Package ‘offsetreg’

April 11, 2024

Title An Extension of 'Tidymodels' Supporting Offset Terms

Version 1.1.0

Maintainer Matt Heaphy <matthmattrs@gmail.com>

Description Extend the 'tidymodels' ecosystem <https://www.tidymodels.org/> to enable the creation of predictive models with offset terms. Models with offsets are most useful when working with count data or when fitting an adjustment model on top of an existing model with a prior expectation. The former situation is common in insurance where data is often weighted by exposures. The latter is common in life insurance where industry mortality tables are often used as a starting point for setting assumptions.

License MIT + file LICENSE

BugReports https://github.com/mattheaphy/offsetreg/issues

Encoding UTF-8

RoxygenNote 7.3.0

Imports generics, glue, parsnip (>= 1.2.0), poissonreg, rlang, stats

Suggests broom, glmnet, knitr, recipes, rmarkdown, rpart, testthat (>= 3.0.0), tune, workflows, rsample, xgboost

Config/testthat/edition 3

Depends R (>= 4.1)

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Author Matt Heaphy [aut, cre, cph]

Repository CRAN

Date/Publication 2024-04-11 14:40:03 UTC
R topics documented:

- boost_tree_offset ... 2
- decision_tree_exposure .. 3
- glmnet_offset ... 5
- glm_offset ... 6
- poisson_reg_offset ... 7
- rpart_exposure ... 8
- us_deaths ... 9
- xgb_train_offset ... 10

Description

`boost_tree_offset()` defines a model that creates a series of Poisson decision trees with pre-defined offsets forming an ensemble. Each tree depends on the results of previous trees. All trees in the ensemble are combined to produce a final prediction. This function can be used for count regression models only.

Usage

```r
boost_tree_offset(
  mode = "regression",
  engine = "xgboost_offset",
  mtry = NULL,
  trees = NULL,
  min_n = NULL,
  tree_depth = NULL,
  learn_rate = NULL,
  loss_reduction = NULL,
  sample_size = NULL,
  stop_iter = NULL
)
```

Arguments

- **mode** A single character string for the type of model. The only possible value for this model is "regression"
- **engine** A single character string specifying what computational engine to use for fitting.
- **mtry** A number for the number (or proportion) of predictors that will be randomly sampled at each split when creating the tree models (specific engines only).
- **trees** An integer for the number of trees contained in the ensemble.
decision_tree_exposure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>min_n</td>
<td>An integer for the minimum number of data points in a node that is required for the node to be split further.</td>
</tr>
<tr>
<td>tree_depth</td>
<td>An integer for the maximum depth of the tree (i.e. number of splits) (specific engines only).</td>
</tr>
<tr>
<td>learn_rate</td>
<td>A number for the rate at which the boosting algorithm adapts from iteration-to-iteration (specific engines only). This is sometimes referred to as the shrinkage parameter.</td>
</tr>
<tr>
<td>loss_reduction</td>
<td>A number for the reduction in the loss function required to split further (specific engines only).</td>
</tr>
<tr>
<td>sample_size</td>
<td>A number for the number (or proportion) of data that is exposed to the fitting routine. For xgboost, the sampling is done at each iteration while C5.0 samples once during training.</td>
</tr>
<tr>
<td>stop_iter</td>
<td>The number of iterations without improvement before stopping (specific engines only).</td>
</tr>
</tbody>
</table>

Details

This function is similar to `parsnip::boost_tree()` except that specification of an offset column is required.

Value

A model specification object with the classes `boost_tree_offset` and `model_spec`.

See Also

`parsnip::boost_tree()`

Examples

```r
parsnip::show_model_info("boost_tree_offset")
boost_tree_offset()
```

Poisson Decision Trees with Exposures

Description

`decision_tree_exposure()` defines a Poisson decision tree model with weighted exposures (observation times).
Usage

decision_tree_exposure(
 mode = "regression",
 engine = "rpart_exposure",
 cost_complexity = NULL,
 tree_depth = NULL,
 min_n = NULL
)

Arguments

mode A single character string for the type of model. The only possible value for this model is "regression"
engine A single character string specifying what computational engine to use for fitting.
cost_complexity A positive number for the the cost/complexity parameter (a.k.a. Cp) used by CART models (specific engines only).
tree_depth An integer for maximum depth of the tree.
min_n An integer for the minimum number of data points in a node that are required for the node to be split further.

Details

This function is similar to `parsnip::decision_tree()` except that specification of an exposure column is required.

Value

A model specification object with the classes decision_tree_exposure and model_spec.

