi:10.1287/trsc.15.1.32>. The package builds on functions for working with ‘OD’ data in the package ‘stplanr’, (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053> with a focus on computational efficiency and support for the ‘sf’ class system (Pebesma 2018) <doi:10.32614/RJ-2018-009>. With few dependencies and a simple class system based on data frames, the package is intended to facilitate efficient analysis of ‘OD’ datasets and to provide a place for developing new functions. The package enables the creation and analysis of geographic entities representing large scale mobility patterns, from daily travel between zones in cities to migration between countries.

License GPL-3

BugReports https://github.com/itsleeds/od/issues

Encoding UTF-8

LazyData true

Depends R (>= 3.4.0)

Imports sfheaders, methods

Suggests sf, knitr, rmarkdown, tinytest, covr

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Robin Lovelace [aut, cre] (<https://orcid.org/0000-0001-5679-6536>), David Cooley [ctb]

Maintainer Robin Lovelace <rob00x@gmail.com>

Repository CRAN

Date/Publication 2020-09-09 09:50:03 UTC
R topics documented:

 coords_to_od .. 2
 odc_to_sf ... 3
 odc_to_sfc ... 3
 odmatrix_to_od .. 4
 od_coordinates .. 5
 od_data_centroids ... 5
 od_data_df ... 6
 od_data_network .. 6
 od_data_zones .. 7
 od_filter .. 7
 od_id ... 8
 od_id_order .. 9
 od_interzone ... 9
 od_oneway ... 10
 od_to_odmatrix .. 11
 od_to_sf .. 12
 od_to_sf_network ... 13
 points_to_od ... 14
 sfc_point_to_matrix ... 15

Index 16

cords_to_od Convert coordinates into a data frame of origins and destinations

Description

Takes geographic coordinates and converts them into a data frame representing the potential flows, or 'spatial interaction', between every combination of points.

Usage

coords_to_od(p, interzone_only = FALSE, ids_only = FALSE)

Arguments

p A spatial points object or a matrix of coordinates representing points
interzone_only Should the result only include interzonal OD pairs, in which the ID of the origin is different from the ID of the destination zone? FALSE by default
ids_only Should a data frame with only 2 columns (origin and destination IDs) be returned? The default is FALSE, meaning the result should also contain the coordinates of the start and end points of each OD pair.

Value

A data frame object with O and D codes and origin and destination coordinates.
Examples

```r
p = sf::st_coordinates(od_data_centroids[1:3, ])
od = points_to_od(p)
(od = coords_to_od(p, interzone_only = TRUE))
l = odc_to_sf(od[3:6], d = od[1:2])
l$v = 1
(l_oneway = od_oneway(l))
plot(l_oneway)
```

odc_to_sf
Convert origin-destination coordinates into geographic desire lines

Description

Convert origin-destination coordinates into geographic desire lines

Usage

```r
odc_to_sf(odc, d = NULL, crs = 4326)
```

Arguments

- **odc**: A matrix containing coordinates representing line start and end points
- **d**: An optional data frame to add to the geometry column
- **crs**: The coordinate reference system of the output, if not known in `z`. 4326 by default.

Examples

```r
(odc = od_coordinates(od_data_df, p = od_data_zones, sfnames = TRUE))
(l = odc_to_sf(odc))
plot(l)
lsfc = odc_to_sfc(odc)
```

odc_to_sfc
Convert origin-destination coordinates into geographic desire lines

Description

Convert origin-destination coordinates into geographic desire lines

Usage

```r
odc_to_sfc(odc)
```
odmatrix_to_od

Convert origin-destination data from wide to long format

Description

This function takes a matrix representing travel between origins (with origin codes in the row names of the matrix) and destinations (with destination codes in the column names of the matrix) and returns a data frame representing origin-destination pairs.

Usage

odmatrix_to_od(odmatrix)

Arguments

odmatrix A matrix with row and columns representing origin and destination zone codes and cells representing the flow between these zones.

Details

The function returns a data frame with rows ordered by origin and then destination zone code values and with names orig, dest and flow.

See Also

Other od: od_id, od_to_odmatrix()

Examples

x = od_data_df
x[1:3]
odmatrix = od_to_odmatrix(od_data_df)
odmatrix
odmatrix_to_od(odmatrix)
od_coordinates

Create matrices representing origin-destination coordinates

Description

This function takes a wide range of input data types (spatial lines, points or text strings) and returns a data frame of coordinates representing origin (ox, oy) and destination (dx, dy) points.

