Package ‘onewaytests’

October 14, 2022

Type Package

Title One-Way Tests in Independent Groups Designs

Version 2.6

Date 2021-04-22

Depends R (>= 3.2.0)

Imports stats, moments, car, ggplot2, nortest, graphics, utils

Suggests AID, tibble

Author Osman Dag [aut, cre], Anıl Dolgun [aut], N. Meric Konar [aut], Sam Weerahandi [ctb], Malwane Ananda [ctb]

Maintainer Osman Dag <osman.dag@outlook.com>

Description Performs one-way tests in independent groups designs including homoscedastic and heteroscedastic tests. These are one-way analysis of variance (ANOVA), Welch’s heteroscedastic F test, Welch’s heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-Govern test, James second order test, Kruskal-Wallis test, Scott-Smith test, Box F test and Johansen F test, Generalized tests equivalent to Parametric Bootstrap and Fiducial tests. The package performs pairwise comparisons and graphical approaches. Also, the package includes Student’s t test, Welch’s t test and Mann-Whitney U test for two samples. Moreover, it assesses variance homogeneity and normality of data in each group via tests and plots (Dag et al., 2018, <https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf>).

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2021-04-22 10:30:02 UTC

R topics documented:

- onewaytests-package .. 2
- ag.test ... 2
- aov.test ... 4
- bf.test ... 5
Description

Performs one-way tests in independent groups designs; one-way analysis of variance (ANOVA), Welch’s heteroscedastic F test, Welch’s heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-Govern test, James second order test, Kruskal-Wallis test, Scott-Smith test, Box F test and Johansen F test, Generalized tests equivalent to Parametric Bootstrap and Fiducial tests. The package performs pairwise comparisons and graphical approaches. Also, the package includes Student’s t test, Welch’s t test and Mann-Whitney U test for two samples. Moreover, it assesses variance homogeneity and normality of data in each group via tests and plots (Dag et al., 2018, <https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf>).

Details

- **Package:** onewaytests
- **Type:** Package
- **License:** GPL (>=2)

ag.test

Alexander-Govern Test
Description

ag.test performs Alexander-Govern test.

Usage

ag.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)

Arguments

- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- **data**: a tibble or data frame containing the variables in the formula `formula`.
- **alpha**: the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- **na.rm**: a logical value indicating whether NA values should be stripped before the computation proceeds.
- **verbose**: a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

- **statistic**: the Alexander-Govern test statistic.
- **parameter**: the parameter(s) of the approximate chi-squared distribution of the test statistic.
- **p.value**: the p-value of the test.
- **alpha**: the level of significance.
- **method**: the character string "Alexander-Govern Test".
- **data**: a data frame containing the variables in which NA values (if exist) are removed.
- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.

Note

An R implementation of Alexander-Govern test has been available since 2007 (written by Sven Hartenstein). The website link is here.

Author(s)

Osman Dag

References

Examples

```
library(onewaytests)
ag.test(Sepal.Length ~ Species, data = iris)
out <- ag.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
```

```
library(onewaytests)
library(tibble)
iris <- as_tibble(iris)
ag.test(Sepal.Length ~ Species, data = iris)
out <- ag.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
```

aov.test

One-Way Analysis of Variance

Description

`aov.test` performs one-way analysis of variance (ANOVA).

Usage

```
aov.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
```

Arguments

- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- **data**: a tibble or data frame containing the variables in the formula `formula`.
- **alpha**: the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- **na.rm**: a logical value indicating whether NA values should be stripped before the computation proceeds.
- **verbose**: a logical for printing output to R console.
bf.test

Value
A list with class "owt" containing the following components:

- statistic: the analysis of variance test statistic.
- parameter: the parameter(s) of the approximate F distribution of the test statistic.
- p.value: the p-value of the test.
- alpha: the level of significance to assess the statistical difference.
- method: the character string "One-Way Analysis of Variance".
- data: a data frame containing the variables in which NA values (if exist) are removed.
- formula: a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.

Author(s)
Osman Dag

References

Examples

library(onewaytests)

aov.test(Sepal.Length ~ Species, data = iris)

out <- aov.test(Sepal.Length ~ Species, data = iris)
paircomp(out)

bf.test

Brown-Forsythe Test

Description

bf.test performs Brown-Forsythe test.

