Package ‘onlineforecast’
August 21, 2021

Type Package
Title Forecast Modelling for Online Applications
Version 0.10.0
Description A framework for fitting adaptive forecasting models. Provides a way to use forecasts as input to models, e.g. weather forecasts for energy related forecasting. The models can be fitted recursively and can easily be setup for updating parameters when new data arrives. See the included vignettes, the website <https://onlineforecasting.org> and the paper "Short-term heat load forecasting for single family houses" <doi:10.1016/j.enbuild.2013.04.022>.
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 3.0.0)
Imports Rcpp (>= 0.12.18), R6 (>= 2.2.2), splines (>= 3.1.1), pbs, digest
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown, R.rsp, testthat (>= 3.0.0), data.table, plotly
VignetteBuilder knitr
RoxygenNote 7.1.1
URL https://onlineforecasting.org
BugReports https://lab.compute.dtu.dk/packages/onlineforecast/-/issues
Config/testthat/edition 3
NeedsCompilation yes
Author Peder Bacher [cre], Hjorleifur G Bergsteinsson [aut]
Maintainer Peder Bacher <pbac@dtu.dk>
Repository CRAN
Date/Publication 2021-08-21 12:40:02 UTC
R topics documented:

=+.data.list ... 3
AR ... 4
as.data.frame.data.list 5
as.data.list .. 6
aslt ... 7
bspline ... 9
cache_name .. 11
cache_save .. 12
check .. 13
check.data.list .. 14
complete_cases .. 15
c ... 16
data.list .. 18
Dbuilding .. 19
depth ... 20
flattenlist .. 21
forecastmodel ... 21
fs ... 24
getse .. 25
gof ... 27
input_class .. 27
in_range .. 29
lagdf .. 30
lagdl .. 31
lagvec ... 32
lapply_cbind .. 33
lapply_cbind_df ... 33
lapply_rbind .. 34
lapply_rbind_df ... 34
lm_fit .. 35
lm_optim .. 36
lm_predict ... 38
long_format ... 39
lp ... 40
lp_vector_cpp ... 41
make_input .. 42
make_periodic ... 43
make_tday .. 44
nams .. 45
one ... 46
onlineforecast ... 46
pairs.data.list ... 47
par_ts ... 48
pbspline .. 50
persistence ... 51
plot_ts .. 52
Determine if two data.lists are identical

Description

Compare two data.lists

Usage

```r
## S3 method for class 'data.list'
```

```r
x == y
```

Arguments

- `x`: first data.list
- `y`: second data.list

Details

Returns TRUE if the two data.lists are fully identical, so all data, order of variables etc. must be fully identical

Value

logical
Examples

```r
Dbuilding == Dbuilding

D <- Dbuilding
D$$k2[1] <- NA
Dbuilding == D

D <- Dbuilding
names(D)[5] <- "I"
names(D)[6] <- "Ta"
Dbuilding == D
```

AR
Auto-Regressive (AR) input

Description

Generate auto-regressive (AR) inputs in a model.

Usage

```r
AR(lags)
```

Arguments

- `lags`
 integer vector: The lags of the AR to include.

Details

The AR function can be used in an onlineforecast model formulation. It creates the input matrices for including AR inputs in a model during the transformation stage. It takes the values from the model output in the provided data does the needed lagging.

The lags must be given according to the one-step ahead model, e.g.:

`AR(lags=c(0,1))` will give:
\[Y_{t+1|t} = \phi_1 y_{t-0} + \phi_2 y_{t-1} + \epsilon_{t+1} \]

and:

`AR(lags=c(0,3,12))` will give:
\[Y_{t+1|t} = \phi_1 y_{t-0} + \phi_2 y_{t-3} + \phi_3 y_{t-12} + \epsilon_{t+1} \]

Note, that

For \(k > 1 \) the coefficients will be fitted individually for each horizon, e.g.:

`AR(lags=c(0,1))` will be the multi-step AR:
\[Y_{t+k|t} = \phi_{1,k} y_{t-0} + \phi_{2,k} y_{t-1} + \epsilon_{t+k|t} \]

See the details in `??(ref til vignette).`
Value

A list of matrices, one for each lag in lags, each with columns according to model$kseq.

Examples

```r
# Setup data and a model for the example
D <- Dbuilding
model <- forecastmodel$new()
model$output = "heatload"
# Use the AR in the transformation stage
model$add_inputs(AR = "AR(c(0,1))")
# Regression parameters
model$add_regprm("rls_prm(lambda=0.9)")
# kseq must be added
model$kseq <- 1:4
# In the transformation stage the AR input will be generated
# See that it generates two input matrices, simply with the lagged heat load at t for every k
model$transform_data(subset(D, 1:10))
# Fit with recursive least squares (no parameters prm in the model)
fit <- rls_fit(c(lambda=0.99), model, D, returnanalysis=TRUE)
# Plot the result, see "?plot_ts.rls_fit"
plot_ts(fit, xlim=c(ct("2010-12-20"),max(D$t)))
# Plot for a short period with peaks
plot_ts(fit, xlim=c("2011-01-05","2011-01-07"))
# For online updating, see ??ref{vignette, not yet available}:
# the needed lagged output values are stored in the model for next time new data is available
model$yAR
# The maximum lag needed is also kept
model$maxlagAR
```

as.data.frame.data.list

Convert to data.frame

Description

Converts a data.list to a data.frame.

Usage

```r
## S3 method for class 'data.list'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```
Arguments

x The data.list to be converted.
row.names Not used.
optional Not used.
...
Not used.

Details

The forecasts in the data.list will result in columns named `varname.kxx` in the data.frame.

Value

A data.frame

Examples

Use the data.list with building heat load
D <- Dbuilding
Take a subset
D <- subset(D, 1:5, nms=c("t","Taobs","Ta","Iobs","I"), kseq=1:3)

Convert to a data.frame, note the names of the forecasts are appended .kxx (i.e. for Ta and I)
as.data.frame(D)

as.data.list

Convert to data.list class

Description

These functions will convert the object into a data.list.

Convert a data.frame into a data.list

Usage

as.data.list(object)

S3 method for class 'data.frame'
as.data.list(object)

Arguments

object The data.frame to be converted.
Details

A data.list is simply a list of vectors and data.frames. For the use in the onlineforecast package the following format must be kept:
- \(t \): A vector of time.
- Vectors with same length as \(t \): Holds observations and values synced to time \(t \).
- Data.frames with number of rows as time \(t \): Holds forecasts in each column named by \(k_{xx} \) where \(xx \) is the horizon, e.g. \(k0 \) is synced as observations, and \(k1 \) is one-step ahead.

The convention is that columns with forecasts are postfixed with \(.kxx \) where \(xx \) is the horizon. See the examples.

Value

A value of class data.list

See Also

For specific detailed info see the children, e.g. \texttt{as.data.list.data.frame}

Examples

```r
# Convert a dataframe with time and two observed variables
X <- data.frame(t=1:10, x=1:10, y=1:10)
as.data.list(X)

# Convert a dataframe with time, forecast and an observed variable
X <- data.frame(t=1:10, x.k1=1:10, x.k2=10:1, yobs=1:10, y.k1=1:10, y.k2=1:10)
as.data.list(X)

# Can be converted back and forth
X
as.data.frame(as.data.list(X))
```

Description

The argument is converted into POSIXlt with tz="GMT".
Usage

aslt(object, ...)

S3 method for class 'character'
aslt(object, tz = "GMT", ...)

S3 method for class 'POSIXct'
aslt(object, tz = NA, ...)

S3 method for class 'POSIXlt'
aslt(object, tz = NA, ...)

S3 method for class 'numeric'
aslt(object, ...)

Arguments

object The character, POSIXct, POSIXlt, or numeric which is converted to POSIXct.
...
Arguments to be passed to methods.
tz Timezone. If set, then the time zone will be changed of the object.

Value

An object of class POSIXlt

Methods

#' @examples

Create a POSIXlt with tz="GMT" aslt("2019-01-01") class(aslt("2019-01-01")) aslt("2019-01-01 01:00:05")

Convert between time zones x <- aslt("2019-01-01", tz="CET") aslt(x,tz="GMT")

To seconds and back again aslt(as.numeric(x, units="sec"))

- aslt.character: Simply a wrapper for as.POSIXlt
- aslt.POSIXct: Converts to POSIXct.
- aslt.POSIXlt: Changes the time zone of the object if tz is given.
- aslt.numeric: Converts from UNIX time in seconds to POSIXlt.
bspline

bspline

Compute base splines of a variable using the R function splines::bs, use in the transform stage.

Description

Simply wraps the splines::bs, such that it can be used in the transformation stage.

Usage

```r
bspline(
  x,
  Boundary.knots = NA,
  intercept = FALSE,
  df = NULL,
  knots = NULL,
  degree = 3,
  bknots = NA,
  periodic = FALSE
)
```

Arguments

- **X**
 - data.frame (as part of data.list) with horizons as columns named kxx (i.e. one for each horizon)

- **Boundary.knots**
 - The value is NA: then the boundaries are set to the range of each horizons (columns in X). See ?splines::bs

- **intercept**
 - See ?splines::bs.

- **df**
 - See ?splines::bs

- **knots**
 - See ?splines::bs

- **degree**
 - See ?splines::bs

- **bknots**
 - Is just a short for Boundary.knots and replace Boundary.knots (if Boundary.knots is not given)

- **periodic**
 - Default FALSE. If TRUE, then pbs::pbs is called and periodic splines are generated.

Details

See the help for all arguments with ?splines::bs. NOTE that two arguments have different default values.

See the example https://onlineforecasting.org/examples/solar-power-forecasting.html where the function is used in a model.
Value

List of data frames with the computed base splines, each with columns for the same horizons as in X.

See Also

Other Transform stage functions: `pbspline()`

Examples

```r
# How to make a diurnal curve using splines
# Select first 54 hours from the load data
D <- subset(Dbuilding, 1:76, kseq=1:4)
# Make the hour of the day as a forecast input
D$tday <- make_tday(D$t, kseq=1:4)
D$tday

# Calculate the base splines for each column in tday
L <- bspline(D$tday)

# Now L holds a data.frame for each base spline
str(L)
# Hence this will result in four inputs for the regression model

# Plot (note that the splines period starts at tday=0)
plot(D$t, L$bs1$k1, type="s")
for(i in 2:length(L)){
  lines(D$t, L[[i]]$k1, col=i, type="s")
}

# In a model formulation it will be:
model <- forecastmodel$new()
model$add_inputs(mutday = "bspline(tday)")
# Such that at the transform stage will give the same as above
model$transform_data(D)

# Periodic splines are useful for modelling a diurnal harmonical functions
L <- bspline(D$tday, bknots=c(0,24), df=4, periodic=TRUE)
# or
L <- pbspline(D$tday, bknots=c(0,24), df=4)
# Note, how it has to have high enough df, else it generates an error

# Plot
plot(D$t, L$bs1$k1, type="s")
for(i in 2:length(L)){
  lines(D$t, L[[i]]$k1, col=i, type="s")
}
```
cache_name

Generation of a name for a cache file for the value of a function.

Description

Caching of the value returned by a function

Usage

```r
cache_name(..., cachedir = "cache")
```

Arguments

- `...` The objects from which to calculate cache file name. If no objects given, then all the objects of the calling function are used for generating the checksum for the file name.
- `cachedir` Path for saving the cache, i.e. prefixed to the generated name, remember to end with `/` to make a directory.

Details

Use it in the beginning of a function, which runs a time consuming calculation, like fitting a model using optimization.

It makes a cache name, which can be used to save a unique cache file (see `cache_save()`). The `cache_name` function must receive all the objects (in `...`) which influence the value of the function. It simply calculates a checksum using the `digest` package.

Further, it finds the name of the calling function and its definition, such that if anything changes in the function definition, then the cache file name changes too.

Value

A generated cache file name.

Examples

