Package ‘omu’

October 14, 2022

Title A Metabolomics Analysis Tool for Intuitive Figures and Convenient Metadata Collection

Version 1.0.7

Description Facilitates the creation of intuitive figures to describe metabolomics data by utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) hierarchy data, and gathers functional orthology and gene data from the KEGG-REST API.

Depends R (>= 3.3.0)
Imports plyr, dplyr, stringr, htrr, ggfortify, ggplot2, magrittr, tidyr, broom, FSA, rstatix, randomForest, caret
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
BugReports https://github.com/connor-reid-tiffany/Omu/issues
NeedsCompilation no
Author Connor Tiffany [aut, cre]
Maintainer Connor Tiffany <crtiffany@ucdavis.edu>
Repository CRAN
Date/Publication 2022-08-27 13:20:08 UTC

R topics documented:

assign_hierarchyplyr, dplyr, stringr, htrr, ggfortify, ggplot2, magrittr, tidyr, broom, FSA, rstatix, randomForest, caret
assign_hierarchical.. 2
c57_nos2KO_mouse_countDF.. 3
c57_nos2KO_mouse_metadata.. 3
Assign hierarchy metadata

Assign hierarchy metadata to a metabolomics count matrix using identifier values. It can assign KEGG compound hierarchy, orthology hierarchy, or organism hierarchy data.

Usage

```r
assign_hierarchy(count_data, keep_unknowns, identifier)
```

Arguments

- `count_data`: A metabolomics count data frame with either a KEGG compound, orthology, or a gene identifier column.
- `keep_unknowns`: A boolean of either TRUE or FALSE. TRUE keeps unannotated compounds, FALSE removes them.
- `identifier`: A string that is either "KEGG" for metabolite, "KO" for orthology, "Prokaryote" for organism, or "Eukaryote" for organism.

Examples

```r
assign_hierarchy(count_data = c57_nos2KO_mouse_countDF, keep_unknowns = TRUE, identifier = "KEGG")
```
c57_nos2KO_mouse_countDF

Description
A dataset containing metabolomics counts for an experiment done using c57b6J wild type and c57b6J nos2 knockout mice

Usage
c57_nos2KO_mouse_countDF

Format
A data frame with 668 rows and 36 variables:

c57_nos2KO_mouse_metadata

description
A a meta data file for the c57b6J metabolomics count matrix

Usage
c57_nos2KO_mouse_metadata

Format
A data frame with 29 rows and 4 variables:
check_zeros

Check data for zeros across samples within factor levels. Will determine if there are more zeros than a user specified threshold within any given factor level(s). Returns a vector of Metabolites that are 0 above the threshold in any given factor level.

Description

Check data for zeros across samples within factor levels. Will determine if there are more zeros than a user specified threshold within any given factor level(s). Returns a vector of Metabolites that are 0 above the threshold in any given factor level.

Usage

check_zeros(
 count_data,
 metadata,
 numerator = NULL,
 denominator = NULL,
 threshold = 25,
 response_variable = "Metabolite",
 Factor
)

Arguments

count_data A metabolomics count data frame
metadata Metadata dataframe for the metabolomics count data frame
numerator String of the first independent variable you wish to test. Default is NULL
denominator String of the second independent variable you wish to test. Default is NULL.
threshold Integer. A percentage threshold for the number of zeros in a Metabolite. Default is 25.
response_variable
Factor String of the column header for the response variables, usually "Metabolite"

Examples

check_zeros(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, Factor = "Treatment")

check_zeros(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, Factor = "Treatment", numerator = "Strep", denominator = "Mock", threshold = 10)
count_fold_changes

Get counts for significant fold changes by metabolite class.

Description

Takes an input data frame from the output of omu_summary and creates a data frame of counts for significantly changed metabolites by class hierarchy data.