Usage

bf.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
Arguments

- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- **data**: a tibble or data frame containing the variables in the formula `formula`.
- **alpha**: the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- **na.rm**: a logical value indicating whether NA values should be stripped before the computation proceeds.
- **verbose**: a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

- **statistic**: the Brown-Forsythe test statistic.
- **parameter**: the parameter(s) of the approximate F distribution of the test statistic.
- **p.value**: the p-value of the test.
- **alpha**: the level of significance to assess the statistical difference.
- **method**: the character string "Brown-Forsythe Test".
- **data**: a data frame containing the variables in which NA values (if exist) are removed.
- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.

Author(s)

Osman Dag

References

Examples

```r
library(onewaytests)

bf.test(Sepal.Length ~ Species, data = iris)

out <- bf.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
```
Description

box.test performs Box F test.

Usage

box.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)

Arguments

formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.
data a tibble or data frame containing the variables in the formula formula.alpha the level of significance to assess the statistical difference. Default is set to alpha = 0.05.na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.verbose a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

statistic the Box F test statistic.parameter the parameter(s) of the approximate F distribution of the test statistic.p.value the p-value of the test.alpha the level of significance to assess the statistical difference.method the character string "Box F Test".data a data frame containing the variables in which NA values (if exist) are removed.formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.

Author(s)

Osman Dag

References

Examples

```r
library(onewaytests)

box.test(Sepal.Length ~ Species, data = iris)

out <- box.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
```

describe

Descriptive Statistics

Description

describe produces basic descriptive statistics including sample size, mean, standard deviation, median, minimum value, maximum value, 25th quantile, 75th quantile, skewness, kurtosis, the number of missing value.

Usage

describe(formula, data)

Arguments

- formula: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- data: a tibble or data frame containing the variables in the formula `formula`

Value

Returns a data.frame of output.

Author(s)

Osman Dag

Examples

```r
library(onewaytests)

describe(Sepal.Length ~ Species, data = iris)
```
gp.test

Test for Equal Means in a One-Way Layout under Unequal Variances

Description

gp.test tests whether two or more samples from normal distributions have the same means when the variances are not necessarily equal.

Usage

```r
gp.test(formula, data, method = c("GT_Bootstrap","GT_Fiducial"), alpha = 0.05, na.rm = TRUE, verbose = TRUE)
```

Arguments

- `formula`: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- `data`: a tibble or data frame containing the variables in the formula `formula`.
- `method`: a character string to select the method. "GT_Bootstrap": Generalized Test Equivalent to Parametric Bootstrap Test (size close to intended), "GT_Fiducial": Generalized Test Equivalent to Fiducial Test (size assured).
- `alpha`: the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.
- `verbose`: a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

- `p.value`: the p-value of the corresponding test.
- `alpha`: the level of significance to assess the statistical difference.
- `method`: the selected method used in generalized test.
- `data`: a data frame containing the variables in which NA values (if exist) are removed.
- `formula`: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.

Note

The methods underlying Generalized Tests are summarized in Weerahandi and Krishnamoorthy (2019), which shows that both the Fiducial and the Parametric Bootstrap tests are generalized tests based on an exact probability statement on alternative test variables. Greater details of them can be found in Krishnamoorthy et al. (2007) and Li et al. (2011). For greater details about Generalized
Inference, the reader is referred to Weerahandi (2004), which can be freely read at Generalized Inference.

For additional information about the methods and the code, the reader can contact the authors of this code, Sam Weerahandi or Malwane Ananda.

Author(s)
Sam Weerahandi, Malwane Ananda

References

Examples

##Both examples given below are from the book written by Daniel and Cross (2013).
##They are One-way ANOVA examples, where it is not reasonable to assume equal variances.