```r
# A function for demonstrating the using caching
fun <- function(x, y){
  # Generate the cache name (no argument given, so both x and y is used)
  nm <- cache_name(cachedir=cachedir)
  # If the result is cached, then just return it
  if(file.exists(nm)){ return(readRDS(nm)) }
  # Do the calculation
  res <- x^2 + y + 1
  # Wait 1 sec
  Sys.sleep(1)
  # Save for cache
  cache_save(res, nm)
```
Return
return(res)
}

For this example use a temporary directory
In real use this should not be temporary! (changes between R sessions with tempdir())
cachedir <- tempdir()

Uncomment to run:
First time it takes at least 1 sec.
#fun(x=2,y=2)
Second time it loads the cache and is much faster
#fun(x=2,y=2)
Try changing the arguments (x,y) and run again

See the cache file(s)
dir(cachedir)
Delete the cache folder
#unlink(cachedir, recursive=TRUE)

Demonstrate how cache_name() is functioning
Cache using the all objects given in the function calling, i.e. both x and y
fun <- function(x,y){
 x^2 + y + 1
 return(cache_name())
}

These are the same (same values)
fun(x=1,y=2)
fun(1,2)
fun(y=2,x=1)
But this one is different
fun(x=2,y=1)

Test: cache using the values specified in the cache_name call
fun2 <- function(x,y){
 x^2 + y + 1
 return(cache_name(x))
}

So now its only the x value that change the name
fun2(1,2)
fun2(1,3)
But this one is different
fun2(3,3)
And the function named changed the name
Description

Saves the object as an .RDS file with the filename

Usage

cache_save(object, filename)

Arguments

- **object**

The object to cache (i.e. the value of the evaluating function).

- **filename**

The cache file name (i.e. use the one generated by cache_name, see examples).

Details

See the examples for `cache_name()`.

check

Checking the object for appropriate form.

Description

Checking the object for appropriate form.

Usage

check(object)

Arguments

- **object**

The object to be checked.

Details

Prints on table form the result of the check.

Value

The tables generated.

Check a data.list (see ?check.data.list) check(Dbuilding)
check.data.list

Checking the data.list for appropriate form.

Description

Checking the data.list for appropriate form.

Usage

```r
## S3 method for class 'data.list'
check(object)
```

Arguments

- `object` The object to be checked.

Details

Prints a check of the time vector `t`, which must have equidistant time points and no NAs.

Then the results of checking vectors (observations): - ok: A 'V' indicates a successful check - maxNAs: Proportion of NAs - length: printed if not the same as the 't' vector - class: the class

Then the results of checking data.frames and matrices (forecasts): - ok: a 'V' indicates a successful check - maxNAs: the proportion of NAs for the horizon (i.e. column) with the highest proportion of NAs - meanNAs: the proportion of NAs of the entire data.frame - nrow: printed if not the same as the 't' vector length - colnames: columns must be names 'kxx', where 'xx' is the horizon - sameclass: 'X' if not all columns are the same class - class: prints the class of the columns if they are all the same

Value

The tables generated.

Check a data.list (see ?check.data.list) check(Dbuilding)

Vector with observations not same length as t D <- Dbuilding D$heatload <- D$heatload[1:10] check(D)

Some NAs in k1 forecast D <- Dbuilding DTak1[1:1500] <- NA check(D)

Wrong column names names(D$Ta)
complete_cases

Find complete cases in forecast matrices

Description

Returns a logical vector indicating the time points which

Usage

```r
complete_cases(object, kseq = NA)
```

```r
## S3 method for class 'list'
complete_cases(object, kseq = NA)
```

```r
## S3 method for class 'data.frame'
complete_cases(object, kseq = NA)
```

Arguments

- `object`: A data.frame (with columns named 'kxx') or a list of data.frames.
- `kseq`: integer vector: If given then only these horizons are processed.

Details

Given a forecast matrix the forecasts are lagged "+k" steps to align them and then 'complete.cases()' is run on that.

Given a list of forecast matrices the points where all are complete (also all horizons) are complete are TRUE.

Value

A logical vector specifying if there is no missing values across all horizons.

Author(s)

Peder Bacher

Examples

```r
# Take a small data set
D <- subset(Dbuilding, 1:20, kseq=1:5)
# Check the forecast matrix of ambient temperature
D$Ta
# Which are complete over all horizons? The first are not since not all horizons
# have a value there (after lagging)
complete_cases(D$Ta)
# Same goes if given as a list
complete_cases(D["Ta"])
```
and if more than one is given
complete_cases(D[c("Ta","I")])

Set some NA of some horizon
DIk3[8:9] <- NA
Now they are recognized as not complete
complete_cases(D[c("Ta","I")])

If we deal with residuals, which are observations and there for have column names "hxx"
Resid <- residuals(DTa, DTaobs)
names(Resid)
With columns with "h" instead of "k" no lagging occurs in complete_cases
complete_cases(Resid)

Resid2 <- Resid
Resid$h3[8:9] <- NA
complete_cases(list(Resid,Resid2))

ct

Conversion to POSIXct

Description

The object is converted into POSIXct with tz="GMT".

Usage

```r
c(t(object, ...))
```

S3 method for class 'character'
```r
c(t(object, tz = "GMT", ...))
```

S3 method for class 'POSIXct'
```r
c(t(object, tz = NA, duplicatedadd = NA, ...))
```

S3 method for class 'POSIXlt'
```r
c(t(object, tz = NA, duplicatedadd = NA, ...))
```

S3 method for class 'numeric'
```r
c(t(object, ...))
```

Arguments

- **object**
 - The object to convert can be: character, numeric, POSIXct or POSIXlt

- **...**
 - Arguments to be passed to methods.

- **tz**
 - Timezone. If set, then the time zone will be changed of the object.

- **duplicatedadd**
 - Seconds to be added to duplicated time stamps, to mitigate the problem of duplicated timestamps at the shift to winter time. So the second time a time stamp occurs (identified with duplicated) then the seconds will be added.
Details
A simple helper, which wraps as.POSIXct' and sets the time zone to "GMT" per default.

Value
An object of class POSIXct

Methods
- ct.character: Simply a wrapper for as.POSIXct with default tz
- ct.POSIXct: Changes the time zone of the object if tz is given.
- ct.POSIXlt: Converts to POSIXct.
- ct.numeric: Converts from UNIX time in seconds to POSIXct with tz as GMT.

Examples

Create a POSIXct with tz="GMT"
c(t("2019-01-01"))
class(c(t("2019-01-01")))
c(t("2019-01-01 01:00:05"))

Convert to POSIXct
class(c(t(as.POSIXlt("2019-01-01"))))

To seconds and back again
c(t(as.numeric(1000, units="sec")))

Convert character of time which has summer time leaps
Example from CET (with CEST which is winter time)
The point of shifting to and from summer time:
DST Start (Clock Forward) DST End (Clock Backward)
Sunday, March 31, 02:00 Sunday, October 27, 03:00
#
From to winter time to summer time
txt <- c("2019-03-31 01:00",
"2019-03-31 01:30",
"2019-03-31 03:00",
"2019-03-31 03:30")
x <- c(t(txt, tz="CET"))
x
c(t(x, tz="GMT"))

BE AWARE of this conversion of the 02:00: to 02:59:59 (exact time of shift) will lead to a # wrong conversion
data.list <- c("2019-03-31 01:30",
 "2019-03-31 02:00",
 "2019-03-31 03:30")
x <- ct(data.list, tz="CET")
x
ct(x, tz="GMT")
Which a diff on the time can detect, since all steps are not equal
plot(diff(ct(x, tz="GMT")))

Shift to winter time is more problematic
It works like this
txt <- c("2019-10-27 01:30",
 "2019-10-27 02:00",
 "2019-10-27 02:30",
 "2019-10-27 03:00",
 "2019-10-27 03:30")
x <- ct(txt, tz="CET")
x
ct(x, tz="GMT")

however, timestamps can be given like this
txt <- c("2019-10-27 01:30",
 "2019-10-27 02:00",
 "2019-10-27 02:30",
 "2019-10-27 02:00",
 "2019-10-27 02:30",
 "2019-10-27 03:00",
 "2019-10-27 03:30")
x <- ct(txt, tz="CET")
x
ct(x, tz="GMT")
Again can be detected, since all steps are not equal
plot(diff(ct(x, tz="GMT")))
This can be fixed by (note that it can go wrong, e.g. with gaps around conversion etc.)
ct(x, tz="GMT", duplicatedadd=3600)

data.list | *Make a data.list*

Description

Make a data.list of the vectors and data.frames given.

Usage

data.list(...)
Arguments

... Should hold: time t, observations as vectors and forecasts as data.frames.

Details

See the vignette 'setup-data' on how a data.list must be setup.

It’s simply a list of class data.list holding: - vector t - vector(s) of observations - data.frames (or matrices) of forecast inputs.

Value

a data.list.

Examples

Put together a data.list
The time vector
time <- seq(ct("2019-01-01"),ct("2019-01-02"),by=3600)
Observations time series (as vector)
xobs <- rnorm(length(time))
Forecast input as data.frame
X <- data.frame(matrix(rnorm(length(time)*3), ncol=3))
names(X) <- pst("k",1:3)

D <- data.list(t=time, xobs=xobs, X=X)

Check it
check(D)

Dbuilding

Observations and weather forecasts from a single-family building, weather station and Danish Meteorological Institute (DMI)

Description

Data of the period from 2010-12-15 to 2011-03-01. The weather station was located within a range of 10 km from the building.

Usage

Dbuilding
Format

A data list with 1854 rows and 7 variables:

- **t**: Time in GMT as POSIXct
- **heatload**: The heatload of a single family building in W
- **heatloadtotal**: The average heatload of a 16 single family buildings in W
- **Taobs**: Observed ambient temperature at the weather station in Celcius
- **Iobs**: Observed global radiation at the weather station in W/m^2
- **Ta**: Weather forecasts of ambient temperature up to 36 hours ahead from DMI in Celcius
- **Tb**: Weather forecasts of global radiation up to 36 hours ahead from DMI in W/m^2

Details

Hourly average values. The time point is set in the end of the hour.
Set in the format of a data.list used as input to forecast models in the onlineforecast package.

Source

See https://onlineforecasting.org/examples/datasets.html.

Description

Depth of a list

Usage