Usage

```r
od_coordinates(x, p = NULL, silent = TRUE, sfnames = FALSE)
```

Arguments

- **x**
 A data frame in which the first two columns are codes representing points/zones of origin and destination
- **p**
 Points representing origins and destinations
- **silent**
 Hide messages? FALSE by default.
- **sfnames**
 Should output column names be compatible with the sf package?

Value

A data frame with origin and destination coordinates

Examples

```r
x = od_data_df
p = od_data_centroids
res = od_coordinates(x, p)[1:2, ]
class(res)
res
od_coordinates(x, p, sfnames = TRUE)[1:2, ]
od_coordinates(x, p, silent = FALSE)[1:2, ]
```

od_data_centroids

Datasets representing zone centroids

Description

These are provided as a geographic (sf) object and a simple data frame with longitude (X) and latitude (Y) columns.

Note

The schema data can be (re-)generated using code in the data-raw directory.
Examples

od_data_centroids
head(od_data_coordinates)

od_data_df
Origin-destination datasets

Description

Datasets representing top commuter desire lines in Leeds based on the 2011 Census. The first two variables of the data frame are the zone code of origin and destination, respectively. The other columns record the number of people who travel by different modes, including all, train, bus, bicycle and by foot.

Details

od_data_df_medium is a larger dataset with the same variables, with around 10k rows.

Note

The schema data can be (re-)generated using code in the data-raw directory.

od_data_network
Route network data for Leeds

Description

Route network data for Leeds

Note

The schema data can be (re-)generated using code in the data-raw directory.

Examples

od_data_network
head(od_data_network)
od_data_zones

Example OD data

Description

Zone datasets for packages examples

Note

The schema data can be (re-)generated using code in the `data-raw` directory.

od_filter

Filter OD datasets

Description

This function takes an OD dataset and a character vector of codes and returns an OD dataset with rows matching origin and destination zones present in the codes.

Usage

`od_filter(x, codes, silent = FALSE)`

Arguments

- **x**: A data frame in which the first two columns are codes representing points/zones of origin and destination.
- **codes**: The zone codes that must be in origins and destinations.
- **silent**: Hide messages? FALSE by default.

Value

A data frame

Examples

```r
x = od_data_df
z = od_data_zones
codes = z[[1]]
z_in_x_o = codes %in% x[[1]]
z_in_x_d = codes %in% x[[2]]
sum(z_in_x_d)
sum(z_in_x_o)
z = z[which(z_in_x_o | z_in_x_d)[-1], ]
z[[1]]
unique(c(x[[1]], x[[2]]))
```
try(od_to_sf(x, z)) # fails
nrow(x)
x = od_filter(x, z[[1]])
nrow(x)
od_to_sf(x, z)

od_id

Combine two ID values to create a single ID number

Description

Combine two ID values to create a single ID number

Usage

```r
od_id_szudzik(x, y, ordermatters = FALSE)
od_id_max_min(x, y)
od_id_character(x, y)
```

Arguments

- `x`: a vector of numeric, character, or factor values
- `y`: a vector of numeric, character, or factor values
- `ordermatters`: logical, does the order of values matter to pairing, default = FALSE

Details

In OD data it is common to have many 'oneway' flows from "A to B" and "B to A". It can be useful to group these an have a single ID that represents pairs of IDs with or without directionality, so they contain 'twoway' or bi-directional values.

od_id functions take two vectors of equal length and return a vector of IDs, which are unique for each combination but the same for twoway flows.

- the Szudzik pairing function, on two vectors of equal length. It returns a vector of ID numbers.

This function superseeds od_id_order as it is faster on large datasets

See Also

- od_oneway

Other od: `od_to_odmatrix()`, `odmatrix_to_od()`
od_id_order

Examples

```r
(d = od_data_df[2:9, 1:2])
(id = od_id_character(d[[1]], d[[2]]))
duplicated(id)
od_id_szudzik(d[[1]], d[[2]])
od_id_max_min(d[[1]], d[[2]])
```

od_id_order

Generate ordered ids of OD pairs so lowest is always first. This function is slow on large datasets, see szudzik_pairing for faster alternative.

Description

Generate ordered ids of OD pairs so lowest is always first. This function is slow on large datasets, see szudzik_pairing for faster alternative.

Usage

```r
od_id_order(x, id1 = names(x)[1], id2 = names(x)[2])
```

Arguments

- `x`: A data frame representing OD pairs
- `id1`: Optional (it is assumed to be the first column) text string referring to the name of the variable containing the unique id of the origin
- `id2`: Optional (it is assumed to be the second column) text string referring to the name of the variable containing the unique id of the destination

Examples

```r
x = data.frame(id1 = c(1, 1, 2, 2, 3), id2 = c(1, 2, 3, 1, 4))
od_id_order(x) # 4th line switches id1 and id2 so oneway_key is in order
```

od_interzone

Return only interzonal (io intrazonal) OD pairs.