###Example 1

library(onewaytests)

x <- factor(c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4))
y <- c(71.8,66.1,67.6,66.4,42.8,53.2,56.1,56.5,72.5,62.9,58.9,69.3,47.1,86.6,56)
Example1 <- data.frame(y, x)
describe(y ~ x, data = Example1)

out <- gp.test(y ~ x, data = Example1, alpha = 0.10)
paircomp(out)

gp.test(y ~ x, data = Example1, method = "GT_Fiducial")

###Example 2
library(onewaytests)

x <- factor(c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3))
y <- c(92,93,74,80.5,76,71,75.5,88.5,93,80.5,83,87,79, 78,100,76.5,68,11,15,75,76.5,70.5,69,73.8,74,80)

Example2 <- data.frame(y, x)
describe(y ~ x, data = Example2)

out <- gp.test(y ~ x, data = Example2, method = "GT_Fiducial", alpha = 0.10)
paircomp(out)

out <- gp.test(y ~ x, data = Example2, method = "GT_Bootstrap", alpha = 0.10)
paircomp(out)

gplot

Box-and-Whisker Plots and Error Bars

Description

`gplot` produces box-and-whisker plots and error bars of the given grouped values.

Usage

```r
gplot(formula, data, type = c("boxplot", "errorbar"), violin = TRUE, xlab = NULL, ylab = NULL, title = NULL, width = NULL, option = c("se", "sd"), na.rm = TRUE)
```

Arguments

- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- **data**: a tibble or data frame containing the variables in the formula `formula`.
- **type**: a character string to select one of the plots. "boxplot": box-and-whisker plot, "errorbar": error bar.
- **violin**: a logical adding violin plot on box-and-whisker plot.
- **xlab**: a label for the x axis, defaults to a description of x.
- **ylab**: a label for the y axis, defaults to a description of y.
- **title**: a main title for the plot.
- **width**: a numeric giving the width of the boxes for box-and-whisker plots (defaults to 0.3) and the width of the little lines at the tops and bottoms of the error bars (defaults to 0.15).
option

na.rm

Details

The upper whisker of box-and-whisker plots extends from the hinge to the highest value that is within 1.5 * IQR of the hinge, where IQR is the inter-quartile range. The lower whisker extends from the hinge to the lowest value within 1.5 * IQR of the hinge. Data out of the ends of the whiskers are outliers and plotted as points.

Author(s)

Osman Dag

See Also

geom_boxplot geom_violin

Examples

library(onewaytests)

gplot(Sepal.Length ~ Species, data = iris, type = "boxplot")
gplot(Sepal.Length ~ Species, data = iris, type = "boxplot", violin = FALSE)
gplot(Sepal.Length ~ Species, data = iris, type = "errorbar", option = "se")
gplot(Sepal.Length ~ Species, data = iris, type = "errorbar", option = "sd")

homog.test

Variance Homogeneity Tests

homog.test performs variance homogeneity tests including Levene, Bartlett, Fligner-Killeen tests.

Usage

homog.test(formula, data, method = c("Levene", "Bartlett", "Fligner"),
alpha = 0.05, na.rm = TRUE, verbose = TRUE)
Arguments

formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.
data a tibble or data frame containing the variables in the formula formula
method a character string to select one of the variance homogeneity tests. "Levene": Levene’s test, "Bartlett": Bartlett’s test, "Fligner": Fligner-Killeen test.
alphas the level of significance to assess variance homogeneity. Default is set to alpha = 0.05.
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.
verbose a logical for printing output to R console.

Value

A list containing the following components:

statistic the corresponding test statistic.
parameter the parameter(s) of the approximate corresponding distribution of the test statistic. The corresponding distribution is F distribution for Levene’s test, Chi-square distribution for Bartlett’s test and Fligner-Killeen test.
p.value the p-value of the test.

Author(s)

Osman Dag

See Also

leveneTest bartlett.test fligner.test

Examples

library(onewaytests)

homog.test(Sepal.Length ~ Species, data = iris)
homog.test(Sepal.Length ~ Species, data = iris, method = "Bartlett")
Description

james.test performs James second order test.

Usage

```r
james.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
```

Arguments

- `formula`: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- `data`: a tibble or data frame containing the variables in the formula `formula`.
- `alpha`: a significance level. Defaults `alpha = 0.05`.
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.
- `verbose`: a logical for printing output to R console.

Value

A list with class "jt" containing the following components:

- `statistic`: the James second order test statistic.
- `criticalValue`: the critical value of the James second order test statistic.
- `alpha`: the level of significance to assess the statistical difference.
- `method`: the character string "James Second Order Test".
- `data`: a data frame containing the variables in which NA values (if exist) are removed.
- `formula`: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.