```r
depth(this)
```

Arguments

- `this`: list

Details

Returns the depth of a list

Value

integer
flattenlist

Flattens list in a single list of data.frames

Usage

flattenlist(x)

Arguments

x

List to flatten.

Details

Flattens list. Can maybe be made better. It might end up copying data in memory!? It might change
the order of the elements.

Value

A flatten list

forecastmodel

Class for forecastmodels

Description

R6 class for a forecastmodel

Details

This class holds the variables and functions needed for defining and setting up a forecast model
- independent of the fitting scheme. See the vignettes on how to setup and use a model and the
website https://onlineforecasting.org for more info.

Holds all the information needed independently of the fitting scheme (e.g. lm_fit or rls_fit), see the
fields and functions below.

The fields are separated into: - Fields for setting up the model - Fields used when fitting (e.g. which
horizons to fit for is set in kseq

See the fields description below.

Note, it’s an R6 class, hence an object variable is a pointer (reference), which means two important
points: - In order to make a copy, the function clone_deep() must be used (usually clone(deep=TRUE),
but that will end in an infinite loop). - It can be manipulated directly in functions (without return).
The code is written such that no external functions manipulate the model object, except for online updating.

For online updating (i.e. receiving new data and updating the fit), then the model definition and the data becomes entangled, since transformation functions like low-pass filtering with \texttt{lp()} requires past values. See the vignette ?? (ref to online vignette, not yet available) and note that \texttt{rls_fit()} resets the state, which is also done in all \texttt{xxx_fit} functions (e.g. \texttt{rls_fit}).

Public fields used for setting up the model

- \texttt{output = NA}, character: Name of the output.
- \texttt{inputs = list()}, add them with \texttt{add_inputs()}: List of inputs (which are R6 objects) (note the "cloning of list of reference objects" issue below in \texttt{deep_clone} function)
- \texttt{regprmexpr = NA}: The expression (as character) used for generating the regprm, e.g. \texttt{"rls_prm()"} for RLS.
- \texttt{regprm = list()}: Regression parameters calculated by evaluating the \texttt{regprmexpr}.
- \texttt{prmbounds = as.matrix(data.frame(lower=NA, init=NA, upper=NA))}: The bounds for optimization of the parameters, e.g. with \texttt{rls_optim()}.
- \texttt{outputrange = NA}, numeric vector of length 2: Limits of the predictions cropped in the range, e.g. \texttt{outputrange = c(0,Inf)} removes all negative output predictions.

Public fields used when the model is fitted

- \texttt{kseq = NA}: The horizons to fit for.
- \texttt{kseqopt = NA}: The horizons to fit for when optimizing.
- \texttt{p = NA}: The (transformation stage) parameters used for the fit.
- \texttt{Lfits = list()}: The regression fits, one for each \texttt{k} in \texttt{kseq} (simply a list with the latest fit).
- \texttt{datatr = NA}: Transformed input data (data.list with all inputs for regression)

Public methods

All public functions are described below and in examples a section for each is included:

\$new()

Create a new 'forecastmodel' object.

Returns a forecastmodel object.

\$add_inputs(...)

Add inputs to the model.

- ...: The inputs are given as arguments, see examples.

\$add_regprm(regprm_expr)

Add expression (as character) which generates regression parameters.
$add_prmbounds(...)

Add the transformation parameters and bounds for optimization.

$get_prmbounds(...)

Get the transformation parameter bounds, used by optimization functions e.g. rls_optim().

$insert_prm(prm)

Insert the transformation parameters prm in the input expressions and regression expressions, and keep them in $prm (simply string manipulation).

$transform_data(data)

Function for transforming the input data to the regression stage input data (see vignette("setup-data",package = "onlineforecast").)

$reset_state()

Resets the input states and stored data for iterative fitting (datatr rows and yAR) (see ??(ref to online updating vignette, not yet available).

$check(data = NA)

Check if the model is setup correctly.

Examples

New object
model <- forecastmodel$new()

Print it
model

Add model inputs
model$add_inputs(Ta = "lp(Ta)"
See it
model$inputs
Update to use no low-pass filter
model$add_inputs(Ta = "Ta"
model$inputs
Add another
model$add_inputs(I = "lp(I)"
model$inputs

Simply a list, so manipulate directly
class(model$inputs$Ta)
model$inputs$Ta$expr <- "lp(Ta, a1=0.9)"

Add the parameters for the regression stage
model$add_regprm("rls_prm(lambda=0.99)")
The evaluation is a list, which is set in
model$regprm

Set the lambda to be optimized between 0.9 and 0.999, starting at 0.99
model$add_prmbounds(lambda = c(0.9, 0.99, 0.999))
Note the "__" syntax to set parameters for inputs: "input__prm"
model$add_prmbounds(Ta__a1 = c(0.8, 0.95, 0.99))

Get the lower bounds
model$get_prmbounds("lower")

Insert the init parameters
prm <- model$get_prmbounds("init")
prm
Before
model$inputs$Ta$expr
After
model$insert_prm(prm)
model$inputs$Ta$expr

Check if the model is setup and can be used with a given data.list
An error is thrown
try(model$check(Dbuilding))
Add the model output
model$output <- "heatload"
Still not error free
try(model$check(Dbuilding))
Add the horizons to fit for
model$kseq <- 1:4
Finally, no errors :)
model$check(Dbuilding)

fs

Generation of Fourier series.

Description

Function for generating Fourier series as a function of x. E.g. use for harmonic functions for
modelling the diurnal patterns or for basis functions.

Usage

fs(X, nharmonics)

Arguments

X must be a dataframe with columns k1,k2,..., . One period is from 0 to 1 (so for
example if X is hour of day, then divide X by 24 to obtain a daily period).
nharmonics the number of harmonics, so creates double as many inputs! i.e. one sine and one cos for each harmonic.

Value

Returns a list of dataframes (two for each i in 1:nharmonics) with same number of columns as X.

Examples

Make a data.frame with time of day in hours for different horizons
tday <- make_tday(seq(ct("2019-01-01"), ct("2019-01-04"), by=3600), kseq=1:5)
See what's in it
str(tday)
head(tday)

Now use the function to generate Fourier series
L <- fs(tday/24, nharmonics=2)
See what is in it
str(L)

Make a plot to see the harmonics
par(mfrow=c(2,1))
The first harmonic
plot(L$sin1$k1, type="l")
lines(L$cos1$k1, type="l")
The second harmonic
plot(L$sin2$k1, type="l")
lines(L$cos2$k1, type="l")

Description

A helping function for getting subelements from a list.

Usage

getse(L, inm = NA, depth = 2, useregex = FALSE, fun = NA)

Arguments

L The list to get sub elements from.
inm Either an integer index or a name of the subelements to return.
depth The depth of the subelements to match names in: - 1: is directly in the list. - 2: is in list of each element in the list. - 3 and more: simply deeper in the sublists.
getse

userregex logical: should inm be used as regex pattern for returning elements matching, in
the specified layer.

fun function: if given, then it will be applied to all the matched subelements before
returning them.

Details

Often it is needed to get a subelement from a list, which can be done using lapply. But to make life
easier here is a small function for getting subelements in a nested list at a certain depth.

Value

A list of the matched elements.

Examples

Make a nested list
L <- list(x1=list(x=list("val11","val112"),
 y=list("val12"),
 test=list("testlist2")),
 x2=list(x=list("val21","val212"),
 y=list("val22"),
 test=list("testlist2")),
 x3=list(x=list("val31","val312"),
 y=list("val32"),
 test=list("testlist3")))

Get the subelement "x1"
str(getse(L, "x1", depth=1))
Same as
str(L[["x1"]])

Get the element named x in second layer
str(getse(L, "x", depth=2))
Depth is default to 2
str(getse(L, "y"))

Nice when splitting string
x <- strsplit(c("x.k1","y.k2"), "\.")
Get all before the split "."
getse(x, 1)
Get after
getse(x, 2)

Get an element with an integer index
x <- strsplit(c("x.k1","y.k2","x2"), "\.")
getse(x, 1)
if the element is not there, then an error is thrown
try(getse(x, 2))

Use regex pattern for returning elements matching in the specified layer
getse(L, "^te", depth=2, userregex=TRUE)
gof
Simple wrapper for graphics.off()

Description

Simple wrapper for graphics.off()

Usage

```r
gof()
```

input_class
Class for forecastmodel inputs

Description

R6 class for forecastmodel inputs

Details

Holds variables and functions needed for an input, as added by `forecastmodel$add_inputs()`. Details of the class.

Public fields

- `expr = NA`: The expression as string for transforming the input.
- `state_L = list()`: The list holding potential state values kept by the function evaluated in the expression.
- `state_i = integer(1)`: index counter for the state list.

Public methods

All public functions are described below and in examples a section for each is included:

- `$new(expr)`
 Create a new input with the expression `expr`.

- `$evaluate(data)`
 Generate (transform) the input by evaluating the expr with the data (data.list) attached.
Each function in the expressions (lp, fs, etc.) have the possibility to save a state, which can be read next time the are called.

Reset the state by deleting `state_L` and setting `state_i` to 0.

```r
# After running model$inputs[[1]]$evaluate(D) # the lp() has saved it’s state for next time model$inputs[[1]]$state_L
# New data arrives Dnew <- subset(Dbuilding, 11, kseq=1:4) # So in lp() the state is read and it continues model$inputs[[1]]$evaluate(Dnew)
# If we want to reset the state, which is done in all _fit() functions (e.g. rls_fit), such that all transformations starts from scratch # Reset the state model$inputs[[1]]$state_reset() # Now there is no state model$inputs[[1]]$evaluate(Dnew) # So lp() starts by taking the first data point Dnew$Ta
```

Get the saved value in state. This function can be used in the beginning of transformation functions to get the current state value. First time called return the `initval`.

Note that since all transformation functions are called in the same order, then the state can be read and saved by keeping a counter internally, the value is saved in the field `$state_i`.

See example of use in `lp()`.

Set the state value, done in the end of a transformation function, see above.

See example of use in `lp()`.

Examples

```r
# new:
# An input is created in a forecastmodel
model <- forecastmodel$new()
model$add_inputs(Ta = "lp(Ta, a1=0.9)")
# The /quotesingle.Var inputs/quotesingle.Var is now a list
model$inputs
# With the input object
class(model$inputs[[1]])

# Now the transformation stage can be carried out to create the regression stage data
# Take a data.list subset for the example
D <- subset(Dbuilding, 1:10, kseq=1:4)
# Transform the data
model$inputs[[1]]$evaluate(D)
# What happens is simply that the expression is evaluated with the data
# (Note that since not done in the model some functions are missing)
eval(parse(text=model$inputs[[1]]$expr), D)
```
in_range

Selects a period

Description

Returns a logical vector of boolean values where TRUE indicates if timestamp is within the specified period.

Usage

in_range(tstart, time, tend = NA)

Arguments

tstart The start of the period.
time The timestamps as POSIX.
tend The end of the period. If not given then the period will have no end.

Details

Returns a logical vector of boolean values where TRUE indicates if timestamp is within the specified period spanned by tstart and tend.

Note the convention of time stamp in the end of the time intervals causes the time point which equals tstart not to be included. See last example.

The times can be given as character or POSIX, per default in tz='GMT'.

Value

A logical vector indicating the selected period with TRUE

Examples

Take a subset
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))

Just a logical returning TRUE in a specified period
in_range("2010-12-20", D$t, "2010-12-22")

Set which period to evaluate when optimizing parameters, like in rls_optim()
(the points with scoreperiod == false are not included in the score evaluation)
D$scoreperiod <- in_range("2010-12-20", D$t)
D$scoreperiod

Further, excluding a small period by
D$scoreperiod[in_range("2010-12-26", D$t, "2010-12-27")], <- FALSE
D$scoreperiod
Note the convention of time stamp in the end of the time intervals
causes the point with t = 2010-12-26 00:00:00 not to be included
since it's covering to "2010-12-25 23:00:00" to "2010-12-26 00:00:00"
D$t[in_range("2010-12-26", D$t, "2010-12-27")]

When characters are given, then they are translated to the time zone of the time vector
D <- subset(Dbuilding, c("2010-12-15", "2010-12-16"))
D$t <- ct(D$t, tz="CET")
D$t[in_range("2010-12-15 02:00", D$t, "2010-12-15 05:00")]

lagdf

Lagging which returns a data.frame

Description

Lagging by shifting the values back or fourth always returning a data.frame.

Lagging of a data.frame

Usage

```r
lagdf(x, lagseq)
```

Arguments

- `x`: The data.frame to have columns lagged
- `lagseq`: The sequence of lags as an integer. Alternatively, as a character "+k", "-k", "+h" or "-h", e.g. "k12" will with "+k" be lagged 12.

Details

This function lags (shifts) the values of the vector. A data.frame is always returned with the columns as the vectors lagged with the values in lagseq. The column names are set to "kxx", where xx are the lag of the column.

This function lags the columns with the integer values specified with the argument `lagseq`.

Value

A data.frame.

A data.frame with columns that are lagged

See Also

- `lagdf.data.frame` which is run when `x` is a data.frame.
Examples

The values are simply shifted
Ahead in time
lagdf(1:10, 3)
Back in time
lagdf(1:10, -3)
Works but returns a numeric column
lagdf(as.factor(1:10), 3)
Works and returns a character column
lagdf(as.character(1:10), 3)
Giving several lag values
lagdf(1:10, c(1:3))
lagdf(1:10, c(5,3,-1))

See also how to lag a forecast data.frame with: ?lagdf.data.frame

dataframe of forecasts
X <- data.frame(k1=1:10, k2=1:10, k3=1:10)
X

Lag all columns
lagdf(X, 1)

Lag each column different steps
lagdf(X, 1:3)
Lag each columns with its k value from the column name
lagdf(X, "+k")

Also works for columns named hxx
names(X) <- gsub("k", "h", names(X))
lagdf(X, "+h")

If lagseq must have length as columns in X, it doesn't know how to lag and an error is thrown
try(lagdf(X, 1:2))

lagdl

Lagging which returns a data.list

Description

Lagging by shifting the values back or fourth always returning a data.list.

Usage

lagdl(DL, lagseq)
Arguments

- **DL**
 The data.list to be lagged.

- **lagseq**
 The integer(s) setting the lag steps.

Details

This function lags (shifts) the values of the vector. A data.list is always returned with each data.frame lagged with `lagdf`.

Value

A data.list.

Examples

```r
# The values are simply shifted in each data.frame with lagdf
```

Description

Lag by shifting the vector.

Usage

