association.measures

Measures of association

Description
This function calculates basic measures of association

Usage

association.measures(x, y = NULL, warnings = FALSE)

Arguments

x
a table or matrix if y is NULL, or a numeric vector for the row variable

y
the column variable, a numeric vector used only when x is not a table or matrix.

warnings
a logical value indicating whether warnings should be shown (defaults to FALSE, no warnings).

Value

A list with the following elements is returned:

phi
Phi, a chi-square-based measures of association.

testimacy.coefficient
Contingency coefficient, a chi-square-based measures of association.

cramersv
Cramer’s V, a chi-square-based measures of association.

pairs.total
Total number of pairs

pairs.concordant
Number of concordant pairs

pairs.discordant
Number of discordant pairs

pairs.tied.first
The number of pairs tied on the first variable (but not both variables)

pairs.tied.second
The number of pairs tied on the second variable (but not both variables)

pairs.tied.both
The number of pairs tied on both the first and second variables

minimum.dim
Minimum dimension of x and y

n
Number of cases

gamma
Goodman-Kruskal Gamma

somersd
Somers’ d (assuming the column variable is the dependent variable)

taub
Kendall’s tau-b

tauc
Stuart’s tau-c
concordant.pairs

See Also

oii.xtab, likelihood.test, lambda.test, concordant.pairs, discordant.pairs, tied.pairs

Examples

Create var1 as 200 A's, B's, and C's
var1 <- sample(LETTERS[1:3], size=200, replace=TRUE)
Create var2 as 200 numbers in the range 1 to 4
var2 <- sample(1:4, size=200, replace=TRUE)

Print a simple cross tab of var1 and var2
association.measures(var1, var2)

===

concordant.pairs The number of concordant pairs in a table or matrix

Description

The number of concordant pairs in a table or matrix

Usage

concordant.pairs(x, y = NULL)

Arguments

x a table or matrix if y is NULL, or a numeric vector for the row variable

y the column variable, a numeric vector used only when x is not a table or matrix.

Value

The number of concordant pairs

See Also

association.measures, discordant.pairs, tied.pairs
discordant.pairs The number of discordant pairs in a table or matrix

Description
The number of discordant pairs in a table or matrix

Usage
discordant.pairs(x, y = NULL)

Arguments
x a table or matrix if y is NULL, or a numeric vector for the row variable
y the column variable, a numeric vector used only when x is not a table or matrix.

Value
The number of discordant pairs

See Also
association.measures, concordant.pairs, tied.pairs

oii Commands for the OII MSc Stats course

Description
This package provides a few commands that are used within the MSc course at the Oxford Internet Institute, University of Oxford

Details
The only functions you’re likely to need from oii are oii.summary, oii.freq, and oii.xtab.
Description

This function prints a simple frequency table with totals and percentages

Usage

```r
oii.freq(x)
```

Arguments

- `x` input variable, (usually of class `factor`)

Value

A `data.frame` with one row per each unique value of `x`. These values of `x` are assigned to the `row.names` of the data.frame. The `data.frame` also has rows for:

- **Valid Total**: The total number of non-missing cases (i.e., `sum(!is.na(x))`)
- **Missing**: The total number of missing/NA cases (i.e., `sum(is.na(x))`)
- **Total**: The total number of cases (i.e., `length(x)`)

The `data.frame` has the following columns:

- `freq`: The number of cases with this value
- `percent`: The percentage of all cases that this value represents
- `valid_percent`: The percentage of all valid (i.e., not missing) cases that this value represents
- `cum_percent`: The cumulative percentage of valid cases

See Also

`data.frame`, `row.names`, `is.na`, `length`, `summary`, `table`

Examples

```r
# Create var as 200 A's, B's, and C's
var<-sample(LETTERS[1:3],size=200,replace=TRUE)

# Generate a frequency table for the counts of A's, B's, and C's
oii.freq(var)
```
Print summary statistics for a numeric variable

Description

This function is designed to be like the built-in `summary` function but include a few additional values. If the input is not numeric, the built-in summary command is executed.

Usage

```r
oii.summary(x, extended = FALSE, warnings = FALSE)
```

Arguments

- **x**: a numeric vector for which summary statistics should be generated.
- **extended**: a logical value indicating whether additional statistics should be printed (see Value section). Defaults to FALSE stripped before the computation proceeds (defaults to TRUE).
- **warnings**: a logical value indicating whether warnings should be shown (defaults to FALSE, no warnings).

