Package ‘omu’

March 7, 2024

Title A Metabolomics Analysis Tool for Intuitive Figures and Convenient Metadata Collection

Version 1.1.2

Description Facilitates the creation of intuitive figures to describe metabolomics data by utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) hierarchy data, and gathers functional orthology and gene data from the KEGG-REST API.

Depends R (>= 3.3.0)

Imports plyr, dplyr, stringr, htr, ggfortify, ggplot2, magrittr, tidyr, broom, FSA, rstatix, randomForest, caret

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/connor-reid-tiffany/Omu,
 https://www.kegg.jp/kegg/rest/keggapi.html

BugReports https://github.com/connor-reid-tiffany/Omu/issues

NeedsCompilation no

Author Connor Tiffany [aut, cre]

Maintainer Connor Tiffany <tiffanyc1@chop.edu>

Repository CRAN

Date/Publication 2024-03-06 23:40:02 UTC

R topics documented:

assign_hierarchy ... 2
c57_nos2KO_mouse_countDF .. 3
c57_nos2KO_mouse_metadata .. 3
assign_hierarchy

Assign hierarchy metadata to a metabolomics count matrix using identifier values. It can assign KEGG compound hierarchy, orthology hierarchy, or organism hierarchy data.

Usage

assign_hierarchy(count_data, keep_unknowns, identifier)

Arguments

count_data a metabolomics count data frame with either a KEGG compound, orthology, or a gene identifier column

keep_unknowns a boolean of either TRUE or FALSE. TRUE keeps unannotated compounds, FALSE removes them

identifier a string that is either "KEGG" for metabolite, "KO" for orthology, "Prokaryote" for organism, or "Eukaryote" for organism

Examples

assign_hierarchy(count_data = c57_nos2KO_mouse_countDF, keep_unknowns = TRUE, identifier = "KEGG")
Description

A dataset containing metabolomics counts for an experiment done using c57b6J wild type and c57b6J nos2 knockout mice

Usage

c57_nos2KO_mouse_countDF

Format

A data frame with 668 rows and 36 variables:

c57_nos2KO_mouse_metadata

description

A meta data file for the c57b6J metabolomics count matrix

Usage

c57_nos2KO_mouse_metadata

Format

A data frame with 29 rows and 4 variables:
check_zeros

Check data for zeros across samples within factor levels. Will determine if there are more zeros than a user specified threshold within any given factor level(s). Returns a vector of Metabolites that are 0 above the threshold in any given factor level.

Description

Check data for zeros across samples within factor levels. Will determine if there are more zeros than a user specified threshold within any given factor level(s). Returns a vector of Metabolites that are 0 above the threshold in any given factor level.

Usage

check_zeros(count_data, metadata, numerator = NULL, denominator = NULL, threshold = 25, response_variable = "Metabolite", Factor)

Arguments

count_data A metabolomics count data frame
metadata Metadata dataframe for the metabolomics count data frame
numerator String of the first independent variable you wish to test. Default is NULL
denominator String of the second independent variable you wish to test. Default is NULL.
threshold Integer. A percentage threshold for the number of zeros in a Metabolite. Default is 25.
response_variable String of the column header for the response variables, usually "Metabolite"
Factor A factor with levels to test for zeros.

Examples

check_zeros(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, Factor = "Treatment")

check_zeros(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, Factor = "Treatment", numerator = "Strep", denominator = "Mock", threshold = 10)
count_fold_changes

Get counts for significant fold changes by metabolite class.

Description

Takes an input data frame from the output of omu_summary and creates a data frame of counts for significantly changed metabolites by class hierarchy data.