```r
lagvec(x, lag)
```

Arguments

- **x**
 The vector to lag

- **lag**
 (integer) The steps to lag.

Details

A positive value of `lag` shifts the values to the right in the vector.

Value

The shifted vector
Examples

The values are simply shifted
Ahead in time
lagvec(1:10, 3)
Back in time
lagvec(1:10, -3)
Works but returns a numeric
lagvec(as.factor(1:10), 3)
Works and returns a character
lagvec(as.character(1:10), 3)

lapply_cbind

Helper which does lapply and then cbind

Description

Helper which does lapply and then cbind

Usage

lapply_cbind(X, FUN, ...)

Arguments

X object to apply on
FUN function to apply
... passed on to lapply

lapply_cbind_df

Helper which does lapply, cbind and then as.data.frame

Description

Helper which does lapply, cbind and then as.data.frame

Usage

lapply_cbind_df(X, FUN, ...)

Arguments

X object to apply on
FUN function to apply
... passed on to lapply
lapply_rbind

`Helper which does lapply and then rbind`

Description

Helper which does lapply and then rbind

Usage

```
lapply_rbind(X, FUN, ...)  
```

Arguments

- `X`: object to apply on
- `FUN`: function to apply
- `...`: passed on to lapply

lapply_rbind_df

`Helper which does lapply, rbind and then as.data.frame`

Description

Helper which does lapply, rbind and then as.data.frame

Usage

```
lapply_rbind_df(X, FUN, ...)  
```

Arguments

- `X`: object to apply on
- `FUN`: function to apply
- `...`: passed on to lapply
lm_fit

Fit an onlineforecast model with lm

Description

Fit a linear regression model given an onlineforecast model, separately for each prediction horizon.

Usage

```r
lm_fit(
  prm = NA,
  model,
  data,
  scorefun = NA,
  returnanalysis = TRUE,
  printout = TRUE
)
```

Arguments

- `prm`: as numeric with the parameters to be used when fitting.
- `model`: object of class forecastmodel with the model to be fitted.
- `data`: as data.list with the data to fit the model on.
- `scorefun`: Optional. If scorefun is given, e.g. `rmse`, then the value of this is also returned.
- `returnanalysis`: as logical determining if the analysis should be returned. See below.
- `printout`: Defaults to TRUE. Prints the parameters for model.

Value

Depends on:

- If `returnanalysis` is TRUE a list containing:
 - `Yhat`: data.frame with forecasts for `model$kseq` horizons.
 - `model`: The forecastmodel object cloned deep, so can be modified without changing the original object.
 - `data`: data.list with the data used, see examples on how to obtain the transformed data.
 - `Lfitval`: a character "Find the fits in model$Lfits", it's a list with the lm fits for each horizon.
 - `scoreval`: data.frame with the scorefun result on each horizon (only scoreperiod is included).
- If `returnanalysis` is FALSE (and `scorefun` is given): The sum of the score function on all horizons (specified with `model$kseq`).
Examples

Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
Define a simple model
model <- forecastmodel$new()
model$output <- "y"
model$add_inputs(Ta = "lp(Ta, a1=0.9)",
mu = "one()")

Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
And the sequence of horizons to fit for
model$kseq <- 1:6

Now we can fit the model with RLS and get the model validation analysis data
fit <- lm_fit(prm=NA, model=model, data=D)
What did we get back?
names(fit)
class(fit)
The one-step forecast
plot(D$y, type="l")
lines(lagvec(fit$Yhat$k1,-1), col=2)
Get the residuals
plot(residuals(fit)$h1)
Score for each horizon
score(residuals(fit))

The lm_fit don't put anything in this field
fit$Lfitval
Find the lm fits here
model$Lfits
See result for k=1 horizon
summary(model$Lfits$k1)
Some diurnal pattern is present
acf(residuals(fit)$h1, na.action=na.pass, lag.max=96)

Run with other parameters and return the RMSE
lm_fit(c(Ta__a1=0.8), model, D, scorefun=rmse, returnanalysis=FALSE)
lm_fit(c(Ta__a1=0.9), model, D, scorefun=rmse, returnanalysis=FALSE)

lm_optim

Optimize parameters for onlineforecast model fitted with LM

Description

Optimize parameters (transformation stage) of LM model
lm_optim

Usage

lm_optim(
 model,
 data,
 kseq = NA,
 scorefun = rmse,
 cachedir = "",
 cachererun = FALSE,
 printout = TRUE,
 method = "L-BFGS-B",
 ...
)

Arguments

model The onlineforecast model, including inputs, output, kseq, p
data The data.list including the variables used in the model.
kseq The horizons to fit for (if not set, then model$kseq is used)
scorefun The function to be score used for calculating the score to be optimized.
cachedir A character specifying the path (and prefix) of the cache file name. If set to "",
 then no cache will be loaded or written. See https://onlineforecasting.org/vignettes/nice-tricks.html for examples.
cachererun A logical controlling whether to run the optimization even if the cache exists.
printout A logical determining if the score function is printed out in each iteration of the
 optimization.
method The method argument for optim.
... Additional parameters to optim

Details

This is a wrapper for optim to enable easy use of bounds and caching in the optimization.

Value

Result object of optim(). Parameters resulting from the optimization can be found from result$par

See Also

link{optim} for how to control the optimization and rls_optim which works very similarly.

Examples

Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
Define a simple model
model <- forecastmodel$new()
model$add_inputs(Ta = "lp(Ta, a1=0.9)",
mu = "one()"
Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
And the sequence of horizons to fit for
model$kseq <- 1:6

Now we can fit the model and get the score, as it is
lm_fit(model=model, data=D, scorefun=rmse, returnanalysis=FALSE)
Or we can change the low-pass filter coefficient
lm_fit(c(Ta__a1=0.99), model, D, rmse, returnanalysis=FALSE)

This could be passed to optim() (or any optimizer).
See \code{forecastmodel$insert_prm()} for more details.
optim(c(Ta__a1=0.98), lm_fit, model=model, data=D, scorefun=rmse, returnanalysis=FALSE,
lower=c(Ta__a1=0.4), upper=c(Ta__a1=0.999), method="L-BFGS-B")

lm_optim is simply a helper it makes using bounds easier and enables caching of the results
First add bounds for lambda (lower, init, upper)
model$add_prmbounds(Ta__a1 = c(0.4, 0.98, 0.999))

Now the same optimization as above can be done by
val <- lm_optim(model, D)
val

lm_predict

Prediction with an lm forecast model.

Description

Use a fitted forecast model to predict its output variable with transformed data.

Usage

```r
lm_predict(model, datatr)
```

Arguments

- `model` Onlineforecast model object which has been fitted.
- `datatr` Transformed data.

Details

See the ??ref(recursive updating vignette, not yet available).
Value

The Yhat forecast matrix with a forecast for each model$kseq and for each time point in $datatr$t.

Examples

```r
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
# Define a model
model <- forecastmodel$new()
model$add_inputs(Ta = "lp(Ta, a1=0.7)", mu = "one()"

# Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
# And the sequence of horizons to fit for
model$kseq <- 1:6

# Transform using the model
datatr <- model$transform_data(D)

# See the transformed data
str(datatr)

# The model has not been fitted
model$Lfits

# To fit
lm_fit(model=model, data=D)

# Now the fits for each horizon are there (the latest update)
# For example
summary(model$Lfits$k1)

# Use the fit for prediction
D$Yhat <- lm_predict(model, datatr)

# Plot it
plot_ts(D, c("y|Yhat"), kseq=1)
```

long_format

Long format of prediction data.frame

Description

Creates a long format of the predictions
Usage

long_format(fit, Time = NULL)

Arguments

 fit The result from either lm_fit or rls_fit
 Time If the timestamps are missing from the fit object

Details

 This functions creates a useful prediction data.frame which can be useful for analysis and plotting.

Value

 Data.frame of when the prediction where made, also the prediction value and timestamp.

Examples

Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
D$scoreperiod <- in_range("2010-12-20", D$t)
Define a model
model <- forecastmodel$new()
model$add_inputs(Ta = "Ta",
 mu = "one()")
model$add_regprm("rls_prm(lambda=0.99)")
model$kseq <- 1:6
Fit it
fit <- rls_fit(prm=c(lambda=0.99), model, D)
Get the forecasts (in fit$Yhat) on long format
long_format(fit)

lp

First-order low-pass filtering

Description

 First-order low-pass filtering of a time series vector.

Usage

lp(X, a1, usestate = TRUE)
lp_vector_cpp

Arguments

X Dataframe or matrix (or list of them) of forecasts in columns to be low-pass filtered.
a1 The low-pass filter coefficient.
usestate logical: Use the state kept in the model$inout? if lp() is used outside model$transform_data(), then it must be set to FALSE, otherwise the input$state (which is not there) will be read leading to an error.

Details

This function applies a first order unity gain low-pass filter to the columns of X. The low-pass filter is applied to each column separately. The stationary gain of the filter is one.

If a list of dataframes (or matrices) is given, then the low-pass filtering is recursively applied on each.

Value

The low-pass filtered dataframe (as a matrix)

Examples

Make a dataframe for the examples
X <- data.frame(k1=rep(c(0,1),each=5))
X$k2 <- X$k1
Xf <- lp(X, 0.5, usestate=FALSE)
Xf

See the input and the low-pass filtered result
plot(X$k1)
lines(Xf[,"k1"])
Slower response with higher a1 value
lines(lp(X, 0.8, usestate=FALSE)[,"k1"])

If a list of dataframes is given, then lp() is recursively applied on each
lp(list(X,X), 0.5, usestate=FALSE)

lp_vector_cpp

Description

This function returns a vector which is x through a unity gain first-order low-pass filter.

Low pass filtering of a vector.
Arguments

- **x**: A numeric vector
- **a1**: the first order low-pass filter coefficient

make_input
Make a forecast matrix (as data.frame) from observations.

Description

This function creates a data.frame with columns for each horizon such that it can be added to a data.list and used in a forecast model.

Usage

```r
make_input(observations, kseq)
```

Arguments

- **observations**: vector of observations.
- **kseq**: vector of integers, representing the desired "k-steps ahead".

Value

Returns a forecast matrix (as a data.frame) with simply the observation vector copied to each column.

Examples

```r
# Data for example
D <- subset(Dbuilding, c("2010-12-15","2010-12-20"))

# Generate the input
make_input(D$heatload, 1:4)

# Set is in D, such that it can be used in input expressions (e.g. by model$add_inputs(AR = "Ar0")
D$AR0 <- make_input(D$heatload, 1:36)
```
make_periodic

Make an forecast matrix with a periodic time signal.

Description

This function creates a data.frame with k-steps-ahead values of a periodic time signal, such that it can be added to a data.list and used inputs to a forecast model.

Usage

```r
make_periodic(time, kseq, period, offset = 0, tstep = NA)
```

Arguments

- `time`: vector of times of class "POSIXct" "POSIXt".
- `kseq`: vector of integers, representing the desired "k-steps ahead".
- `period`: a numeric setting the length of the period in seconds.
- `offset`: a numeric setting an offset in the period start in seconds.
- `tstep`: step time of k in seconds.

Value

Returns a forecast matrix (data.frame) with rownames = times, colnames = k1, k2, k3, ... The content of the data frame is the hour of day.

See Also

`make_tday`

Examples

```r
# Create a time sequence of 30 min sample period
tseq <- seq(ct("2019-01-01"), ct("2019-02-01 12:00"), by=1800)

# Make the three hourly periodic sequence
make_periodic(tseq, 1:10, 3*3600)

# With an offset of one hour
make_periodic(tseq, 1:10, 3*3600, 3600)
```
make_tday

 Make an hour-of-day forecast matrix

Description

This function creates a data.frame with k-steps-ahead values of hour of day, such that it can be added to a data.list and used inputs to a forecast model.

Usage

make_tday(time, kseq, tstep = NA)

Arguments

time vector of times of class "POSIXct" "POSIXt".
kseq vector of integers, representing the desired "k-steps ahead".
tstep step time of k in seconds.

Value

Returns a forecast matrix (data.frame) with rownames = times, colnames = k1, k2, k3, ... The content of the data frame is the hour of day.

See Also

make_periodic

Examples

Create a time sequence of 30 min sample period
tseq <- seq(ct("2019-01-01"), ct("2019-02-01 12:00"), by=1800)

Make the time of day sequence (assuming time between k steps is same as for tseq)
make_tday(tseq, 1:10)

With 0.5 hour steps, kstep in hours
make_tday(tseq, 1:10, tstep=3600)
nams

| nams | Return the column names |

Description

Return the column names of a dataframe or a matrix.

Usage

nams(x)

nams(x) <- value

Arguments

x

The matrix or data.frame to set the column names for.

value

The names to be given.

Details

Simply to have a single function for returning the column names, instead of colnames() for a matrix and names() for a data.frame.

Examples

Generate a matrix
X <- matrix(1, nrow=2, ncol=3)
colnames(X) <- c("c1","c2","c3")
D <- as.data.frame(X)

Annoyingly this fails (for a matrix)
Not run: names(X)
Could use this everywhere
colnames(D)
but this is shorter
nams(X)
nams(D)

Also for assignment
nams(D) <- c("x1","x2","x3")
nams(D)
one Create ones for model input intercept

Description

Returns a data.frame of ones which can be used in forecast model inputs

Usage

one()

Details

The function returns ones which can be used to generate ones, e.g. to be used as a intercept for a model.

See vignettes 'setup-data' and 'setup-and-use-model'.

Value

A data.frame of ones

Examples

A model
model <- forecastmodel$new()
Use the function in the input definition
model$add_inputs(mu = "one()")
Set the forecast horizons
model$kseq <- 1:4
During the transformation stage the one will be generated for the horizons
model$transform_data(subset(Dbuilding, 1:7))

onlineforecast Functions for online forecasting

Description

Functions for online forecasting

Details

This package provides functions to for setting up forecast models which run in an online setting, e.g. like demand, solar and wind power forecasts updated regularly - often hourly, and forecasts up to 48 hours ahead.

See the website https://onlineforecasting.org for more information.
pairs.data.list

Description

Generate a pairs plot for the vectors in the data.list.

Usage