Value

If `x` is not numeric, the built-in summary command is executed. If `x` is numeric (that is, `is.numeric(x)` returns TRUE), then a list with the following elements is returned:

- **cases**: The number of non-missing values in `x` (Valid N)
- **na**: The number of missing values in `x` (Missing N).
- **mean**: The mean value of `x` after missing values are removed. See `mean`
- **sd**: The standard deviation for values in `x`. See `sd`
- **min**: The minimum/smallest value in `x`. See `min`
- **max**: The maximum/largest value in `x`. See `max`

This function also calculates the following statistics, but these are not printed by default unless extended is set to TRUE:

- **var**: The variance of `x` after missing values are removed. See `var`
- **median**: The median value of `x` after missing values are removed. See `median`
- **p25**: The 25th percentile of `x` after missing values are removed
- **p75**: The 75th percentile of `x` after missing values are removed
- **skewness**: The skewness coefficient for `x` after missing values are removed. See `skewness`
- **kurtosis**: The kurtosis coefficient for `x` after missing values are removed. See `kurtosis`
See Also

summary, min, median, mean, max, sd, is.na, is.numeric, skewness, kurtosis, var

Examples

#Generate data from a normal distribution with mean 0 and sd 1
#store the result in a variable called tmp
tmp<-rnorm(500,mean=0,sd=1)

#Print the summary statistics about tmp
oii.summary(tmp)
#Print even more summary statistics about tmp
oii.summary(tmp,extended=TRUE)

Description

This function prints a 2-way table with optional cell statistics and measures of association

Usage

oii.xtab(r, c = NULL, s = NULL, row = FALSE, col = FALSE,
pctcell = FALSE, stats = FALSE, rescell = FALSE, chistd = FALSE,
expcell = FALSE, chicell = FALSE, warnings = FALSE, varnames = NULL,
include.missing = FALSE, ...)

Arguments

r
the row variable. If r is a table, data.frame, or matrix, then c and s are ignored.
c
the column variable.
s
the split variable. The r and c will be separately tabulated for each unique value of s.
row
Show row percentages? Defaults to FALSE.
col
Show column percentages? Defaults to FALSE.
pctcell
Print cell percentages? Defaults to FALSE.
stats
Print measures of association? Defaults to FALSE. This parameter is ignored either r or c has only one value. See association.measures.
rescell
Print residual cell count under the null hypothesis? Defaults to FALSE.
chistd
Print cell standardized residuals to pearson chi-square? Defaults to FALSE.
expcell
Print expected cell count under the null hypothesis? Defaults to FALSE.
chicell
Print cell contribution to pearson chi-square? Defaults to FALSE.

warnings
a logical value indicating whether warnings should be shown (defaults to FALSE, no warnings).

varnames
Names used to refer to r, c, and s in the printed output.

include.missing
Set to TRUE to include factor levels with no instances in the output. Default (FALSE) excludes them.

... Additional parameters to be passed to CrossTable.

See Also

association.measures, CrossTable, likelihood.test, lambda.test

Examples

#Create var1 as 200 A's, B's, and C's
var1<-sample(LETTERS[1:3],size=200,replace=TRUE)
#Create var2 as 200 numbers in the range 1 to 4
var2<-sample(1:4,size=200,replace=TRUE)

#Print a simple 2-way table of var1 and var2
oii.xtab(var1,var2)

#Print the row and column percents
oii.xtab(var1,var2,row=TRUE,col=TRUE)

#Print measures of association statistics
oii.xtab(var1,var2,stats=TRUE)

#If the variables are part of a data.frame
my.data.frame<-data.frame(var1,var2)
#We can use the $ to get the variables
oii.xtab(my.data.frame$var1,my.data.frame$var2)
#or use the with(...) command to save some typing
with(my.data.frame,oii.xtab(var1,var2))

#Three-way tables are also possible
#Create var3 as 200 "I"'s, "II"'s, and "III"'s
var3<-sample(c("I","II","III"),size=200,replace=TRUE)
oii.xtab(var1,var2,var3)

#We can also pass in a data.frame directly as the first argument
my.data.frame<-data.frame(var1,var2,var3)
oii.xtab(my.data.frame.stats=TRUE)
#The variables in the data.frame are used in order;
#so, sometimes it is useful to re-order them. For example,
oii.xtab(my.data.frame[,c("var3","var1","var2")],stats=TRUE)
#Of course, it is also possible to pass in the variables one
#at a time or use with(...) as shown above.
tied.pairs

The number of tied pairs, a measure of association

Description

The number of tied pairs, a measure of association

Usage

tied.pairs(x, y = NULL)

Arguments

x a table or matrix if y is NULL, or a numeric vector for the first variable
y the second variable, a numeric vector used only when x is not a table or matrix.

Value

A list with the following values:

first The number of pairs tied on the first variable, but not both variables
second The number of pairs tied on the second variable, but not both variables
both The number of pairs tied on both the first and second variables

See Also

association.measures, concordant.pairs, discordant.pairs
Index

association.measures, 2, 3, 4, 7–9
concordant.pairs, 3, 3, 4, 9
CrossTable, 8
data.frame, 5, 7
discordant.pairs, 3, 4, 9
factor, 5
is.na, 5, 7
is.numeric, 7
kurtosis, 6, 7
lambda.test, 3, 8
length, 5
likelihood.test, 3, 8
matrix, 7
max, 6, 7
mean, 6, 7
median, 6, 7
min, 6, 7

oii, 4
oii-package (oii), 4
oii.freq, 4, 5
oii.summary, 4, 6
oii.xtab, 3, 4, 7

row.names, 5

sd, 6, 7
skewness, 6, 7
summary, 5–7

table, 5, 7
tied.pairs, 3, 4, 9

var, 6, 7