Author(s)

Anil Dolgun

References

Examples

library(onewaytests)

james.test(Sepal.Length ~ Species, data = iris, alpha = 0.05)

out <- james.test(Sepal.Length ~ Species, data = iris, alpha = 0.05)
paircomp(out)

johansen.test Johansen F Test

Description

johansen.test performs Johansen F test.

Usage

johansen.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)

Arguments

formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.
data a tibble or data frame containing the variables in the formula formula
alpha the level of significance to assess the statistical difference. Default is set to alpha = 0.05.
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.
verbose a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

statistic the Johansen F test statistic.
parameter the parameter(s) of the approximate F distribution of the test statistic.
p.value the p-value of the test.
alpha the level of significance to assess the statistical difference.
method the character string "Johansen F Test".
data a data frame containing the variables in which NA values (if exist) are removed.
formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.

Author(s)

Osman Dag

References

Examples

```r
library(onewaytests)

johansen.test(Sepal.Length ~ Species, data = iris)

out <- johansen.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
```

<table>
<thead>
<tr>
<th>kw.test</th>
<th>Kruskal-Wallis Test</th>
</tr>
</thead>
</table>

Description

kw.test performs Kruskal-Wallis test.

Usage

```r
kw.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
```

Arguments

- `formula`: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- `data`: a tibble or data frame containing the variables in the formula `formula`.
- `alpha`: the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.
- `verbose`: a logical for printing output to R console.
Value

A list with class "owt" containing the following components:

- **statistic**: the Kruskal-Wallis test statistic.
- **parameter**: the parameter(s) of the approximate chi-squared distribution of the test statistic.
- **p.value**: the p-value of the test.
- **alpha**: the level of significance to assess the statistical difference.
- **data**: a data frame containing the variables in which NA values (if exist) are removed.
- **formula**: a formula of the form \(lhs \sim rhs\) where \(lhs\) gives the sample values and \(rhs\) the corresponding groups.

Author(s)

Anil Dolgun

References

Examples

```r
library(onewaytests)

kw.test(Sepal.Length ~ Species, data = iris)

out <- kw.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
```

Description

mw.test performs Mann-Whitney U test for two samples.

Usage

```r
mw.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
```
Arguments

- **formula**: A formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- **data**: A tibble or data frame containing the variables in the formula `formula`.
- **alpha**: The level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- **na.rm**: A logical value indicating whether NA values should be stripped before the computation proceeds.
- **verbose**: A logical for printing output to R console.

Details

Approximation to normal distribution is used to obtain the p-value.

Value

A list with class "owt" containing the following components:

- **statistic**: The Z statistic.
- **p.value**: The p-value of the test.
- **alpha**: The level of significance to assess the statistical difference.
- **data**: A data frame containing the variables in which NA values (if exist) are removed.
- **formula**: A formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.

Author(s)

Osman Dag

See Also

- `wilcox.test`
- `st.test`
- `wt.test`

Examples

```r
library(AID)
data(AADT)

library(onewaytests)
describe(aadt ~ control, data = AADT)

mw.test(aadt ~ control, data = AADT)
```
nor.test

Description

nor.test performs normality tests including Shapiro-Wilk, Shapiro-Francia, Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises, Pearson Chi-square tests, and also assess the normality of each group through plots.

Usage

nor.test(formula, data, method = c("SW", "SF", "LT", "AD", "CVM", "PT"),
alpha = 0.05, plot = c("qqplot-histogram", "qqplot", "histogram"), mfrow = NULL,
na.rm = TRUE, verbose = TRUE)

Arguments

formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.
data a tibble or data frame containing the variables in the formula formula
method a character string to select one of the normality tests. "SW": Shapiro-Wilk test, "SF": Shapiro-Francia test, "LT": Lilliefors (Kolmogorov-Smirnov) test, "AD": Anderson-Darling test, "CVM": Cramer-von Mises test, "PT": Pearson Chi-square test.
alpha the level of significance to assess normality. Default is set to alpha = 0.05.
plot a character string to select one of the plots including qqplot-histogram, qqplot, histogram. The red line is the density line of normal distribution.
mfrow a two element vector to draw subsequent figures.
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.
verbose a logical for printing output to R console.

Value

A data frame gives the test results for the normality of groups via corresponding normality.