```r
## S3 method for class 'data.list'
pairs(
  x,
  subset = NA,
  nms = NA,
  kseq = NA,
  lagforecasts = TRUE,
  pattern = NA,
  lower.panel = NULL,
  panel = panel.smooth,
  pch = 20,
  cex = 0.7,
  ...
)
```

Arguments

- `x` The data.list from which to plot.
- `subset` The subset to be included. Passed to `subset.data.list()`.
- `nms` The names of the variables to be included. Passed to `subset.data.list()`.
- `kseq` The horizons to be included. Passed to `subset.data.list()`.
- `lagforecasts` Lag the forecasts such that they are synced with observations. Passed to `subset.data.list()`.
- `pattern` Regex pattern to select the included variables. Passed to `subset.data.list()`.
- `lower.panel` Passed to `pairs()`.
- `panel` Passed to `pairs()`.
- `pch` Passed to `pairs()`.
- `cex` Passed to `pairs()`.
- `...` Passed to `pairs()`.

Details

A very useful plot for checking what is in the forecasts, how they are synced and match the observations.
Examples

```r
# Take a subset for the example
D <- subset(Dbuilding, c("2010-12-15","2011-01-15"), pattern="^Ta|^I", kseq=1:3)
pairs(D)

# If the forecasts and the observations are not aligned in time,
# which is easy to see by comparing to the previous plot.
pairs(D, lagforecasts=FALSE)
# Especially for the solar I synchronization is really important!
# Hence if the forecasts were not synced properly, then it can be detected using this type of plot.

# Alternatively, lag when taking the subset
D <- subset(Dbuilding, c("2010-12-15","2011-01-15"), pattern="^Ta|^I", kseq=1:3, lagforecasts=TRUE)
pairs(D, lagforecasts=FALSE)
```

par_ts

Set parameters for `plot_ts()`

Description

Set parameters for `plot_ts()` globally

Usage

```r
par_ts(fromoptions = FALSE, p = NA, ...)
```

Arguments

- `fromoptions` logical: Read the list of parameters set in `options("par_ts")$par_ts`, then the additional parameters set in ... are replaced before the list is returned.
- `p` List of the parameters, as returned by the function itself. If given, the additional parameters set in ... are replaced before the list is returned.
- `...` any of the following parameters can be set replacing the default values:
 - `xnm "t"`: The name of the time
 - `legendspace`: 10: Horizontal space for the legend in character spaces
 - `legendcex`: 1: Scaling of the legend
 - `legendrangeshow`: TRUE: Include the range for each variable in the legend
 - `ylimextend c(lower,upper)`: Extend the ylim for each plot with a proportion, separately for the lower and upper limit
 - `yaxisextend c(lower,upper)`: Extend the yaxis for each plot with a proportion, separately for the lower and upper limit
 - `mainsline` (numeric): with the line for the main in the plots.
 - `cex` (numeric): The cex to use for the `plot_ts` plots.
 - `plotfun`: The function used for plotting, as default lines.
 - `xaxisformat` (character): The format of the axis, see `strptime()`.
 - `colorramp` (colorRampPalette): The colorramp used for setting multiple colors in each plot
Details

Often in a report some plot parameters must be set for all plots, which is done with `par()`. The parameters which are general for `plot_ts()` can be set and saved in `options()`, and they will then be applied as default in all calls to `plot_ts()`. See the examples how to do this.

If any of these parameters are given to `plot_ts()`, then it will be used over the default.

Value

A list of the parameters above, which can be set globally (see examples) or passed to `plot_ts`.

Examples

```r
# Data for plots
D <- subset(Dbuilding, 1:192)

# See the parameters which can be set
p <- par_ts()
names(p)
p$xnm

# Using the default values
plot_ts(D, c("heatload","Ta"), kseq=1:24)

# Set the parameters directly
plot_ts(D, c("heatload","Ta"), kseq=1:24, legendcex=0.8, legendspace=8)

# Set parameters to be given in a list
p <- par_ts()
p$legendcex <- 0.8
p$legendspace <- 8

# Use those parameters
plot_ts(D, c("heatload","Ta"), kseq=1:24, p=p)

# Set globally (if not set specified the default values will be used)
options(par_ts=p)

# Now the global parameters will be used
plot_ts(D, c("heatload","Ta"), kseq=1:24)

# Still providing a parameter directly it will be used, e.g. change the plotting function
plot_ts(D, c("heatload","Ta"), kseq=1:24, plotfun=points)

# Control more precisely the plotting function
plot_ts(D, c("heatload","Ta"), kseq=1:24, plotfun=function(x, ...){ points(x, type="b", ...)})

# Another colorramp function
p$colorramp <- rainbow
options(par_ts=p)
plot_ts(D, c("heatload","Ta"), kseq=1:24)
```
pbspline

Wrapper for bspline with periodic=TRUE

Description

Wrapper for bspline with periodic=TRUE

Usage

```r
pbspline(
  X,
  Boundary.knots = NA,
  intercept = FALSE,
  df = NULL,
  knots = NULL,
  degree = 3,
  bknots = NA
)
```

Arguments

- **X**: see ?bspline
- **Boundary.knots**: see ?bspline
- **intercept**: see ?bspline
- **df**: see ?bspline
- **knots**: see ?bspline
- **degree**: see ?bspline
- **bknots**: see ?bspline

Details

Simply a wrapper.

See Also

Other Transform stage functions: `bspline()`
Generate persistence forecasts

Description
Generate persistence and periodic persistence forecasts

Usage
persistence(y, kseq, perlen = NA)

Arguments
y (numeric) The model output to be forecasted.
kseq (integer) The horizons to be forecasted.
perlen (integer) The period length for seasonal persistence.

Details
Generate a forecast matrix using persistence. The simple persistence is with the current value of y, i.e. the value at time t is used as forecast.
A seasonal persistence with a specific period can be generated by setting the argument perlen to the length of the period in steps. The value used for the forecast is then the latest available, which is matches the seasonality for time t+k, see the examples.

Value
Forecast matrix as a data.frame (named Yhat in similar functions)

Examples

Simple persistence just copies the current value for the forecasts
persistence(1:10, kseq=1:4)

Seasonal persistence takes the value perlen steps back
persistence(1:10, kseq=1:4, perlen=4)

If the horizons are longer than perlen, then the perlen*i steps back is taken (i is an integer)
persistence(1:10, kseq=1:12, perlen=4)
plot_ts

Time series plotting

Description
Plot time series of observations and forecasts (lagged to be aligned in time).
Plot forecasts, residuals, cumulated residuals and RLS coefficients
Simply the same as plot_ts() with usely=TRUE, such that plotly is used.

Usage

plot_ts(
 object,
 patterns = ".*",
 xlim = NA,
 ylims = NA,
 xlab = "",
 ylabs = NA,
 mains = "",
 mainouter = "",
 legendtexts = NA,
 colormaps = NA,
 xat = NA,
 usely = FALSE,
 plotit = TRUE,
 p = NA,
 ...
)

S3 method for class 'data.list'
plot_ts(
 object,
 patterns = ".*",
 xlim = NA,
 ylims = NA,
 xlab = "",
 ylabs = NA,
 mains = "",
 mainouter = "",
 legendtexts = NA,
 colormaps = NA,
 xat = NA,
 usely = FALSE,
 plotit = TRUE,
 p = NA,
 kseq = NA,
S3 method for class 'data.frame'
plot_ts(
 object,
 patterns = ".*",
 xlim = NA,
 ylims = NA,
 xlab = "",
 ylabs = NA,
 mains = NA,
 mainouter = "",
 legendtexts = NA,
 colormaps = NA,
 xat = NA,
 usely = FALSE,
 plotit = TRUE,
 p = NA,
 namesdata = NA,
 ...
)

S3 method for class 'matrix'
plot_ts(
 object,
 patterns = ".*",
 xlim = NA,
 ylims = NA,
 xlab = "",
 ylabs = NA,
 mains = NA,
 mainouter = "",
 legendtexts = NA,
 colormaps = NA,
 xat = NA,
 usely = FALSE,
 plotit = TRUE,
 p = NA,
 namesdata = NA,
 ...
)

S3 method for class 'rls_fit'
plot_ts(
 object,
 patterns = c("^y$|^Yhat$", "^Residuals$", "CumAbsResiduals$", pst("^",
 names(fit$Lfitval[[1]]), "$")),
 ...)
Arguments

object
patterns
xlim
ylims
xlab
ylabs
mains
mainouter

A data.list or data.frame with observations and forecasts, note different
See plot_ts. The default pattern finds the generated series in the function,
The time range as a character of length 2 and form "YYYY-MM-DD" or POSIX.
The ylim for each plot given in a list.
A character with the label for the x-axis.
A character vector with labels for the y-axes.
A character vector with the main for each plot.
A character with the main at the top of the plot (can also be added afterwards
with title(main,outer=TRUE)).

Legend Texts

A list with the legend texts for each plot (replaces the names of the variables).

Colormaps

A list of colormaps, which will be used in each plot.

Xat

POSIXt specifying where the ticks on x-axis should be put.

UseLy

If TRUE then plotly will be used.

PlotIt

If FALSE then the plot will not be generated, only data returned.

P

The plot_ts parameters in a list, as generated with the function `par_ts()`.

...

Parameters passed to `par_ts`, see the list of parameters in `?par_ts`.

KSeq

For `class(object) == "data.list"` an integer vector, default = NA. Control which forecast horizons to include in the plots. If NA all the horizons will be included.

NamesData

For `class(object) == "data.frame"` a character vector. Names of columns in object to be searched in, instead of `names(object)`.

Fit

An `rls_fit`.

Details

Generates time series plots depending on the variables matched by each regular expression given in the `patterns` argument.

The forecasts matrices in the `data.list` given in `object` will be lagged to be aligned in time (i.e. k-step forecasts will be lagged by k).

Use the plotly package if argument `usely` is TRUE, see `plotly_ts()`.

A useful plot for residual analysis and model validation of an RLS fitted forecast model.

All parameters, except those described below, are simply passed to `plot_ts()`.

The plotly package must be installed and loaded.

Note that the plot parameters set with `par_ts()` have no effect on the plotly plots.

See https://onlineforecasting.org/vignettes/nice-tricks.html.

Value

A list with a data.frame with the data for each plot, if `usely`=TRUE, then a list of the figures (drawn with `print(subplot(L, shareX=TRUE, nrow=length(L), titleY = TRUE))`).

The plotted data in a `data.list`.

See Also

- `par_ts` for setting plot control parameters.
- `regex` for regular expressions to select which variables to plot.
- `plot_ts`.
Examples

Time series plots for \code{data.list}, same as for \code{data.frame} except use of \code{kseq}
D <- Dbuilding
plot_ts(D, c("heatload","Ta"), kseq=c(1,24))

Make two plots (and set the space for the legend)
plot_ts(D, c("heatload","Ta"), kseq=c(1,24), legendspace=11)

Only the Ta observations
plot_ts(D, c("heatload","Taobs"), kseq=c(1,24), legendspace=11)

Give labels
plot_ts(D, c("heatload","Ta"), kseq=c(1,24), xlab="Time", ylabs=c("Heat (kW)","Temperature (C)"))

Mains (see mainsline in par_ts())
plot_ts(D, c("heatload","Ta"), kseq=c(1,24), mains=c("Heatload","Temperature"), mainsline=c(-1,-2))

Format of the xaxis (see par_ts())
plot_ts(D, c("heatload","Ta"), kseq=c(1,24), xaxisformat="%Y-%m-%d %H:%M")

Return the data, for other plots etc.
L <- plot_ts(D, c("heatload","Ta"), kseq=c(1,24))
names(L[[1]])
names(L[[2]])

Fit a model (see vignette 'setup-and-use-model'
D <- Dbuilding
D$scoreperiod <- in_range("2010-12-22", D$t)
model <- forecastmodel$new()
model$output = "heatload"
model$add_inputs(Ta = "Ta",
 mu = "one()")
model$add_regprm("rls_prm(lambda=0.9)")
model$kseq <- c(3,18)
fit1 <- rls_fit(NA, model, D, returnanalysis = TRUE)

Plot it
plot_ts(fit1)

Return the data
Dplot <- plot_ts(fit1)

The RLS coefficients are now in a nice format
head(Dplot$mu)

See the website link above
print_to_message

Description
Prints a forecast model

Usage
```
## S3 method for class 'forecastmodel'
print(x, ...)
```

Arguments
- `x` A forecastmodel object
- `...` Not used.

Details
A simple print out of the model output and inputs

print_to_message
Simple function for capturing from the print function and send it in a message().

Description
Simple function for capturing from the print function and send it in a message().

Usage
```
print_to_message(...)```