Usage

count_fold_changes(count_data, column, sig_threshold, keep_unknowns)

Arguments

count_data Output dataframe from the omu_summary function or omu_anova.
column Metabolite metadata you want to group by, i.e. "Class", "Subclass_1".
sig_threshold Significance threshold for compounds that go towards the count, sig_threshold = 0.05
keep_unknowns TRUE or FALSE for whether to drop compounds that weren’t assigned hierarchy metadata

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")
t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
 metadata = c57_nos2KO_mouse_metadata,
 numerator = "Strep", denominator = "Mock", response_variable = "Metabolite",
 Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")
fold_change_counts <- count_fold_changes(count_data = t_test_df,
column = "Class", sig_threshold = 0.05, keep_unknowns = "FALSE")

get_seqs

Get nucleotide and amino acid sequences for genes

Description

Function that gets nt and aa seqs for gene data from KEGG_gather

Usage

gene_data
Arguments

gene_data A dataframe with genes from KEGG_gather, with class seqs

Examples

```r
## Not run:
gene_data <- c57_nos2KO_mouse_countDF[(1:2),]
gene_data <- KEGG_gather(gene_data)
gene_data <- KEGG_gather(gene_data)
gene_data <- gene_data[1:2,]
gene_data <- get_seqs(gene_data)
## End(Not run)
```

KEGG_gather

Gather metadata from KEGG for metabolites

Description

Method for gathering metadata from the KEGG API.

Usage

```r
KEGG_gather(count_data)
```

S3 method for class 'cpd'
```r
KEGG_gather(count_data)
```

S3 method for class 'rxn'
```r
KEGG_gather(count_data)
```

S3 method for class 'KO'
```r
KEGG_gather(count_data)
```

Arguments

count_data A metabolomics count dataframe with a KEGG identifier columns

Examples

```r
## Not run:
count_data <- assign_hierarchy(count_data = c57_nos2KO_mouse_countDF,
keep_unknowns = TRUE, identifier = "KEGG")
count_data <- subset(count_data, Subclass_2=="Aldoses")
```
count_data <- KEGG_gather(count_data = count_data)

End(Not run)

make_omelette

Get metadata from KEGG API

Description

Internal function for KEGG_Gather

Usage

```r
make_omelette(count_data, column, first_char)
```

Arguments

- `count_data`: The metabolomics count data
- `column`: The name of the KEGG identifier being sent to the KEGG API
- `first_char`: First character in number being fed to KEGG database

omu_anova

Perform anova

Description

Performs an anova across all response variables, followed by a Tukeys test on every possible contrast in your model and calculates group means and fold changes for each contrast. Returns a list of data frames for each contrast, and includes a dataframe of model residuals

Usage

```r
omu_anova(  
  count_data,  
  metadata,  
  response_variable = "Metabolite",  
  model,  
  log_transform = FALSE,  
  method = "anova"  
)
```
** Arguments **

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count_data</td>
<td>A metabolomics count data frame</td>
</tr>
<tr>
<td>metadata</td>
<td>Metadata dataframe for the metabolomics count data frame</td>
</tr>
<tr>
<td>response_variable</td>
<td>String of the column header for the response variables, usually "Metabolite"</td>
</tr>
<tr>
<td>model</td>
<td>A formula class object, see ?formula for more info on formulas in R.</td>
</tr>
<tr>
<td>log_transform</td>
<td>Boolean of TRUE or FALSE for whether or not you wish to log transform your</td>
</tr>
<tr>
<td>method</td>
<td>A string of 'anova', 'kruskal', or 'welch'. anova performs an anova with a</td>
</tr>
<tr>
<td></td>
<td>post hoc tukeys test, kruskal performs a kruskal wallis with a post hoc</td>
</tr>
<tr>
<td></td>
<td>dunn test, welch performs a welch's anova with a post hoc games howell test</td>
</tr>
</tbody>
</table>

** Examples **

```r
anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
                       response_variable = "Metabolite", model = ~ Treatment, log_transform = TRUE)

anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
                       response_variable = "Metabolite", model = ~ Treatment + Background, log_transform = TRUE)

anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
                       response_variable = "Metabolite", model = ~ Treatment + Background + Treatment*Background,
                       log_transform = TRUE)
```

** omu_summary **

`omu_summary` Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order affects the fold change values

** Description **

`omu_summary` Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order affects the fold change values