Usage

```r
count_fold_changes(count_data, column, sig_threshold, keep_unknowns)
```

Arguments

- `count_data`: Output dataframe from the omu_summary function or omu_anova.
- `column`: Metabolite metadata you want to group by, i.e. "Class", "Subclass_1".
- `sig_threshold`: Significance threshold for compounds that go towards the count, `sig_threshold = 0.05`
- `keep_unknowns`: TRUE or FALSE for whether to drop compounds that weren’t assigned hierarchy metadata

Examples

```r
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata,
numerator = "Strep", denominator = "Mock", response_variable = "Metabolite",
Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df,
column = "Class", sig_threshold = 0.05, keep_unknowns = "FALSE")
```

get_seqs

Get nucleotide and amino acid sequences for genes

Description

Function that gets nt and aa seqs for gene data from KEGG_gather

Usage

```r
get_seqs(gene_data)
```
Arguments

gene_data A dataframe with genes from KEGG_gather, with class seqs

Examples

gene_data <- c57_nos2KO_mouse_countDF[(1:2),]
gene_data <- KEGG_gather(gene_data)
gene_data <- KEGG_gather(gene_data)
gene_data <- gene_data[1:2,]
gene_data <- get_seqs(gene_data)

KEGG_gather Gather metadata from KEGG for metabolites

Description

Method for gathering metadata from the KEGG API.

Usage

KEGG_gather(count_data)

S3 method for class 'cpd'
KEGG_gather(count_data)

S3 method for class 'rxn'
KEGG_gather(count_data)

S3 method for class 'KO'
KEGG_gather(count_data)

Arguments

count_data A metabolomics count dataframe with a KEGG identifier columns

Examples

count_data <- assign_hierarchy(count_data = c57_nos2KO_mouse_countDF,
keep_unknowns = TRUE, identifier = "KEGG")

count_data <- subset(count_data, Subclass_2=="Aldoses")
count_data <- KEGG_gather(count_data = count_data)
make_omelette

Get metadata from KEGG API

Description

Internal function for KEGG_Gather

Usage

make_omelette(count_data, column, first_char)

Arguments

count_data The metabolomics count data
column The name of the KEGG identifier being sent to the KEGG API
first_char first character in number being fed to KEGG database

omu_anova

Perform anova

Description

Performs an anova across all response variables, followed by a Tukeys test on every possible contrast in your model and calculates group means and fold changes for each contrast. Returns a list of data frames for each contrast, and includes a dataframe of model residuals

Usage

omu_anova(
 count_data, metadata,
 response_variable = "Metabolite",
 model,
 log_transform = FALSE,
 method = "anova"
)

Arguments

count_data A metabolomics count data frame
metadata Metadata dataframe for the metabolomics count data frame
response_variable String of the column header for the response variables, usually "Metabolite"
model A formula class object, see ?formula for more info on formulas in R. an interaction between independent variables. Optional parameter
log_transform Boolean of TRUE or FALSE for whether or not you wish to log transform your metabolite counts

method A string of ‘anova’, ‘kruskal’, or ‘welch’. anova performs an anova with a post hoc tukeys test, kruskal performs a kruskal wallis with a post hoc dunn test, welch performs a welch's anova with a post hoc games howell test

Examples

```r
anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, response_variable = "Metabolite", model = ~ Treatment, log_transform = TRUE)

anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, response_variable = "Metabolite", model = ~ Treatment + Background, log_transform = TRUE)

anova_df <- omu_anova(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, response_variable = "Metabolite", model = ~ Treatment + Background + Treatment*Background, log_transform = TRUE)
```

omu_summary omu_summary Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order effects the fold change values

Description

omu_summary Performs comparison of means between two independent variables, standard deviation, standard error, FDR correction, fold change, log2FoldChange. The order effects the fold change values

Usage

```r
omu_summary(
  count_data, metadata, numerator, denominator, response_variable = "Metabolite", Factor, log_transform = FALSE, p_adjust = "BH", test_type = "welch", paired = FALSE
)
```
PCA_plot

Arguments

count_data should be a metabolomics count data frame
metadata is meta data
numerator is the variable you wish to compare against the denominator, in quotes
denominator see above, in quotes
response_variable the name of the column with your response variables
Factor the column name for your independent variables
log_transform TRUE or FALSE value for whether or not log transformation of data is performed before the t test
p_adjust Method for adjusting the p value, i.e. "BH"
test_type One of "mwu", "students", or "welch" to determine which model to use
paired A boolean of TRUE or FALSE. If TRUE, performs a paired sample test. To perform a paired sample test, metadata must have a column named 'ID' containing the subject IDs.