**Arguments**
- `...` Passed to print which passed to message.

---

**pst**
Simple wrapper for paste0().

**Description**
Simple wrapper for paste0().

**Usage**
```
pst(...)```

Arguments
- `...` Passed to paste0().
Description

Make a downsampling to a lower sampling frequency

Usage

resample(
 object,
 ts,
 tstart = NA,
 tend = NA,
 timename = "t",
 fun = mean,
 quantizetime = TRUE,
 ...
)

Arguments

object Can be data.frame

(ts numeric) New sample period in seconds

tstart A POSIXxx (or character or numeric), which indicates the first time point in the series returned

tend A POSIXxx (or character or numeric), which indicates the last time point in the series returned

timename (character) The name of the time column in object

fun (function) The function of apply. Default is mean, such that average values are obtained

quantizetime (logical) Should the new time points be set to the end of the time intervals, or should they also be the result of the fun function

... Passed on to the fun function

Details

Given an object with a column indicating the time points of the observations the function returns a similar object, where the function is applied for each new (and longer) interval.

Typically it is used if for example 15 minute values should be made into 1 hour values.

NOTE that it is always assumed that the time point is at the end of the time interval, e.g. if hourly values are returned, then "2019-01-01 01:00" indicates the first hour in 2019.

All time points at the time point (border) of between two intervals is assigned to the first interval of the two.
Value

A downsampled data.frame

Examples

```r
# Generate some test data with 10 minutes sampling frequency for one day
X <- data.frame(t = seq(ct("2019-01-01 00:10"), ct("2019-01-02"), by = 10*60))

# A single sine over the day
X$val <- sin(as.numeric(X$t)/3600*2*pi/(24))

# Resample to hourly average values
Xre <- resample(X, 3600)
plot(X$t, X$val)
lines(Xre$t, Xre$val, type="b", col=2)

# Resample to hourly max values
Xre <- resample(X, 3600, fun=max)
lines(Xre$t, Xre$val, type="b", col=3)

# Another starting time point
Xre <- resample(X, 3600, tstart="2019-01-01 00:30")
lines(Xre$t, Xre$val, type="b", col=4)
```

residuals.data.frame

Calculate the residuals given a forecast matrix and the observations.

Description

Calculate the residuals given a forecast matrix and the observations.

Usage

```r
## S3 method for class 'data.frame'
residuals(object, y, ...)  

## S3 method for class 'matrix'
residuals(object, y, ...)  

## S3 method for class 'list'
residuals(object, y, ...)  

## S3 method for class 'forecastmodel_fit'
residuals(object, ...)  
```
residuals.data.frame

Arguments

object The forecast matrix (a data.frame with kxx as column names, Yhat in returned fits).
y The observations vector.
... Not used.

Details

Simply give the forecast matrix and the observations to get the residuals for each horizon in the forecast matrix.

The residuals returned are synced with the observations (i.e. k0) and the columns are names "hxx" (not kxx) to indicate this and will not be lagged in plot_ts()

Value

If object is a matrix or data.frame: a data.frame with the residuals for each horizon. If object is a list: A list with residuals from each element.

Examples

?? list example
Just a vector to be forecasted
n <- 100
D <- data.list()
D$t <- 1:n
D$y <- c(filter(rnorm(n), 0.95, "recursive"))
plot(D$y, type="l")

Generate a forecast matrix with a simple persistence model
D$Yhat <- persistence(D$y, kseq=1:4)

The residuals for each horizon
D$Resid <- residuals(D$Yhat, D$y)
D$Resid
Note the names of the columns
names(D$Resid)
which means that they are aligned with the observations and will not be lagged in the plot
plot_ts(D, c("y|Yhat","Resid"))

Check that it matches (the forecasts is lagged in the plot_ts
such that the forecast for t+k is at t+k (and not t))
plot_ts(D, c("y|Yhat","Resid"), xlim=c(1,10), kseq=1,
 plotfun=function(x,...){lines(x,...,type="b"))

Just for fun, see the auto-correlation function of the persistence
acf(D$Resid$h1, na.action=na.pass)
acf(D$Resid$h4, na.action=na.pass)
Fit an onlineforecast model with Recursive Least Squares (RLS).

Description

This function fits the onlineforecast model to the data and returns either: model validation data or just the score value.

Usage

```r
rls_fit(
  prm = NA,
  model,
  data,
  scorefun = NA,
  returnanalysis = TRUE,
  runcpp = TRUE,
  printout = TRUE
)
```

Arguments

- ** prm **: vector with the parameters for fitting. Deliberately as the first element to be able to use `optim` or other optimizer. If NA then the model will be fitted with the current values in the input expressions, see examples.
- ** model **: as an object of class forecastmodel: The model to be fitted.
- ** data **: as a data.list with the data to fit the model on.
- ** scorefun **: as a function (optional), default is `rmse`. If the score function is given it will be applied to the residuals of each horizon (only `data$scoreperiod` is included).
- ** returnanalysis **: as a logical. If FALSE then the sum of the scoreval on all horizons are returned, if TRUE a list with values for analysis.
- ** runcpp **: logical: If true the c++ implementation of RLS is run, if false the R implementation is run (slower).
- ** printout **: logical: If TRUE the offline parameters and the score function value are printed.

Details

This function has three main purposes (in the examples these three are demonstrated in the examples):

- Returning model validation data, such as residuals and recursive estimated parameters.
- For optimizing the parameters using an R optimizer function. The parameters to optimize for is given in `prm`
- Fitting a model to data and saving the final state in the model object (such that from that point the model can be updated recursively as new data is received).

Note, if the `scorefun` is given the `data$scoreperiod` must be set to (int or logical) define which points to be evaluated in the `scorefun`.

Value
Depends on:
- If `returnanalysis` is TRUE a list containing:
 * `Yhat`: data.frame with forecasts for `model$kseq` horizons.
 * `model`: The forecast model object cloned deep, so can be modified without changing the original object.
 * `data`: data.list with the data used, see examples on how to obtain the transformed data.
 * `Lfitval`: list with RLS coefficients in a data.frame for each horizon, use `plot_ts.rls_fit` to plot them and to obtain them as a data.frame for each coefficient.
 * `scoreval`: data.frame with the scorefun result on each horizon (only scoreperiod is included).
- If `returnanalysis` is FALSE (and `scorefun` is given): The sum of the score function on all horizons (specified with `model$kseq`).

See Also
For optimizing parameters `rls_optim()`, for summary `summary.rls_fit`, for plotting `plot_ts.rls_fit()`, and the other functions starting with 'rls_'.

Examples

```r
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
# Define a simple model
model <- forecastmodel$new()
model$output <- "y"
model$add_inputs(Ta = "Ta",
             mu = "one()"
model$add_regprm("rls_prm(lambda=0.99)"

# Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
# And the sequence of horizons to fit for
model$kseq <- 1:6

# Now we can fit the model with RLS and get the model validation analysis data
fit <- rls_fit(model = model, data = D)
# What did we get back?
names(fit)
# The one-step forecast
plot(D$y, type="l")
lines(fit$Yhat$k1, col=2)
# The one-step RLS coefficients over time (Lfitval is a list of the fits for each horizon)
plot(fit$Lfitval$k1$Ta, type="l")

# A summary
summary(fit)
```
rls_optim

Optimize parameters for onlineforecast model fitted with RLS

Description

Optimize parameters (transformation stage) of RLS model
Usage

```r
rls_optim(
    model,
    data,
    kseq = NA,
    scorefun = rmse,
    cachedir = "",
    cachererun = FALSE,
    printout = TRUE,
    method = "L-BFGS-B",
    ...)
```

Arguments

- `model` The onlineforecast model, including inputs, output, kseq, p
- `data` The data.list which holds the data on which the model is fitted.
- `kseq` The horizons to fit for (if not set, then model$kseq is used)
- `scorefun` The function to be score used for calculating the score to be optimized.
- `cachedir` A character specifying the path (and prefix) of the cache file name. If set to "", then no cache will be loaded or written. See `https://onlineforecasting.org/vignettes/nice-tricks.html` for examples.
- `cachererun` A logical controlling whether to run the optimization even if the cache exists.
- `printout` A logical determining if the score function is printed out in each iteration of the optimization.
- `method` The method argument for `optim`.
- `...` Additional parameters to `optim`

Details

This is a wrapper for `optim` to enable easy use of bounds and caching in the optimization.

One smart trick, is to cache the optimization results. Caching can be done by providing a path to the `cachedir` argument (relative to the current working directory). E.g. `rls_optim(model,D,cachedir="cache")` will write a file in the folder 'cache', such that next time the same call is carried out, then the file is read instead of running the optimization again. See the example in `https://onlineforecasting.org/vignettes/nice-tricks.html`.

Value

Result object of `optim()`. Parameters resulting from the optimization can be found from `result$par`

See Also

`link(optim)` for how to control the optimization.
Examples

```r
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
# Define a simple model
model <- forecastmodel$new()
model$add_inputs(Ta = "Ta", mu = "one()")
model$add_regprm("rls_prm(lambda=0.99)")

# Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
# And the sequence of horizons to fit for
model$kseq <- 1:6
# Now we can fit the model and get the score, as it is
rls_fit(model=model, data=D, scorefun=rmse, returnanalysis=FALSE)
# Or we can change the lambda
rls_fit(c(lambda=0.9), model, D, rmse, returnanalysis=FALSE)
# This could be passed to optim() (or any optimizer, see forecastmodel$insert_prm()).
optim(c(lambda=0.98), rls_fit, model=model, data=D, scorefun=rmse, returnanalysis=FALSE,
     lower=c(lambda=0.9), upper=c(lambda=0.999), method="L-BFGS-B")

# rls_optim is simply a helper, it's makes using bounds easier and enables caching of the results
# First add bounds for lambda (lower, init, upper)
model$add_prmbounds(lambda = c(0.9, 0.98, 0.999))
# Now the same optimization as above can be done by
val <- rls_optim(model, D)
val
```

rls_predict

Prediction with an rls model.

Description

Use a fitted forecast model to predict its output variable with transformed data.

Usage

```r
rls_predict(model, datatr = NA)
```

Arguments

- **model**
 - Onlineforecast model object which has been fitted.
- **datatr**
 - Transformed data.
Details

See the ?ref(recursive updating vignette, not yet available).

Value

The Yhat forecast matrix with a forecast for each model$kseq and for each time point in datatr$t.

Examples

```r
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
# Define a simple model
model <- forecastmodel$new()
model$add_inputs(Ta = "Ta", mu = "one()")
model$add_regprm("rls_prm(lambda=0.99)"")

# Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
# And the sequence of horizons to fit for
model$kseq <- 1:6

# Transform using the model
datatr <- model$transform_data(D)

# See the transformed data
str(datatr)

# The model has not been fitted
model$Lfits

# To fit
rls_fit(model=model, data=D)

# Now the fits for each horizon are there (the latest update)
# For example the current parameter estimates
model$Lfits$k1$theta