** Usage **

```r
omu_summary(
  count_data,
  metadata,
  numerator,
  denominator,
)```
PCA_plot

```r
response_variable = "Metabolite",
Factor,
log_transform = FALSE,
p_adjust = "BH",
test_type = "welch",
paired = FALSE
)
```

**Arguments**

- `count_data`: should be a metabolomics count data frame
- `metadata`: is meta data
- `numerator`: is the variable you wish to compare against the denominator, in quotes
- `denominator`: see above, in quotes
- `response_variable`: the name of the column with your response variables
- `Factor`: the column name for your independent variables
- `log_transform`: TRUE or FALSE value for whether or not log transformation of data is performed before the t test
- `p_adjust`: Method for adjusting the p value, i.e. "BH"
- `test_type`: One of "mwu", "students", or "welch" to determine which model to use
- `paired`: A boolean of TRUE or FALSE. If TRUE, performs a paired sample test. To perform a paired sample test, metadata must have a column named 'ID' containing the subject IDs.

**Examples**

```r
omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")
```

---

**PCA_plot**

*Create a PCA plot*

**Description**

Performs an ordination and outputs a PCA plot using a metabolomics count data frame and metabolomics metadata
Usage

PCA_plot(
  count_data,
  metadata,
  variable,
  color,
  response_variable = "Metabolite",
  label = FALSE,
  size = 2,
  ellipse = FALSE
)

Arguments

count_data Metabolomics count data
metadata Metabolomics metadata
variable The independent variable you wish to compare and contrast
color String of what you want to color by. Usually should be the same as variable.
response_variable String of the response_variable, usually should be "Metabolite"
label TRUE or FALSE, whether to add point labels or not
size An integer for point size.
ellipse TRUE or FALSE, whether to add confidence interval ellipses or not.

Examples

PCA_plot(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
variable = "Treatment", color = "Treatment", response_variable = "Metabolite")

pie_chart  

Description

Create a pie chart

Usage

pie_chart(ratio_data, variable, column, color)

Arguments

ratio_data a dataframe object of percents. output from ra_table function
variable The metadata variable you are measuring, i.e. "Class"
column either "Increase", "Decrease", or "Significant_Changes"
color string denoting color for outline. use NA for no outline
Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF, 
metadata = c57_nos2KO_mouse_metadata, 
numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", 
Factor = "Treatment", 
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df, 
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

ra_table <- ra_table(fc_data = fold_change_counts, variable = "Class")

pie_chart(ratio_data = ra_table, variable = "Class", column = "Decrease", color = "black")

plate_omelette
plate_omelette Internal method for KEGG_Gather which parses flat text files

Description

plate_omelette Internal method for KEGG_Gather which parses flat text files

Usage

plate_omelette(output)

## S3 method for class 'rxn'
plate_omelette(output)

## S3 method for class 'genes'
plate_omelette(output)

## S3 method for class 'KO'
plate_omelette(output)

Arguments

output The metabolomics count dataframe
plate_omelette_rxnko  Clean up orthology metadata

Description

Internal function for KEGG_Gather.rxn method KEGG_Gather.rxn requires dispatch on multiple elements, so there was no way to incorporate as a method.

Usage

plate_omelette_rxnko(output)

Arguments

output  output from plate_omelette

plot_bar  Create a bar plot

Description

Creates a ggplot2 object using the output file from the count_fold_changes function.

Usage

plot_bar(fc_data, fill, size = c(1, 1), outline_color = c("black", "black"))

Arguments

fc_data  The output file from Count_Fold_Changes
fill  A character vector of length 2 containing colors for filling the bars, the first color is for the "Decrease" bar while the second is for "Increase"
size  A numeric vector of 2 numbers for the size of the bar outlines.
outline_color  A character vector of length 2 containing colors for the bar outlines.

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df, column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)
plot_boxplot

plot_bar(fc_data = fold_change_counts, fill = c("firebrick2", "dodgerblue2"), outline_color = c("black", "black"), size = c(1,1))

plot_boxplot  Create a box plot

Description
Takes a metabolomics count data frame and creates boxplots. It is recommended to either subset, truncate, or agglomerate by hierarchical metadata.

Usage
plot_boxplot(
  count_data, metadata, aggregate_by, log_transform = FALSE, Factor, response_variable = "Metabolite", fill_list
)

Arguments
- count_data: A metabolomics count data frame, either from read_metabo or omu_summary
- metadata: The descriptive meta data for the samples
- aggregate_by: Hierarchical metadata value to sum metabolite values by, i.e. "Class"
- log_transform: TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log
- Factor: The column name for the experimental variable
- response_variable: The response variable for the data, i.e. "Metabolite"
- fill_list: Colors for the plot which is colored by Factor, in the form of c(""")

Examples