Examples

omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")

PCA_plot

Create a PCA plot

Description

Performs an ordination and outputs a PCA plot using a metabolomics count data frame and metabolomics metadata

Usage

PCA_plot(
 count_data, metadata, variable, color, response_variable = "Metabolite", label = FALSE, size = 2, ellipse = FALSE
)
Arguments

- **count_data**: Metabolomics count data
- **metadata**: Metabolomics metadata
- **variable**: The independent variable you wish to compare and contrast
- **color**: String of what you want to color by. Usually should be the same as variable.
- **response_variable**: String of the response_variable, usually should be "Metabolite"
- **label**: TRUE or FALSE, whether to add point labels or not
- **size**: An integer for point size.
- **ellipse**: TRUE or FALSE, whether to add confidence interval ellipses or not.

Examples

```r
PCA_plot(count_data = c57_nos2K0_mouse_countDF, metadata = c57_nos2K0_mouse_metadata, variable = "Treatment", color = "Treatment", response_variable = "Metabolite")
```

Description

Creates a pie chart as ggplot2 object using the output from ra_table.

Usage

```r
pie_chart(ratio_data, variable, column, color)
```

Arguments

- **ratio_data**: a dataframe object of percents. output from ra_table function
- **variable**: The metadata variable you are measuring, i.e. "Class"
- **column**: either "Increase", "Decrease", or "Significant_Changes"
- **color**: string denoting color for outline. use NA for no outline

Examples

```r
c57_nos2K0_mouse_countDF <- assign_hierarchy(c57_nos2K0_mouse_countDF, TRUE, "KEGG")
t_test_df <- omu_summary(count_data = c57_nos2K0_mouse_countDF, metadata = c57_nos2K0_mouse_metadata, numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")
fold_change_counts <- count_fold_changes(count_data = t_test_df,
```
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)
ra_table <- ra_table(fc_data = fold_change_counts, variable = "Class")
pie_chart(ratio_data = ra_table, variable = "Class", column = "Decrease", color = "black")

plate_omelette

plate_omelette Internal method for KEGG_Gather which parses flat text files

Description
plate_omelette Internal method for KEGG_Gather which parses flat text files

Usage
plate_omelette(output)

S3 method for class 'rxn'
plate_omelette(output)

S3 method for class 'genes'
plate_omelette(output)

S3 method for class 'KO'
plate_omelette(output)

Arguments
output The metabolomics count dataframe

plate_omelette_rxnko
Clean up orthology metadata

Description
Internal function for KEGG_Gather.rxn method KEGG_Gather.rxn requires dispatch on multiple elements, so there was no way to incorporate as a method

Usage
plate_omelette_rxnko(output)

Arguments
output output from plate_omelette
plot_bar

Create a bar plot

Description

Creates a ggplot2 object using the output file from the count_fold_changes function

Usage

plot_bar(fc_data, fill, size = c(1, 1), outline_color = c("black", "black"))

Arguments

- fc_data: The output file from Count_Fold_Changes
- fill: A character vector of length 2 containing colors for filling the bars, the first color is for the "Decrease" bar while the second is for "Increase"
- size: A numeric vector of 2 numbers for the size of the bar outlines.
- outline_color: A character vector of length 2 containing colors for the bar outlines

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock", response_variable = "Metabolite", Factor = "Treatment", log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df, column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

plot_bar(fc_data = fold_change_counts, fill = c("firebrick2", "dodgerblue2"), outline_color = c("black", "black"), size = c(1,1))

plot_boxplot

Create a box plot

Description

Takes a metabolomics count data frame and creates boxplots. It is recommended to either subset, truncate, or agglomerate by hierarchical metadata.
Usage

plot_boxplot(
 count_data,
 metadata,
 aggregate_by,
 log_transform = FALSE,
 Factor,
 response_variable = "Metabolite",
 fill_list
)

Arguments

count_data A metabolomics count data frame, either from read_metabo or omu_summary
metadata The descriptive meta data for the samples
aggregate_by Hierarchical metadata value to sum metabolite values by, i.e. "Class"
log_transform TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log
Factor The column name for the experimental variable
response_variable The response variable for the data, i.e. "Metabolite"
fill_list Colors for the plot which is colored by Factor, in the form of c("")

