Package ‘onlineVAR’

May 8, 2019

Title Online Fitting of Time-Adaptive Lasso Vector Auto Regression

Version 0.1-1

Date 2019-05-05

Depends R (>= 2.10.0)

Imports parallel, lattice

Suggests

License GPL-2 | GPL-3

NeedsCompilation yes

Author Jakob Messner [aut, cre]

Maintainer Jakob Messner <jakob.messner@posteo.net>

Repository CRAN

Date/Publication 2019-05-08 07:50:03 UTC

R topics documented:

aemo ... 2
coef.onlineVAR .. 2
onlineVAR ... 3
onlineVAR.control ... 5
plot.onlineVAR ... 6
predict.onlineVAR ... 7

Index 9
Wind power data from 22 wind farms in south eastern Australia provided by the Australian Electricity Market Operator (AEMO) and pre-processed by Jethro Browell and Stefanos Delikaraoglou. The data set contains data from 2013 in 5 minute resolution and is a subset of the data set provided at http://dx.doi.org/10.15129/9e1d9b96-baa7-4f05-93bd-99c5ae50b141. The columns are the wind farms sorted from west to east. Meta data on the capacity and location of the wind farms can be accessed with `attr(aemo, "meta")`.

Usage

```r
data("aemo")
```

Format

A data frame with 22 columns for each wind farm and 105120 rows.

Source

http://dx.doi.org/10.15129/9e1d9b96-baa7-4f05-93bd-99c5ae50b141 https://benjaminweise.carto.com/tables/aemo_wind_plants/public

References

Methods for onlineVAR Objects

Description

Methods for extracting information from fitted onlineVAR objects.

Usage

```r
## S3 method for class 'onlineVAR'
coef(object, time = "last", s = NULL, lags = NULL, ...)
```
Arguments

- **object**: An object of class "onlineVAR".
- **time**: Time step from which coefficient matrix estimates are taken. Default is "last" to take the estimates from the last update. Other time steps can only be specified if model has been fitted with `trace=TRUE`.
- **s**: Optional index specifying which lambda in the lambda.ratio sequence to use. If not specified, optimum s is taken based on weighted squared error.
- **lags**: Optional vector specifying for which lags coefficients should be returned. If not specified, coefficient matrices for all lags are returned.
- **...**: Required for S3 compatibility.

Details

In addition to the `coef` method above, also the standard extractor functions `print` and `summary` for "onlineVAR" objects are available.

See Also

- onlineVAR

Description

Recursive fitting of time-adaptive lasso vector auto regressive models with an online cyclic coordinate descent algorithm.

Usage

```r
onlineVAR(y, nu = 1, lags = NULL, ahead = NULL, lambda.ratio = NULL, burnin = NULL, control = onlineVAR.control(lambda.ratio, ...), ...)

onlineVAR.fit(x, y, nu, lags, ahead, lambda.ratio, fit, burnin, control = onlineVAR.control())
```

Arguments

- **y**: Vector time series with columns for each variable and rows for each time step.
- **x**: Lagged time series data. Columns 1 to `ncol(y)` contain lag-1 data, columns `ncol(y)+1` to `2*ncol(y)` lag-2 data and so on.
- **nu**: Forgetting factor for exponential forgetting.
- **lags**: Number of considered lags. Order of VAR model.
- **ahead**: Look ahead time for predictions. Most recent data that are available. The fitted model only considers lags larger than `ahead`.
lambda.ratio: Vector of penalization parameters as fractions of the minimum lambda for which all coefficients are zero. If not specified a sequence of lambda values is used. See `onlineVAR.control` for details.

burnin: Burn-in period, i.e., the number of time steps that are used to stabilize the model fit. This is particularly important for selecting the optimum lambda. Default is the effective training data length \(1/(1-\nu) \) for a vector of lambda.ratio and 0 for a single valued lambda.ratio.

control: A list of control parameters. Default is `onlineVAR.control(lambda.ratio)`.

fit: List of various starting values that are used for the online updating algorithm.

...: Arguments to be used to form the default control argument if it is not supplied directly.

Details

`onlineVAR` recursively fits time-adaptive lasso vector auto regressive models with an online coordinate descent algorithm that updates the model fit at each time step. By default these models are fitted for a sequence of lasso penalization parameters and predictions are generated for each time step with the parameter with the smallest weighted mean squared error.

`onlineVAR.fit` is the lower level function where the actual fitting takes place.

Value

An object of class "onlineVAR", i.e., a list with the following elements.

coeff: List of intercept vector and coefficient matrices for the different lags.

fit: List of various values that are used for the online updating algorithm. This is mainly used as starting values for further updates.

nu: Forgetting factor for exponential forgetting.

pred: Predictions. Matrix of the same size as the input data but with predictions from adaptive lasso VAR. The first burnin+ahead+lags rows are filled with NA.

predall: If predall=TRUE in control predictions for all penalization parameters in lambda.ratio. Else NULL.

residuals: Prediction errors.

lags: Number of considered lags. Order of VAR model.

ahead: Look ahead time for predictions.

lambda.ratio: Sequence of lasso penalization parameters.

trace: If trace=TRUE a list of coefficient estimates for each time step. Else FALSE.

burnin: Burn-in period, i.e., the number of data that are used to stabilize the model fit.

call: Function call.