Author(s)

Osman Dag

See Also

homog.test gplot shapiro.test
Examples

library(onewaytests)

nor.test(Sepal.Length ~ Species, data = iris, method = "SW", plot = "qqplot-histogram")
nor.test(Sepal.Length ~ Species, data = iris, method = "SF", plot = "qqplot", mfrow = c(1,3))

paircomp

Pairwise Comparisons

Description

paircomp is a generic function for pairwise comparisons by adjusting p-values.

Usage

S3 method for class 'owt'
paircomp(x, adjust.method = c("bonferroni", "holm", "hochberg", "hommel", "BH", "BY", "fdr", "none"), ...)

Arguments

x a owt object.
adjust.method Method for adjusting p values (see \texttt{p.adjust}). Default is set to "bonferroni".
... Additional arguments affecting multiple comparisons of groups in one-way independent designs.

Value

Returns a data.frame of output.

Author(s)

Osman Dag

Examples

library(onewaytests)

out <- aov.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
paircomp(out, adjust.method = "hochberg")

out2 <- kw.test(Sepal.Length ~ Species, data = iris)
paircomp(out2)
paircomp(out2, adjust.method = "hommel")
out3 <- kw.test(Sepal.Length ~ Species, data = iris)
paircomp(out3)
paircomp(out3, adjust.method = "holm")

paircomp.jt
Pairwise Comparisons for James Second Order Test

Description

paircomp.jt performs multiple comparisons by adjusting the level of significance for James second order test.

Usage

```r
## S3 method for class 'jt'
paircomp(x, adjust.method = c("bonferroni", "none"), ...)
```

Arguments

- `x`
a *jt* object.
- `adjust.method`
Method for adjusting the significance level. "bonferroni": Bonferroni correction, "none": No correction.
- `...`
Additional arguments affecting multiple comparisons of groups in one-way independent designs.

Value

Returns a data.frame of output.

Author(s)

Osman Dag

Examples

```r
library(onewaytests)
out <- james.test(Sepal.Length ~ Species, data = iris, alpha = 0.05)
paircomp(out, adjust.method = "bonferroni")
```
Description

ss.test performs Scott-Smith test.

Usage

ss.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)

Arguments

formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.
data a tibble or data frame containing the variables in the formula
alpha the level of significance to assess the statistical difference. Default is set to alpha = 0.05.
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.
verbose a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

statistic the Scott-Smith test statistic.
parameter the parameter(s) of the approximate chi-squared distribution of the test statistic.
p.value the p-value of the test.
alpha the level of significance to assess the statistical difference.
method the character string "Scott-Smith Test".
data a data frame containing the variables in which NA values (if exist) are removed.
formula a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.

Author(s)

Osman Dag

References

Examples

library(onewaytests)

ss.test(Sepal.Length ~ Species, data = iris)

out <- ss.test(Sepal.Length ~ Species, data = iris)
paircomp(out)

st.test
Student's t-Test

Description

st.test performs student’s t-test for two samples.

Usage

```
st.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
```

Arguments

- `formula` a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- `data` a tibble or data frame containing the variables in the formula `formula`
- `alpha` the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- `na.rm` a logical value indicating whether NA values should be stripped before the computation proceeds.
- `verbose` a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

- `statistic` the Student’s t-test statistic.
- `parameter` the parameter(s) of the approximate t distribution of the test statistic.
- `p.value` the p-value of the test.
- `alpha` the level of significance to assess the statistical difference.
- `data` a data frame containing the variables in which NA values (if exist) are removed.
- `formula` a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
Author(s)

Osman Dag

See Also

`t.test` `wt.test`

Examples

```r
library(AID)
data(AADT)

library(onewaytests)
describe(aadt ~ control, data = AADT)
st.test(aadt ~ control, data = AADT)
```

welch.test

Welch's Heteroscedastic F Test and Welch’s Heteroscedastic F Test with Trimmed Means and Winsorized Variances

Description

`welch.test` performs Welch’s heteroscedastic F test and Welch’s heteroscedastic F test with trimmed means and Winsorized variances.