Description

This function takes an OD dataset and returns only the rows corresponding to movements in which the origin is different than the destination.

Usage

```r
od_interzone(x)
```
Arguments

x A data frame in which the first two columns are codes representing points/zones of origin and destination

Examples

```r
od_data = points_to_od(od_data_centroids)
nrow(od_data)
nrow(od_interzone(od_data))
nrow(od_intrazone(od_data))
```

od_oneway Aggregate OD pairs they become non-directional

Description

For example, sum total travel in both directions.

Usage

```r
od_oneway(
  x,
  attrib = names(x[-c(1:2)])[vapply(x[-c(1:2)], is.numeric, TRUE)],
  FUN = sum,
  ...,
  id1 = names(x)[1],
  id2 = names(x)[2],
  oneway_key = NULL
)
```

Arguments

x A data frame or SpatialLinesDataFrame, representing an OD matrix
attrib A vector of column numbers or names, representing variables to be aggregated. By default, all numeric variables are selected.
FUN The aggregating function such as sum (the default) and mean
... Further arguments passed to or used by methods
id1 Optional (it is assumed to be the first column) text string referring to the name of the variable containing the unique id of the origin
id2 Optional (it is assumed to be the second column) text string referring to the name of the variable containing the unique id of the destination
oneway_key Optional key of unique OD pairs regardless of the order, e.g., as generated by `od_id_max_min()` or `od_id_szudzik()`
Details

Flow data often contains movement in two directions: from point A to point B and then from B to A. This can be problematic for transport planning, because the magnitude of flow along a route can be masked by flows the other direction. If only the largest flow in either direction is captured in an analysis, for example, the true extent of travel will be heavily underestimated for OD pairs which have similar amounts of travel in both directions. Flows in both directions are often represented by overlapping lines with identical geometries which can be confusing for users and are difficult to plot.

Value

`oneway` outputs a data frame (or `sf` data frame) with rows containing results for the user-selected attribute values that have been aggregated.

Examples

```r
(od_min = od_data_df[c(1, 2, 1), 1:4])
od_min[3, 1:2] = rev(od_min[3, 1:2])
(od_oneway = od_oneway(od_min))
nrow(od_oneway) < nrow(od_min) # result has fewer rows
sum(od_min$all) == sum(od_oneway$all) # but the same total flow
(od_oneway = od_oneway(od_min, FUN = mean))
od_oneway(od_min, attrib = "all")
od_min$all[3] = NA
(od_oneway = od_oneway(od_min, FUN = mean, na.rm = TRUE))
```

od_to_odmatrix

Convert origin-destination data from long to wide format

Description

This function takes a data frame representing travel between origins (with origin codes in `name_orig`, typically the 1st column) and destinations (with destination codes in `name_dest`, typically the second column) and returns a matrix with cell values (from `attrib`, the third column by default) representing travel between origins and destinations.

Usage

`od_to_odmatrix(x, attrib = 3, name_orig = 1, name_dest = 2)`

Arguments

- **x**
 - A data frame representing flows between origin and destinations
- **attrib**
 - A number or character string representing the column containing the attribute data of interest from the `flow` data frame
- **name_orig**
 - A number or character string representing the zone of origin
- **name_dest**
 - A number or character string representing the zone of destination
See Also

Other od: od_id, odmatrix_to_od()

Examples

```r
x = od_data_df[1:4,]
od_to_odmatrix(x)
od_to_odmatrix(x, attrib = "bicycle")
```

od_to_sf

Convert OD data into geographic 'desire line’ objects

Description

Convert OD data into geographic 'desire line’ objects

Usage

```r
od_to_sf(
  x,
  z,
  zd = NULL,
  silent = FALSE,
  filter = TRUE,
  package = "sfheaders",
  crs = 4326
)
```

```r
od_to_sfc(
  x,
  z,
  zd = NULL,
  silent = TRUE,
  package = "sfheaders",
  crs = 4326,
  filter = TRUE
)
```

Arguments

- `x` A data frame in which the first two columns are codes representing points/zones of origin and destination
- `z` Zones representing origins and destinations
- `zd` Zones representing destinations
- `silent` Hide messages? FALSE by default.
- `filter` Remove rows with no matches in `z`? TRUE by default
od_to_sf_network

package
Which package to use to create the sf object? sfheaders is the default.

crs
The coordinate reference system of the output, if not known in z. 4326 by default.