References

onlineVAR.control

See Also

predict.onlineVAR, plot.onlineVAR

Examples

data(aemo)

use only subset of first 8000 time steps
y <- aemo[1:8000,]

fit online lasso VAR
onlinefit <- onlinevar(y, nu = 0.99, lags = 1, ahead = 1)

plot coefficient matrix from last update
plot(onlinefit)

compare mean root mean squared error to persistence
c(onlinefit = mean(sqrt(apply((predict(onlinefit)-y)^2, 2, mean, na.rm = TRUE))),
 persistence = mean(sqrt(apply((aemo[1000:7999,]-y[1001:8000,])^2, 2, mean))))

onlineVAR.control

Auxiliary Function for Controlling onlineVAR Fitting

Description

Auxiliary function for onlineVAR fitting.

Usage

onlineVAR.control(lambda.ratio = NULL, nlambda = NULL, lambda.min.ratio = NULL, abstol = 0.001, trace = FALSE, start = NULL, parallel = FALSE, predall = FALSE)

Arguments

lambda.ratio Vector of penalization parameters as fractions of the minimum lambda for which all coefficients are zero. If not specified a sequence of lambda values is generated based on nlambda and lambda.min.ratio. If supplied, nlambda and lambda.min.ratio are ignored.

nlambda Number of lasso penalization parameters lambda. Default is 10.

lambda.min.ratio Smallest value of lambda.ratio. Default is 0.0001.

abstol Absolute tolerance for coordinate descent convergence. In each time step the algorithm stops when the sum of coefficient estimates does not change more than abstol. Default is 0.001.
trace
If TRUE coefficient estimates are stored for all time steps. If FALSE coefficient matrices are only stored for the last time step to save memory.

start
Object of class "onlineVAR". Coefficient estimates from the last time step are used as staring values. Can be used to continue updating the model with new data.

parallel
If TRUE the model fitting for the different lambda is parallelized.

predall
Logical whether predictions from all penalization parameters in the sequence are stored.

Value
An list of components named as the arguments.

nlambda
Number of lasso penalization parameters in the lambda sequence.

lambda.min.ratio
Smallest value for lambda.ratio.

abs.tol
Absolute tolerance for coordinate descent convergence.

lambda.ratio
Lambda sequence as fractions of the minimum lambda for which all coefficients are zero.

trace
Logical whether coefficients should be stored for all time steps.

start
Starting values.

parallel
Logical whether the model fitting for the different lambda is parallelized.

predall
Logical whether prediction from all penalization parameters in the sequence are stored.

See Also
onlineVAR

plot.onlineVAR
Coefficient matrix plots for onlineVAR objects.

Description
Generates plots of estimated coefficient matrices for onlineVAR fits by using the levelplot function from lattice.

Usage
S3 method for class 'onlineVAR'
plot(x, lag = 1, time = "last", s = NULL, col = NULL,
at = NULL, xlab = "", ylab = "", ...)
Arguments

x
 "onlineVAR" object, typically output from onlineVAR.

lag
 Lag for which coefficient matrix is plotted.

time
 Time step from which coefficient matrix estimates are taken. Default is "last" to take the estimates from the last update. Other time steps can only be specified if model has been fitted with trace=TRUE.

s
 Optional index specifying which lambda in the lambda.ratio sequence to use. If not specified, optimum s is taken based on weighted squared error.

col
 Color palette. Default is a color palette with reddish colors for negative and blueish colors for positive coefficients.

at
 A numeric vector giving the breakpoints for the color palette.

xlab
 A title for the x axis.

ylab
 A title for the y axis.

...
 Further arguments passed to levelplot.

See Also

onlineVAR, levelplot

Examples

data(aemo)

use only subset of first 8000 time steps
y <- aemo[1:8000,]

fit online lasso VAR
onlinefit <- onlinevar(y, nu = 0.99, lags = 1, ahead = 1)

plot coefficient matrix from last update
plot(onlinefit)
predict.onlineVAR

Arguments

- **object**: An object of class "onlineVAR".
- **newdata**: Optional time series data to predict. If supplied, predictions are derived with coefficients from the last time step that was used for fitting object.
- **s**: Optional index specifying which lambda in the lambda.ratio sequence to use for prediction.
- **...**: Required for S3 compatibility.

Details

By default, predictions derived during the online fitting are returned. By specifying newdata predictions for a new time series are generated with coefficient estimates from the last time step of the online fitting.

Value

Time series matrix of predictions of the same size as the input data used for model fitting or, if supplied, of the same size as newdata.

See Also

- onlineVAR
Index

*Topic datasets
 aemo, 2

*Topic vector time series regression
 coef.onlineVAR, 2
 onlineVAR, 3
 onlineVAR.control, 5
 plot.onlineVAR, 6
 predict.onlineVAR, 7

aemo, 2

coef, 3
coef.onlineVAR, 2

lattice, 6
levelplot, 6, 7

onlineVAR, 3, 3, 6–8
onlineVAR.control, 4, 5

plot.onlineVAR, 5, 6
predict.onlineVAR, 5, 7
print, 3
print.onlineVAR (coef.onlineVAR), 2
print.summary.onlineVAR (coef.onlineVAR), 2

summary, 3
summary.onlineVAR (coef.onlineVAR), 2