# Use the current values for prediction
D$Yhat <- rls_predict(model, datatr)

# Plot it
plot_ts(D, c("y|Yhat"), kseq=1)
```

Recursive updating and prediction
Dnew <- subset(Dbuilding, c("2011-01-01", "2011-01-02"))

for(i in 1:length(Dnew$t)){
 # New data arrives
 Dt <- subset(Dnew, i)
 # Remember that the transformation must only be done once if some transformation
which is has a state, e.g. lp(), is used
datatr <- model$transform_data(Dt)
Update, remember that this must only be once for each new point
(it updates the parameter estimates, i.e. model$Lfits)
rls_update(model, datatr, Dt$heatload)
Now predict to generate the new forecast
print(rls_predict(model, datatr))
}

rls_prm

Function for generating the parameters for RLS regression

Description

Function for generating the parameters for RLS regression

Usage

rls_prm(lambda)

Arguments

- **lambda**: The forgetting factor

Details

The RLS needs only a forgetting factor parameter.

Value

A list of the parameters

Examples

```r
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
D$scoreperiod <- in_range("2010-12-20", D$t)
# Define a simple model
model <- forecastmodel$new()
model$add_inputs(Ta = "Ta", mu = "one()")
model$kseq <- 1:6

# Here the expression which sets the parameters is defined
model$add_regprm("rls_prm(lambda=0.99)")
model$regprmexpr

# These will fit with lambda=0.99
```
rls_fit(prm=NA, model, D)
rls_fit(prm=c(lambda=0.99), model, D)

The expression is evaluated when the model is fitted
rls_fit(prm=c(lambda=0.85), model, D)

What happens is simply that the expression was manipulated
model$regprmexpr
model$regprm

Same change could be done by
model$regprm <- list(lambda=0.3)
model$regprm
val <- rls_fit(prm=NA, model, D)

rls_summary

Print summary of an onlineforecast model fitted with RLS

Description

The summary of an onlineforecast model fitted with RLS with simple stats providing a simple overview.

Usage

```r
rls_summary(object, scoreperiod = NA, scorefun = rmse, printit = TRUE, ...)
```

Arguments

- **object**
 - of class `rls_fit`, so a fit calculated by `rls_fit`.
- **scoreperiod**
 - logical (or index). If this scoreperiod is given, then it will be used over the one in the fit.
- **scorefun**
 - The score function to be applied on each horizon.
- **printit**
 - Print the result.
- **...**
 - Not used.

Details

The following is printed:

* The model.
* Number of observations included in the scoreperiod.
* RLS coefficients summary statistics for the estimated coefficient time series (since observations are correlated, then usual statistics cannot be applied directly):
 - mean: the sample mean of the series.
 - sd: sample standard deviation of the series.
- min: minimum of the series.
- max: maximum of the series.
* Score function applied for each horizon, per default the RMSE.

Value

A list of:
- scorefun.
- scoreval (value of the scorefun for each horizon).
- scoreperiod is the scoreperiod used.

Examples

```r
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
D$scoreperiod <- in_range("2010-12-20", D$t)
# Define a model
model <- forecastmodel$new()
model$add_inputs(Ta = "Ta",
    mu = "one()")
model$add_regprm("rls_prm(lambda=0.99)"")
model$kseq <- 1:6
# Fit it
fit <- rls_fit(prm=c(lambda=0.99), model, D)

# Print the summary
summary(fit)
# We see:
# - The model (output, inputs, lambda)
# - The Ta coefficient is around -0.12 in average (for all horizons) with a standard dev. of 0.03,
# so not varying extremely (between -0.18 and -0.027).
# - The intercept mu is around 5.5 and varying very little.
# - The RMSE is around 0.9 for all horizons.

# The residuals and coefficient series can be seen by
plot_ts(fit)
```

Description

Calculates the RLS update of the model coefficients with the provided data.
Usage

rls_update(model, datatr = NA, y = NA, runcpp = TRUE)

Arguments

model A model object
datatr a data.list with transformed data (from model$transform_data(D))
y A vector of the model output for the corresponding time steps in datatr
runcpp Optional, default = TRUE. If TRUE, a c++ implementation of the update is run, otherwise a slower R implementation is used.

Details

See vignette ??ref(recursive updating, not yet finished) on how to use the function.

Value

Returns a named list for each horizon (model$kseq) containing the variables needed for the RLS fit (for each horizon, which is saved in model$SLfits):

It will update variables in the forecast model object.

See Also

See rls_predict.

Examples

See rls_predict examples

rls_update_cpp Calculating k-step recursive least squares estimates

Description

This function applies the k-step recursive least squares scheme to estimate parameters in a linear regression model.
Arguments

- `y`: Vector of observation
- `X`: Matrix of input variables (design matrix)
- `theta`: Vector of parameters (initial value)
- `P`: Covariance matrix (initial value)
- `lambda`: Forgetting factor
- `k`: Forecast horizon
- `n`: Length of the input
- `np`: Dimension of `P` (np x np)
- `istart`: Start index
- `kmax`: Keep only the last `kmax` rows for next time

Description

Returns the RMSE.

Usage

```r
rmse(x)
```

Arguments

- `x`: a numerical vector of residuals.

Details

Used for forecast evaluation evaluation and optimization of parameters in model fitting.

Note that NAs are ignored (i.e. `mean` is called with `na.rm=TRUE`).

Value

The RMSE score.

See Also

`score()` for calculation of a score for the k'th horizon
Examples

```r
# Just a vector to be forecasted
y <- c(filter(rnorm(100), 0.95, "recursive"))
# Generate a forecast matrix with a simple persistence model
Yhat <- persistence(y, kseq=1:4)
# The residuals for each horizon
Resid <- residuals(Yhat, y)

# Calculate the score for the k1 horizon
rmse(Resid$h1)

# For all horizons
apply(Resid, 2, rmse)
```

score

Calculate the score for each horizon.

Description

Calculates the score for each horizon for a matrix with residuals for each horizon.

Usage

```r
score(object, scoreperiod = NA, usecomplete = TRUE, scorefun = rmse, ...)
```

```r
## S3 method for class 'list'
score(object, scoreperiod = NA, usecomplete = TRUE, scorefun = rmse, ...)

## S3 method for class 'data.frame'
score(object, scoreperiod = NA, usecomplete = TRUE, scorefun = rmse, ...)
```

Arguments

- **object**: A list or a matrix with residuals (columns named hxx) for which to calculate the score for each horizon.
- **scoreperiod**: A logical vector controlling which points to be included in the score calculation. If NA then all values are included (depending on 'complete').
- **usecomplete**: If TRUE then only the values available for all horizons are included (i.e. if at one time point there is a missing value, then values for this time point is removed for all horizons in the calculation).
- **scorefun**: The score function.
- **...**: Passed on to the score function.
Details

Applies the `scorefun` on all horizons (each column) of the residuals matrix. See the description of each parameter for more details.

Value

A list with the numeric vector with the score value for each horizon and the applied `scoreperiod` (note can be different from the given `scoreperiod`, if only complete observations are used (as per default)).

Examples

```r
# Just a vector to be forecasted
y <- c(filter(rnorm(100), 0.95, "recursive"))
# Generate a forecast matrix with a simple persistence model
Yhat <- persistence(y, kseq=1:4)
# The residuals for each horizon
Resid <- residuals(Yhat, y)

# Calculate the score for the k1 horizon
score(Resid)

# In the beginning the horizons have NAs
head(Resid)
# Default is that only complete cases over all horizons are included
score(Resid)
# So including all cases for each horizon will give different values
score(Resid, usecomplete=FALSE)

# Given a list
# The residuals for each horizon
Resid2 <- residuals(persistence(y,kseq=1:4)+rnorm(100), y)

score(list(Resid,Resid2))
```

setpar

Setting par() plotting parameters

Description

Setting `par()` plotting parameters to a set of default values

Usage

```r
setpar(tmpl = "ts", mfrow = c(1, 1), ...)
```
Arguments

- `tmpl`: The name of the parameter template, give "ts" as default
- `mfrow`: The mfrow for `par`.
- `...`: More parameters for `par`.

Details

A simple function, which sets the `par()` plotting parameters to a default set of values. Actually, only really used for setting useful `par` values for multiple time series plots with same x-axis. Give `tmpl="ts"` and `mfrow=c(x,1)`, where x is the number of plots.

Value

Return the original set of parameters, such that they can be reset after plotting.

Examples

```r
# Make some data
D <- data.frame(t=seq(ct("2020-01-01"),ct("2020-01-10"),len=100), x=rnorm(100), y=runif(100))
# Remember the current par values
oldpar <- setpar()

# Generate two stacked plots with same x-axis
setpar("ts", mfrow=c(2,1))
plot(D$t, D$x, type="l")
plot(D$t, D$y, type="l")
# Note xaxt="s" must be set
axis.POSIXct(1, D$t, xaxt="s", format="%Y-%m-%d")

# Set back the par to the previous
par(oldpar)

# In a function, where this is used and a plot is generated,
# then do like this in order to automatically reset on exit
oldpar <- setpar(mfrow=c(2,1))
on.exit(par(oldpar))
```

stairs

Plotting stairs with time point at end of interval.

Description

Plotting steps with time point at end of interval

Usage

`stairs(x, y, type = "b", preline = FALSE, pch = 19, ...)"
Arguments

- x: x values for plot.
- y: y values for plot.
- type: if 'b' then include points.
- preline: if TRUE, then a line backwards from the first point is added.
- pch: Passed to `points()`.
- ...: Passed to `lines()` and `points()` when they are called in the function.

Details

It's easy to plot stairs with `plot(x, y, type="s")`, however that makes the steps forward from x, for time series this works if the time points are at the beginning of the intervals.

Often with time series the time points are in the end of the intervals, so the steps should go backwards, this is achieved with this function.

Examples

```r
# Usual stairs plot has steps forward from x
x <- rnorm(10)
plot(1:10, x, type="s")

# Stairs with step backward from x
plot(1:10, x, type="n")
stairs(1:10, x)

# Use for time series plotting
plot_ts(Dbuilding, "heatload", c("2010-12-15","2010-12-16"), plotfun=stairs)

# Set it globally for all plot_ts
p <- par_ts()
p$plotfun <- stairs
options(par_ts=p)
plot_ts(Dbuilding, "heatload", c("2010-12-15","2010-12-16"))