```r

c57_nos2KO_mouse_countDF <- c57_nos2KO_mouse_countDF[1:5,]
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

plot_boxplot(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite", aggregate_by = "Subclass_2", fill_list = c("darkgoldenrod1", "dodgerblue2"))
```

plot_heatmap

Create a heatmap

Description

Takes a metabolomics count data frame and creates a heatmap. It is recommended to either subset, truncate, or agglomerate by metabolite metadata to improve legibility.

Usage

plot_heatmap(
  count_data,
  metadata,
  Factor,
  response_variable,
  log_transform = FALSE,
  high_color,
  low_color,
  aggregate_by
)

Arguments

count_data A metabolomics count data frame.
metadata The descriptive meta data for the samples.
Factor The column name for the independent variable in your metadata.
response_variable The response variable for the data, i.e. "Metabolite"
log_transform TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log.
high_color Color for high abundance values
low_color Color for low abundance values
aggregate_by Hierarchical metadata value to sum metabolite values by, i.e. "Class"

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

plot_heatmap(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite", aggregate_by = "Subclass_2", high_color = "darkgoldenrod1", low_color = "dodgerblue2")
Description

PCA plot of the proximity matrix from a random forest classification model

Usage

plot_rf_PCA(rf_list, color, size, ellipse = FALSE, label = FALSE)

Arguments

rf_list The output from the random_forest function. This only works on classification models.
color A grouping factor. Use the one that was the LHS of your model parameter in the random_forest function
size The number for point size in the plot
ellipse TRUE or FALSE. Whether to plot with confidence interval ellipses or not.
label TRUE or FALSE. Whether to include point labels or not.

Examples

rf_list <- random_forest(c57_nos2KO_mouse_countDF,c57_nos2KO_mouse_metadata, Treatment ~.,c(60,40),500)
plot_rf_PCA(rf_list = rf_list, color = "Treatment", size = 1.5)

Description

Plot the variable importance from a random forest model. Mean Decrease Gini for Classification and

Usage

plot_variable_importance(rf_list, color = "Class", n_metabolites = 10)

Arguments

rf_list The output from the random_forest function
color Metabolite metadata to color by
n_metabolites The number of metabolites to include. Metabolites are sorted by decreasing importance.
**Examples**

```r
rf_list <- random_forest(c57_nos2KO_mouse_countDF,c57_nos2KO_mouse_metadata,
 Treatment ~.,c(60,40),500)
plot_variable_importance(rf_list = rf_list, color = "Class", n_metabolites = 10)
```

---

**plot_volcano**

Create a volcano plot

---

**Description**

Creates a volcano plot as ggplot2 object using the output of omu_summary

**Usage**

```r
plot_volcano(
 count_data, column, size, strpattern, fill, sig_threshold, alpha, shape, color
)
```

**Arguments**

- `count_data`: The output file from the omu_summary function.
- `column`: The column with metadata you want to highlight points in the plot with, i.e. "Class"
- `size`: Size of the points in the plot
- `strpattern`: A character vector of levels of the column you want the plot to focus on, i.e. strpattern = c("Carbohydrates", "Organicacids")
- `fill`: A character vector of colors you want your points to be. Must be of length 1 + length(strpattern) to account for points not in strpattern. Levels of a factor are organized alphabetically. All levels not in the strpattern argument will be set to NA.
- `sig_threshold`: An integer. Creates a horizontal dashed line for a significance threshold. i.e. sig_threshold = 0.05. Default value is 0.05
- `alpha`: A character vector for setting transparency of factor levels. Must be of length 1 + length(strpattern) to account for points not in strpattern.
- `shape`: A character vector for setting the shapes for your column levels. Must be of length 1 + length(strpattern) to account for points not in strpattern. See ggplot2 for an index of shape values.
**random_forest**

**color**  A character vector of colors for the column levels. Must be of length 1 + length(strpattern) to account for points not in strpattern. If you choose to use shapes with outlines, this list will set the outline colors.

**Examples**