See Also

`parsnip::decision_tree()`

Examples

parsnip::show_model_info("decision_tree_exposure")
decision_tree_exposure()
glmnet_offset

Fit Penalized Generalized Linear Models with an Offset

Description

This function is a wrapper around glmnet::glmnet() that uses a column from x as an offset.

Usage

glmnet_offset(
 x,
 y,
 family,
 offset_col = "offset",
 weights = NULL,
 lambda = NULL,
 alpha = 1
)

Arguments

x Input matrix
y Response variable
family A function or character string describing the link function and error distribution.
offset_col Character string. The name of a column in data containing offsets.
weights Optional weights to use in the fitting process.
lambda A numeric vector of regularization penalty values
alpha A number between zero and one denoting the proportion of L1 (lasso) versus L2 (ridge) regularization.
 • alpha = 1: Pure lasso model
 • alpha = 0: Pure ridge model

Details

Outside of the tidymodels ecosystem, glmnet_offset() has no advantages over glmnet::glmnet() since that function allows for offsets to be specified in its offset argument.

Within tidymodels, glmnet_offset() provides an advantage because it will ensure that offsets are included in the data whenever resamples are created.

The x, y, family, lambda, alpha and weights arguments have the same meanings as glmnet::glmnet(). See that function’s documentation for full details.

Value

A glmnet object. See glmnet::glmnet() for full details.
See Also

`glmnet::glmnet()`

Examples

```r
gl_mnet$off <- log(gl_mnet$population)
x <- model.matrix(~ age_group + gender + off, gl_mnet[, -1]
glmnet_offset(x, gl_mnet$deaths, family = "poisson", offset_col = "off")
```

```r

Description

This function is a wrapper around `stats::glm()` that uses a column from data as an offset.

Usage

```r
glm_offset(
 formula,
 family = "gaussian",
 data,
 offset_col = "offset",
 weights = NULL
)
```

Arguments

- **formula** A model formula
- **family** A function or character string describing the link function and error distribution.
- **data** Optional. A data frame containing variables used in the model.
- **offset_col** Character string. The name of a column in data containing offsets.
- **weights** Optional weights to use in the fitting process.

Details

Outside of the tidymodels ecosystem, `glm_offset()` has no advantages over `stats::glm()` since that function allows for offsets to be specified in the formula interface or its offset argument.

Within tidymodels, `glm_offset()` provides an advantage because it will ensure that offsets are included in the data whenever resamples are created.

The `formula`, `family`, `data`, and `weights` arguments have the same meanings as `stats::glm()`. See that function’s documentation for full details.
Value

A glm object. See `stats::glm()` for full details.

See Also

`stats::glm()`

Examples

```r
us_deaths$off <- log(us_deaths$population)
glm_offset(deaths ~ age_group + gender, family = "poisson",
 us_deaths, offset_col = "off")
```

Description

`poisson_reg_offset()` defines a generalized linear model of count data with an offset that follows a Poisson distribution.

Usage

```r
poisson_reg_offset(
 mode = "regression",
 penalty = NULL,
 mixture = NULL,
 engine = "glm_offset"
)
```

Arguments

- **mode**
  
  A single character string for the type of model. The only possible value for this model is "regression".

- **penalty**
  
  A non-negative number representing the total amount of regularization (`glmnet` only).

- **mixture**
  
  A number between zero and one (inclusive) giving the proportion of L1 regularization (i.e. lasso) in the model.
  
  - `mixture = 1` specifies a pure lasso model,
  
  - `mixture = 0` specifies a ridge regression model, and
  
  - `0 < mixture < 1` specifies an elastic net model, interpolating lasso and ridge.

  Available for `glmnet` and `spark` only.

- **engine**
  
  A single character string specifying what computational engine to use for fitting.
Details

This function is similar to `parsnip::poisson_reg()` except that specification of an offset column is required.

Value

A model specification object with the classes `poisson_reg_offset` and `model_spec`.

See Also

`parsnip::poisson_reg()`

Examples

```r
parsnip::show_model_info("poisson_reg_offset")
poisson_reg_offset()
```

---

**rpart_exposure**  
*Poisson Recursive Partitioning and Regression Trees with Exposures*

Description

This function is a wrapper around `rpart::rpart()` for Poisson regression trees using weighted exposures (observation times).

Usage