Usage

```r
welch.test(formula, data, rate = 0, alpha = 0.05, na.rm = TRUE, verbose = TRUE)
```

Arguments

- `formula`: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- `data`: a tibble or data frame containing the variables in the formula `formula`.
- `rate`: the rate of observations trimmed and winsorized from each tail of the distribution. If `rate = 0`, it performs Welch’s heteroscedastic F test. Otherwise, Welch’s heteroscedastic F test with trimmed means and Winsorized variances is performed. Default is set to `rate = 0`.
- `alpha`: the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.
- `verbose`: a logical for printing output to R console.
welch.test

Value

A list with class "owt" containing the following components:

- **statistic**: the value of the test statistic with a name describing it.
- **parameter**: the parameter(s) of the approximate F distribution of the test statistic.
- **p.value**: the p-value of the test.
- **alpha**: the level of significance to assess the statistical difference.
- **method**: the character string "Welch's Heteroscedastic F Test" or "Welch's Heteroscedastic F Test with Trimmed Means and Winsorized Variances" depending on the choice.
- **rate**: the rate of observations trimmed and winsorized from each tail of the distribution.
- **data**: a data frame containing the variables in which NA values (if exist) are removed.
- **formula**: a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.

Author(s)

Osman Dag

References

Examples

```r
library(onewaytests)

welch.test(Sepal.Length ~ Species, data = iris)
welch.test(Sepal.Length ~ Species, data = iris, rate = 0.1)

out <- welch.test(Sepal.Length ~ Species, data = iris)
paircomp(out)
```
wt.test
Welch’s t-Test

Description

`wt.test` performs Welch’s t-test for two samples.

Usage

`wt.test(formula, data, alpha = 0.05, na.rm = TRUE, verbose = TRUE)`

Arguments

- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.
- **data**: a tibble or data frame containing the variables in the formula `formula`.
- **alpha**: the level of significance to assess the statistical difference. Default is set to `alpha = 0.05`.
- **na.rm**: a logical value indicating whether NA values should be stripped before the computation proceeds.
- **verbose**: a logical for printing output to R console.

Value

A list with class "owt" containing the following components:

- **statistic**: the Welch’s t-test statistic.
- **parameter**: the parameter(s) of the approximate t distribution of the test statistic.
- **p.value**: the p-value of the test.
- **alpha**: the level of significance to assess the statistical difference.
- **data**: a data frame containing the variables in which NA values (if exist) are removed.
- **formula**: a formula of the form `lhs ~ rhs` where `lhs` gives the sample values and `rhs` the corresponding groups.

Author(s)

Osman Dag

See Also

`t.test` `st.test`
Examples

```r
library(AID)
data(AADT)

library(onewaytests)
describe(aadt ~ control, data = AADT)

wt.test(aadt ~ control, data = AADT)
```
Index

* **functions**
 - `ag.test`, 2
 - `aov.test`, 4
 - `bf.test`, 5
 - `box.test`, 7
 - `describe`, 8
 - `gp.test`, 9
 - `gplot`, 11
 - `homog.test`, 12
 - `james.test`, 14
 - `johansen.test`, 15
 - `kw.test`, 16
 - `leveneTest`, 13
 - `mw.test`, 17
 - `nor.test`, 19
 - `onewaytests-package`, 2
 - `p.adjust`, 20
 - `paircomp`, 20
 - `paircomp.jt`, 21
 - `shapiro.test`, 19
 - `ss.test`, 22
 - `st.test`, 18, 23, 26
 - `t.test`, 24, 26
 - `welch.test`, 24
 - `wilcox.test`, 18
 - `wt.test`, 18, 24, 26

 `ag.test`, 2
 - `aov.test`, 4
 - `bartlett.test`, 13
 - `bf.test`, 5
 - `box.test`, 7
 - `describe`, 8
 - `fligner.test`, 13
 - `geom_boxplot`, 12
 - `geom_violin`, 12
 - `gp.test`, 9
 - `gplot`, 11, 19
 - `homog.test`, 12, 19
 - `james.test`, 14
 - `johansen.test`, 15
 - `kw.test`, 16
 - `leveneTest`, 13
 - `mw.test`, 17
 - `nor.test`, 19
 - `onewaytests-package`, 2
 - `p.adjust`, 20
 - `paircomp`, 20
 - `paircomp.jt`, 21
 - `shapiro.test`, 19
 - `ss.test`, 22
 - `st.test`, 18, 23, 26
 - `t.test`, 24, 26
 - `welch.test`, 24
 - `wilcox.test`, 18
 - `wt.test`, 18, 24, 26