Examples

c57_nos2KO_mouse_countDF <- c57_nos2KO_mouse_countDF[1:5,]
c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

plot_boxplot(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata, log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite", aggregate_by = "Subclass_2", fill_list = c("darkgoldenrod1", "dodgerblue2"))

Description

Takes a metabolomics count data frame and creates a heatmap. It is recommended to either subset, truncate, or agglomerate by metabolite metadata to improve legibility.
Usage

plot_heatmap(
 count_data,
 metadata,
 Factor,
 response_variable,
 log_transform = FALSE,
 high_color,
 low_color,
 aggregate_by
)

Arguments

count_data A metabolomics count data frame.
metadata The descriptive meta data for the samples.
Factor The column name for the independent variable in your metadata.
response_variable The response variable for the data, i.e. "Metabolite"
log_transform TRUE or FALSE. Recommended for visualization purposes. If true data is transformed by the natural log.
high_color Color for high abundance values
low_color Color for low abundance values
aggregate_by Hierarchical metadata value to sum metabolite values by, i.e. "Class"

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

plot_heatmap(count_data = c57_nos2KO_mouse_countDF, metadata = c57_nos2KO_mouse_metadata,
 log_transform = TRUE, Factor = "Treatment", response_variable = "Metabolite",
 aggregate_by = "Subclass_2", high_color = "darkgoldenrod1", low_color = "dodgerblue2")

plot_rf_PCA

Description

PCA plot of the proximity matrix from a random forest classification model

Usage

plot_rf_PCA(rf_list, color, size, ellipse = FALSE, label = FALSE)
Arguments

- **rf_list**: The output from the random_forest function. This only works on classification models.
- **color**: A grouping factor. Use the one that was the LHS of your model parameter in the random_forest function.
- **size**: The number for point size in the plot.
- **ellipse**: TRUE or FALSE. Whether to plot with confidence interval ellipses or not.
- **label**: TRUE or FALSE. Whether to include point labels or not.

Examples

```r
rf_list <- random_forest(c57_nos2KO_mouse_countDF,c57_nos2KO_mouse_metadata, Treatment ~ .,c(60,40),500)
plot_rf_PCA(rf_list = rf_list, color = "Treatment", size = 1.5)
```

Description

Plot the variable importance from a random forest model. Mean Decrease Gini for Classification

Usage

```r
plot_variable_importance(rf_list, color = "Class", n_metabolites = 10)
```

Arguments

- **rf_list**: The output from the random_forest function.
- **color**: Metabolite metadata to color by.
- **n_metabolites**: The number of metabolites to include. Metabolites are sorted by decreasing importance.

Examples

```r
rf_list <- random_forest(c57_nos2KO_mouse_countDF,c57_nos2KO_mouse_metadata, Treatment ~ .,c(60,40),500)
plot_variable_importance(rf_list = rf_list, color = "Class", n_metabolites = 10)
```
plot_volcano

Create a volcano plot

Description

Creates a volcano plot as ggplot2 object using the output of omu_summary

Usage

plot_volcano(
 count_data,
 column,
 size,
 strpattern,
 fill,
 sig_threshold,
 alpha,
 shape,
 color
)

Arguments

count_data The output file from the omu_summary function.
column The column with metadata you want to highlight points in the plot with, i.e. "Class"
size Size of the points in the plot
strpattern A character vector of levels of the column you want the plot to focus on, i.e. strpattern = c("Carbohydrates", "Organicacids")
fill A character vector of colors you want your points to be. Must be of length 1 + length(strpattern) to account for points not in strpattern. Levels of a factor are organized alphabetically. All levels not in the strpattern argument will be set to NA.
sig_threshold An integer. Creates a horizontal dashed line for a significance threshold. i.e. sig_threshold = 0.05. Default value is 0.05
alpha A character vector for setting transparency of factor levels. Must be of length 1 + length(strpattern) to account for points not in strpattern.
shape A character vector for setting the shapes for your column levels. Must be of length 1 + length(strpattern) to account for points not in strpattern. See ggplot2 for an index of shape values.
color A character vector of colors for the column levels. Must be of length 1 + length(strpattern) to account for points not in strpattern. If you choose to use shapes with outlines, this list will set the outline colors.
random_forest

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

plot_volcano(count_data = t_test_df, column = "Class", strpattern = c("Carbohydrates"),
fill = c("firebrick2", "white"). sig_threshold = 0.05, alpha = c(1,1),
shape = c(1,24), color = c("black", "black"), size = 2)

plot_volcano(count_data = t_test_df, sig_threshold = 0.05, size = 2)

random_forest

random_forest Perform a classification or regression random forest model

Description

a wrapper built around the randomForest function from package randomForest. Returns a list with
a randomForest object list, training data set, testing data set, metabolite metadata, and confusion
matrices for training and testing data (if type was classification).