# Modify it to only lines
plot_ts(Dbuilding, "heatload", c("2010-12-15","2010-12-16"),
        plotfun=function(x,y,...){stairs(x,y, type="l")})
```

Description

Get the state value kept in last call.
state_setval

Usage

state_getval(initval)

Arguments

initval

If no state was kept, then this init value is returned.

Details

Transformation functions (e.g. lp, fs, bspline) can need to keep a state value between calls, e.g. when new data arrives and must be transformed. This function is used to getting the state values set in last call to the function.

Uses the input_class$state_getval().

Value

The state value, but if not found, then the initval.

See Also

state_setval() for setting the state value and input_class.

Examples

See how it can be used in lp, which needs to save the state of the filter
Note how it is not needed to do anything else than getting and setting the state
in transformations (model$transform_data()), then multiple transformation functions can be called,
but they are always in the same order, so the state (set,get) functions keep a counter internally
to make sure that the correct values are set and returned when called again.
lp

state_setval Set a state value to be kept for next the transformation function is called.

Description

Set a state value to be kept for next the transformation function is called.

Usage

state_setval(val)

Arguments

val

The value to set and kept for next call.
step_optim

Details

Transformation functions (e.g. \texttt{lp}, \texttt{fs}, \texttt{bspline}) can need to keep a state value between calls, e.g. when new data arrives and must be transformed. This function is used to setting the state values set in last call to the function.

Uses the \texttt{input_class$state_getval()}.

See Also

\texttt{state_setval()} for setting the state value and \texttt{input_class}.

Examples

\begin{verbatim}
See how it can be used in lp, which needs to save the state of the filter
Note how it is not needed to do anything else than getting and setting the state
in transformations (model$transform_data()), then multiple transformation functions can be called,
but they are always in the same order, so the state (set,get) functions keep a counter internally
to make sure that the correct values are set and returned when called again.
lp
\end{verbatim}

step_optim

\textit{Forward and backward model selection}

Description

Forward and backward model selection

Usage

\begin{verbatim}
step_optim(
 modelfull,
 data,
 prm = list(NA),
 direction = c("both", "backward", "forward", "backwardboth", "forwardboth"),
 modelstart = NA,
 keepinputs = FALSE,
 optimfun = rls_optim,
 fitfun = NA,
 scorefun = rmse,
 printout = FALSE,
 mc.cores = getOption("mc.cores", 2L),
 ...
)
\end{verbatim}
Arguments

modelfull The full forecastmodel containing all inputs which will be can be included in the selection.

data The data.list which holds the data on which the model is fitted.

prm A list of integer parameters to be stepped. Given using the same syntax as parameters for optimization, e.g. `list(I__degree = c(min=3, max=7))` will step the "degree" for input "I".

direction The direction to be used in the selection process.

modelstart A forecastmodel. If it’s set then it will be used as the selected model from the first step of the stepping. It should be a sub model of the full model.

keepinputs If TRUE no inputs can be removed in a step, if FALSE then any input can be removed. If given as a character vector with names of inputs, then they cannot be removed in any step.

optimfun The function which will carry out the optimization in each step.

fitfun A fit function, should be the same as used in optimfun(). If provided, then the score is caculated with this function (instead of the one called in optimfun(), hence the default is rls_fit(), which is called in rls_optim()). Furthermore, information on complete cases are printed and returned.

scorefun The score function used.

printout Logical. Passed on to fitting functions.

mc.cores The mc.cores argument of mclapply. If debugging it can be necessary to set it to 1 to stop execution.

... Additional arguments which will be passed on to optimfun. For example control how many steps

Details

This function takes a model and carry out a model selection by stepping backward, forward or in both directions.

Note that mclapply is used. In order to control the number of cores to use, then set it, e.g. to one core `options(mc.cores=1)`, which is needed for debugging to work.

The full model containing all inputs must be given. In each step new models are generated, with either one removed input or one added input, and then all the generated models are optimized and their scores compared. If any new model have an improved score compared to the currently selected model, then the new is selected and the process is repeated until no new improvement is obtained.

In addition to selecting inputs, then integer parameters can also be stepped through, e.g. the order of basis splined or the number of harmonics in Fourier series.

The stepping process is different depending on the direction. In addition to the full model, a starting model can be given, then the selection process will start from that model.

If the direction is "both", which is default (same as "backwardboth") then the stepping is: - In first step inputs are removed one-by-one - In following steps, inputs still in the model are removed one-by-one, and inputs not in the model are added one-by-one

If the direction is "backwards": - Inputs are only removed in each step
If the direction is "forwardboth": - In the first step all inputs are removed - In following steps (same as "both")

If the direction is "forward": - In the first step all inputs are removed and from there inputs are only added

For stepping through integer variables in the transformation stage, then these have to be set in the "prm" argument. The stepping process will follow the input selection described above.

In case of missing values, especially in combination with auto-regressive models, it can be very important to make sure that only complete cases are included when calculating the score. By providing the ‘fitfun’ argument then the score will be calculated using only the complete cases across horizons and models in each step, see the last examples.

Note, that either kseq or kseqopt must be set on the modelfull object. If kseqopt is set, then it is used no matter the value of kseq.

Value

A list with the result of each step: - ‘$model’ is the model selected in each step - ‘$score’ is the score for the model selected in each step - ‘$optimresult’ the result return by the the optimfun - ‘$completecases’ a logical vector (NA if fitfun argument is not given) indicating which time points were complete across all horizons and models for the particular step.

Examples

```r
# The data, just a rather short period to keep running times short
D <- subset(Dbuilding, c("2010-12-15", "2011-02-01"))
# Set the score period
D$scoreperiod <- in_range("2010-12-22", D$t)
# D$tday <- make_tday(D$t, 1:36)
# Generate an input which is just random noise, i.e. should be removed in the selection
set.seed(83792)
D$noise <- make_input(rnorm(length(D$t)), 1:36)

# The full model
model <- forecastmodel$new()
# Set the model output
model$output = "heatload"
# Inputs (transformation step)
model$add_inputs(Ta = "Ta",
    noise = "noise",
    mu_tday = "fs(tday/24, nharmonics=5)",
    mu = "one()")
# Regression step parameters
model$add_regprm("rls_prm(lambda=0.9)"")
# Optimization bounds for parameters
model$add_prmbounds(lambda = c(0.9, 0.99, 0.9999))

# Select a model, in the optimization just run it for a single horizon
# Note that kseqopt could also be set
```
model$kseq <- 5

Set the parameters to step on, note the
prm <- list(mu_tday__nharmonics = c(min=3, max=7))

Note the control argument, which is passed to optim, it's now set to few
iterations in the offline parameter optimization (MUST be increased in real applications)
control <- list(maxit=1)

On Windows multi cores are not supported, so for the examples use only one core
mc.cores <- 1

Run the default selection scheme, which is "both"
(same as "backwardboth" if no start model is given)
L <- step_optim(model, D, prm, control=control, mc.cores=mc.cores)

The optim value from each step is returned
getse(L, "optimresult")
getse(L, "score")

The final model
L$final$model

Other selection schemes
L_forward <- step_optim(model, D, prm, "forward", control=control, mc.cores=mc.cores)
L_backward <- step_optim(model, D, prm, "backward", control=control, mc.cores=mc.cores)
L_backwardboth <- step_optim(model, D, prm, "backwardboth", control=control, mc.cores=mc.cores)
L_forwardboth <- step_optim(model, D, prm, "forwardboth", control=control, mc.cores=mc.cores)

It's possible avoid removing specified inputs
L <- step_optim(model, D, prm, keepinputs=c("mu","mu_tday"), control=control, mc.cores=mc.cores)

Give a starting model
modelstart <- model$clone_deep()
modelstart$inputs[2:3] <- NULL
L <- step_optim(model, D, prm, modelstart=modelstart, control=control, mc.cores=mc.cores)

If a fitting function is given, then it will be used for calculating the forecasts.
Below it's the rls_fit function, so the same as used internally in rls_fit, so only
difference is that now ONLY on the complete cases for all models in each step are used
when calculating the score in each step
L1 <- step_optim(model, D, prm, fitfun=rls_fit, control=control, mc.cores=mc.cores)

The easiest way to conclude if missing values have an influence is to
compare the selection result running with and without
L2 <- step_optim(model, D, prm, control=control, mc.cores=mc.cores)

Compare the selected models
tmp1 <- capture.output(getse(L1, "model"))
tmp2 <- capture.output(getse(L2, "model"))
identical(tmp1, tmp2)
subset.data.list

Take a subset of a data.list.

Description

Take a subset of a data.list.

Usage

```r
## S3 method for class 'data.list'
subset(
  x,
  subset = NA,
  nms = NA,
  kseq = NA,
  lagforecasts = FALSE,
  pattern = NA,
  ...
)
```

Arguments

- `x` The data.list to take a subset of.
- `subset` Given as the integer indexes or a logical vector, or alternatively `c(tstart, tend)`, where `tstart` and `tend` are either as POSIX or characters.
- `nms` The names of the variables in `x` to be included.
- `kseq` The `k` horizons of forecasts to be included.
- `lagforecasts` Should the forecasts be lagged `k` steps (thus useful for plotting etc.).
- `pattern` Regex pattern applied to select the variables in `x` to be included.
- `...` Not implemented.

Details

Different arguments can be given to select the subset. See the examples.

Value

A data.list with the subset.
Examples

Use the data.list with building heat load
D <- Dbuilding
Take a subset for the example
D <- subset(D, 1:10, nms=c("t","Taobs","Ta","Iobs","I"), kseq=1:3)

Take subset index 2:4
subset(D, 2:4)

Take subset for a period
subset(D, c("2010-12-15 02:00","2010-12-15 04:00"))

Cannot request a variable not there
try(subset(D, nms=c("x","Ta")))

Take specific horizons
subset(D, nms=c("I","Ta"), kseq = 1:2)
subset(D, nms=c("I","Ta"), kseq = 1)

Lag the forecasts such that they are aligned in time with observations
subset(D, nms=c("Taobs","Ta"), kseq = 2:3, lagforecasts = TRUE)

The order follows the order in nms
subset(D, nms=c("Ta","I"), kseq = 2)

Return variables matching a regex
subset(D, kseq=2, pattern="^I")

Take data for Ta and lag the forecasts (good for plotting and fitting a model)
X <- subset(Dbuilding, 1:1000, pattern="^Ta", kseq = 10, lagforecasts = TRUE)

A scatter plot between the forecast and the observations
(try lagforecasts = FALSE and see the difference)
plot(XTak10, X$Taobs)

Fit a model for the 10-step horizon
abline(lm(Taobs ~ Ta.k10, X), col=2)

%**%

Multiplication of list with y, elementwise

Description

Multiplication of each element in a list (x) with y

Usage

x %**% y
Arguments

- **x**: a list of matrices, data.frames, etc.
- **y**: a vector, data.frame or matrix

Details

Each element of x is multiplied with y using the usual elementwise ‘*’ operator.

Typical use is when a function, e.g. `bspline()`, returns a list of matrices (e.g. one for each base spline) and they should individually be multiplied with y (a vector, matrix, etc.).

Since this is intended to be used for forecast models in the transformation stage then there are some peculiarities:

If the number of columns or the names of the columns are not equal for one element in x and y, then only the columns with same names are used, hence the resulting matrices can be of lower dimensions.

See the example https://onlineforecasting.org/examples/solar-power-forecasting.html where the operator is used.

Value

A list of same length of x

Examples

```r
x <- list(matrix(1:9,3), matrix(9:1,3))
x

y <- matrix(2,3,3)
y

x %**% y

y <- 1:3
x %**% y

# Naming percularity
nams(x[[1]]) <- c("k1","k2","k3")
nams(x[[2]]) <- c("k2","k3","k4")
y <- matrix(2,3,3)
nams(y) <- c("k1","k3","k7")

# Now the only the horizons matching will be used
x %**% y
```
Index

* Transform stage functions
 bspline, 9
 pbspline, 50
* data.frame
 make_periodic, 43
 make_tday, 44
* datasets
 Dbuilding, 19
* hourofday
 make_tday, 44
* lags
 make_periodic, 43
 make_tday, 44
* periodic
 make_periodic, 43
==.data.list, 3
%**%, 82

AR, 4
as.data.frame.data.list, 5
as.data.list, 6
as.data.list.data.frame, 7
as.POSIXct, 17
aslt, 7
bspline, 9, 50, 76, 77, 83
cache_name, 11, 13
cache_save, 11, 12
check, 13
check.data.list, 13, 14, 14
complete_cases, 15
cq, 16
data.list, 18
Dbuilding, 19
depth, 20
flattenlist, 21
forecastmodel, 21, 27
fs, 24, 76, 77

getse, 25
gof, 27

in_range, 29
input_class, 27, 76, 77
lagdf, 30
lagdf.data.frame, 30
lagdl, 31
lagvec, 32
lapply_cbind, 33
lapply_cbind_df, 33
lapply_rbind, 34
lapply_rbind_df, 34
lm, 35
lm_fit, 35
lm_optim, 36
lm_predict, 38
long_format, 39
lp, 22, 28, 40, 76, 77
lp_vector_cpp, 41

make_input, 42
make_periodic, 43
make_tday, 44

nams, 45
nams<- (nams), 45

one, 46
onlineforecast, 46
optim, 37, 61, 64
options, 48, 49

pairs, 47
pairs.data.list, 47
par, 49, 73, 74
par_ts, 48, 55
pbspline, 10, 50
persistence, 51
plot_ts, 48, 49, 52, 52, 54, 55, 60

84
plot_ts.rls_fit, 62
plotly_ts, 55
plotly_ts(plot_ts), 52
print.forecastmodel, 56
print_to_message, 57
pst, 57

regex, 55
resample, 58
residuals.data.frame, 59
residuals.forecastmodel_fit (residuals.data.frame), 59
residuals.list (residuals.data.frame), 59
residuals.matrix (residuals.data.frame), 59
rls_fit, 22, 61, 68
rls_optim, 22, 23, 37, 62, 63
rls_predict, 65, 70
rls prm, 22, 67
rls_summary, 68
rls_update, 69
rls_update_cpp, 70
rmse, 35, 61, 71

score, 71, 72
setpar, 73
stairs, 74
state_getval, 75
state_setval, 76, 76, 77
step_optim, 77
strptime, 48
subset.data.list, 47, 81