```r
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata, numerator = "Strep",
denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

plot_volcano(count_data = t_test_df, column = "Class", strpattern = c("Carbohydrates"),
fill = c("firebrick2", "white"), sig_threshold = 0.05, alpha = c(1,1),
shape = c(1,24), color = c("black", "black"), size = 2)

plot_volcano(count_data = t_test_df, sig_threshold = 0.05, size = 2)
```

**random_forest**

**random_forest** Perform a classification or regression random forest model

**Description**

A wrapper built around the randomForest function from package randomForest. Returns a list with a randomForest object list, training data set, testing data set, metabolite metadata, and confusion matrices for training and testing data (if type was classification).

**Usage**

```r
random_forest(
 count_data,
 metadata,
 model,
 training_proportion = c(80, 20),
 n_tree = 500
)
```

**Arguments**

- **count_data** Metabolomics data
- **metadata** sample data
- **model** a model of format variable ~ .
- **training_proportion** a numeric vector of length 2, first element is the percent of samples to use for training the model, second element is the percent of samples used to test the models accuracy
- **n_tree** number of decision trees to create
Examples

```r
rf_list <- random_forest(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
model = Treatment ~ ., training_proportion = c(60, 40), n_tree = 500)
```

---

### ra_table

**Create a ratio table from the count_fold_changes function output.**

#### Description

Create a ratio table

#### Usage

```r
ra_table(fc_data, variable)
```

#### Arguments

- `fc_data`: data frame output from the count_fold_changes function
- `variable`: metadata from count_fold_changes, i.e. "Class"

#### Examples

```r
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")
t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")
fold_change_counts <- count_fold_changes(count_data = t_test_df,
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)
ra_table(fc_data = fold_change_counts, variable = "Class")
```

---

### read_metabo

**Import a metabolomics count data frame**

#### Description

Wrapper for read.csv that appends the "cpd" class and sets blank cells to NA. Used to import metabolomics count data into R.

#### Usage

```r
read_metabo(filepath)
```
**transform_metabolites**

**Arguments**

- `filepath` a file path to your metabolomics count data

**Examples**

```
filepath_to_yourdata = paste0(system.file(package = "omu"), "/extdata/read_metabo_test.csv")
count_data <- read_metabo(filepath_to_yourdata)
```

---

**transform_metabolites**

**Description**

A functional to transform metabolomics data across metabolites.

**Usage**

```
transform_metabolites(count_data, func)
```

**Arguments**

- `count_data` Metabolomics data
- `func` a function to transform metabolites by. can be an anonymous function

**Examples**

```
data_pareto_scaled <- transform_samples(count_data = c57_nos2KO_mouse_countDF, function(x) x/sqrt(sd(x)))
```

---

**transform_samples**

**Description**

A functional to transform metabolomics data across samples.

**Usage**

```
transform_samples(count_data, func)
```

**Arguments**

- `count_data` Metabolomics data
- `func` a function to transform samples by. can be an anonymous function

**Examples**

```
data_ln <- transform_samples(count_data = c57_nos2KO_mouse_countDF, log)
```
Index

* datasets
  c57_nos2KO_mouse_countDF, 3
  c57_nos2KO_mouse_metadata, 3

assign_hierarchy, 2

check_zeros, 4
count_fold_changes, 5
get_seqs, 5
KEGG_gather, 6
make_omelette, 7
omu_anova, 7
omu_summary, 8
PCA_plot, 9
pie_chart, 10
plate_omelette, 11
plate_omelette_rxnko, 12
plot_bar, 12
plot_boxplot, 13
plot_heatmap, 14
plot_rf_PCA, 15
plot_variable_importance, 15
plot_volcano, 16
ra_table, 18
random_forest, 17
read_metabo, 18

transform_metabolites, 19
transform_samples, 19