```r
rpart_exposure(
 formula,
 data,
 exposure_col = "exposure",
 weights = NULL,
 control,
 cost,
 shrink = 1,
 ...
)
```

Arguments

- `formula`: A model formula that contains a single response variable on the left-hand side.
- `data`: Optional. A data frame containing variables used in the model.
- `exposure_col`: Character string. The name of a column in `data` containing exposures.
- `weights`: Optional weights to use in the fitting process.
control A list of hyperparameters. See rpart::rpart.control().
cost A vector of non-negative costs for each variable in the model.
shrink Optional parameter for the splitting function. Coefficient of variation of the prior distribution.
... Alternative input for arguments passed to rpart::rpart.control().

Details

Outside of the tidymodels ecosystem, rpart_exposure() has no advantages over rpart::rpart() since that function allows for exposures to be specified in the formula interface by passing cbind(exposure, y) as a response variable.

Within tidymodels, rpart_exposure() provides an advantage because it will ensure that exposures are included in the data whenever resamples are created.

The formula, data, weights, control, and cost arguments have the same meanings as rpart::rpart(). shrink is passed to rpart::rpart()’s parms argument via a named list. See that function’s documentation for full details.

Value

An rpart model

See Also

rpart::rpart()

Examples

rpart_exposure(deaths ~ age_group + gender, us_deaths, exposure_col = "population")

us_deaths United States Deaths 2011-2020

Description

United States deaths, population estimates, and crude mortality rates for ages 25+ from the CDC Multiple Causes of Death Files.

Usage

us_deaths
**Format**

A data frame with 140 rows and 6 columns.

- **gender**: Gender
- **age_group**: Attained age groups
- **year**: Calendar year
- **deaths**: Number of deaths
- **population**: Population estimate
- **qx**: Crude mortality rate equal to deaths / population

**Source**


-----------------------------

**xgb_train_offset**  
*Boosted Poisson Trees with Offsets via xgboost*

**Description**

`xgb_train_offset()` and `xgb_predict_offset()` are wrappers for xgboost tree-based models where all of the model arguments are in the main function. These functions are nearly identical to the parsnip functions `parsnip::xgb_train()` and `parsnip::xgb_predict_offset()` except that the objective "count:poisson" is passed to `xgboost::xgb.train()` and an offset term is added to the data set.

**Usage**

```r
xgb_train_offset(
 x,
 y,
 offset_col = "offset",
 weights = NULL,
 max_depth = 6,
 nrounds = 15,
 eta = 0.3,
 subsample = 1,
 validation = 0,
)```

early_stop = NULL,
counts = TRUE,
...)

xgb_predict_offset(object, new_data, offset_col = "offset", ...)

Arguments

x A data frame or matrix of predictors
y A vector (numeric) or matrix (numeric) of outcome data.
offset_col Character string. The name of a column in data containing offsets.
weights A numeric vector of weights.
max_depth An integer for the maximum depth of the tree.
nrounds An integer for the number of boosting iterations.
eta A numeric value between zero and one to control the learning rate.
colsample_bynode Subsampling proportion of columns for each node within each tree. See the counts argument below. The default uses all columns.
colsample_bytree Subsampling proportion of columns for each tree. See the counts argument below. The default uses all columns.
min_child_weight A numeric value for the minimum sum of instance weights needed in a child to continue to split.
gamma A number for the minimum loss reduction required to make a further partition on a leaf node of the tree
subsample Subsampling proportion of rows. By default, all of the training data are used.
validation The proportion of the data that are used for performance assessment and potential early stopping.
early_stop An integer or NULL. If not NULL, it is the number of training iterations without improvement before stopping. If validation is used, performance is base on the validation set; otherwise, the training set is used.
counts A logical. If FALSE, colsample_bynode and colsample_bytree are both assumed to be proportions of the proportion of columns affects (instead of counts).
... Other options to pass to xgb.train() or xgboost's method for predict().
object An xgboost object.
new_data New data for predictions. Can be a data frame, matrix, xgb.DMatrix

Value

A fitted xgboost object.
Examples

```r
us_deaths$off <- log(us_deaths$population)
x <- model.matrix(~ age_group + gender + off, us_deaths)[, -1]

mod <- xgb_train_offset(x, us_deaths$deaths, "off",
    eta = 1, colsample_bynode = 1,
    max_depth = 2, nrounds = 25,
    counts = FALSE)

xgb_predict_offset(mod, x, "off")
```
Index

* datasets
 - us_deaths, 9
boost_tree_offset, 2
decision_tree_exposure, 3
glm_offset, 6
glmnet::glmnet(), 5, 6
glmnet_offset, 5
parsnip::boost_tree(), 3
parsnip::decision_tree(), 4
parsnip::poisson_reg(), 8
poisson_reg_offset, 7
rpart::rpart(), 8, 9
rpart::rpart.control(), 9
rpart_exposure, 8
stats::glm(), 6, 7
us_deaths, 9
xgb_predict_offset (xgb_train_offset), 10
xgb_train_offset, 10