Usage

random_forest(
 count_data,
 metadata,
 model,
 training_proportion = c(80, 20),
 n_tree = 500
)

Arguments

count_data Metabolomics data
metadata sample data
model a model of format variable ~.
training_proportion a numeric vector of length 2, first element is the percent of samples to use for
training the model, second element is the percent of samples used to test the
models accuracy
n_tree number of decision trees to create

Examples

rf_list <- random_forest(count_data = c57_nos2KO_mouse_countDF,metadata = c57_nos2KO_mouse_metadata,
model = Treatment ~., training_proportion = c(60,40), n_tree = 500)
ra_table

Creates a ratio table from the count_fold_changes function output.

Description
Create a ratio table

Usage
ra_table(fc_data, variable)

Arguments
fc_data data frame output from the count_fold_changes function
variable metadata from count_fold_changes, i.e. "Class"

Examples

c57_nos2KO_mouse_countDF <- assign_hierarchy(c57_nos2KO_mouse_countDF, TRUE, "KEGG")

t_test_df <- omu_summary(count_data = c57_nos2KO_mouse_countDF,
metadata = c57_nos2KO_mouse_metadata, numerator = "Strep", denominator = "Mock",
response_variable = "Metabolite", Factor = "Treatment",
log_transform = TRUE, p_adjust = "BH", test_type = "welch")

fold_change_counts <- count_fold_changes(count_data = t_test_df,
column = "Class", sig_threshold = 0.05, keep_unknowns = FALSE)

ra_table(fc_data = fold_change_counts, variable = "Class")

read_metabo

Import a metabolomics count data frame

Description
Wrapper for read.csv that appends the "cpd" class and sets blank cells to NA. Used to import metabolomics count data into R.

Usage
read_metabo(filepath)

Arguments
filepath a file path to your metabolomics count data
transform_metabolites

Examples
filepath_to_yourdata = paste0(system.file(package = "omu"), "/extdata/read_metabo_test.csv")
count_data <- read_metabo(filepath_to_yourdata)

data_pareto_scaled <- transform_samples(count_data = c57_nos2KO_mouse_countDF,
function(x) x/sqrt(sd(x)))

data_ln <- transform_samples(count_data = c57_nos2KO_mouse_countDF, log)

Description
A functional to transform metabolomics data across metabolites.

Usage
transform_metabolites(count_data, func)

Arguments
 count_data Metabolomics data
 func a function to transform metabolites by. can be an anonymous function

Examples
data_pareto_scaled <- transform_samples(count_data = c57_nos2KO_mouse_countDF,
function(x) x/sqrt(sd(x)))

data_ln <- transform_samples(count_data = c57_nos2KO_mouse_countDF, log)

Description
A functional to transform metabolomics data across samples.

Usage
transform_samples(count_data, func)

Arguments
 count_data Metabolomics data
 func a function to transform samples by. can be an anonymous function

Examples
data_ln <- transform_samples(count_data = c57_nos2KO_mouse_countDF, log)
Index

* datasets
 c57_nos2KO_mouse_countDF, 3
 c57_nos2KO_mouse_metadata, 3

assign_hierarchy, 2

c57_nos2KO_mouse_countDF, 3
 c57_nos2KO_mouse_metadata, 3
check_zeros, 4
 count_fold_changes, 5

get_seqs, 5

KEGG_gather, 6

make_omelette, 7

omu_anova, 7
 omu_summary, 8

PCA_plot, 9
pie_chart, 10
plate_omelette, 11
 plate_omelette_rxnko, 11
plot_bar, 12
plot_boxplot, 12
plot_heatmap, 13
plot_rf_PCA, 14
plot_variable_importance, 15
plot_volcano, 16

ra_table, 18
random_forest, 17
read_metabo, 18

transform_metabolites, 19
transform_samples, 19