Examples

x = od_data_df
z = od_data_zones
desire_lines = od_to_sf(x, z)
desire_lines[1:3]

Description

Convert OD data into lines with start and end points sampled on a network

Usage

od_to_sf_network(
 x,
 z,
 zd = NULL,
 silent = TRUE,
 package = "sf",
 crs = 4326,
 network = NULL
)

Arguments

x A data frame in which the first two columns are codes representing points/zones of origin and destination
z Zones representing origins and destinations
zd Zones representing destinations
silent Hide messages? FALSE by default.
package Which package to use to create the sf object? sfheaders is the default.
crs The coordinate reference system of the output, if not known in z. 4326 by default.
network An sf object representing a transport network
Examples

```r
x = od_data_df
z = od_data_zones_min
network = od_data_network
(lines_to_points_on_network = od_to_sf_network(x, z, network = network))
(lines_to_points = od_to_sf(x, z))
```

points_to_od
Convert a series of points into a dataframe of origins and destinations

Description

Takes a series of geographical points and converts them into a data.frame representing the potential flows, or 'spatial interaction', between every combination of points.

Usage

```r
points_to_od(p, interzone_only = FALSE, ids_only = FALSE)
points_to_odl(p, interzone_only = FALSE, ids_only = FALSE, crs = 4326)
```

Arguments

- `p`
 A spatial points object or a matrix of coordinates representing points
- `interzone_only`
 Should the result only include interzonal OD pairs, in which the ID of the origin is different from the ID of the destination zone? FALSE by default
- `ids_only`
 Should a data frame with only 2 columns (origin and destination IDs) be returned? The default is FALSE, meaning the result should also contain the coordinates of the start and end points of each OD pair.
- `crs`
 The coordinate reference system of the output, if not known in `z`. 4326 by default.

Details

points_to_odl() generates the same output but returns a geographic object representing desire lines in the class sf.

Examples

```r
library(sf)
p = od_data_centroids[1:3, ]
points_to_od(p)
points_to_od(p, ids_only = TRUE)
(l = points_to_odl(p, interzone_only = TRUE))
plot(l)
(od = points_to_od(p, interzone_only = TRUE))
l2 = od_to_sf(od, od_data_centroids)
```
sfc_point_to_matrix

\[
\begin{align*}
12$v &= 1 \\
(l2_oneway &= \text{od_oneway}(l2)) \\
\text{plot}(l2)
\end{align*}
\]

\begin{itemize}
 \item \textbf{Description}
 \end{itemize}

This function takes point geometries with class \texttt{sfc} from the \texttt{sf} package and returns a matrix representing x and y (typically lon/lat) coordinates.

\begin{itemize}
 \item \textbf{Usage}
 \end{itemize}

\begin{verbatim}
sfc_point_to_matrix(x)
\end{verbatim}

\begin{itemize}
 \item \textbf{Arguments}
 \begin{itemize}
 \item \texttt{x} An \texttt{sfc} object
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item \textbf{Details}
 \end{itemize}

See https://github.com/dcooley/sfheaders/issues/52 for details

\begin{itemize}
 \item \textbf{Author(s)}
 \end{itemize}

Dave Cooley

\begin{itemize}
 \item \textbf{Examples}
 \end{itemize}

\begin{verbatim}
sfc_point_to_matrix(od_data_centroids$geometry[1:6])
\end{verbatim}
Index

* datasets
 od_data_centroids, 5
 od_data_df, 6
 od_data_network, 6
 od_data_zones, 7

* od
 od_id, 8
 od_to_odmatrix, 11
 odmatrix_to_od, 4

coords_to_od, 2

od_coordinates, 5
od_data_centroids, 5
od_data_coordinates
 (od_data_centroids), 5
od_data_csa_zones (od_data_zones), 7
od_data_df, 6
od_data_df_medium (od_data_df), 6
od_data_network, 6
od_data_zones, 7
od_data_zones_min (od_data_zones), 7
od_filter, 7
od_id, 4, 8, 12
od_id_character (od_id), 8
od_id_max_min (od_id), 8
od_id_max_min(), 10
od_id_order, 9
od_id_szudzik (od_id), 8
od_id_szudzik(), 10
od_interzone, 9
od_intrazone (od_interzone), 9
od_oneway, 10
od_to_odmatrix, 4, 8, 11
od_to_sf, 12
od_to_sf_network, 13
od_to_sfc (od_to_sf), 12
odc_to_sf, 3
odc_to_sfc, 3
odmatrix_to_od, 4, 8, 12

points_to_od, 14
points_to_odl (points_to_od), 14
sfc_point_to_matrix, 15