Package ‘ontoFAST’

October 14, 2022

Type Package
Title Interactive Annotation of Characters with Biological Ontologies
Version 1.0.0
Author Sergei Tarasov
Maintainer Sergei Tarasov <sergei.tarasov@helsinki.fi>
Description Tools for annotating characters (character matrices) with anatomical and phenotype ontologies. Includes functions for visualising character annotations and creating simple queries using ontological relationships.
URL https://github.com/sergeitarasov/ontoFAST
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Imports shinydashboard, pbapply, stringr, utils, stats, dplyr, plyr, sunburstR, usethis
Depends R (>= 3.5), shiny, ontologyIndex, visNetwork
Suggests knitr, rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-29 07:10:02 UTC

R topics documented:

annot_all_chars ... 2
annot_char_grep ... 3
chars_per_term .. 4
edges2list .. 4
exclude_terms .. 5
export_annotations ... 5
export_cytoscape .. 6
Annotate all character statements with ontology terms

Description

Matches character statement and returns most similar ontology terms using grep and distance-based matching.

Usage

```r
annot_all_chars(ontology, use.synonyms = TRUE, min_set = TRUE)
```

Arguments

- `ontology`: ontology_index object with character names (ontology$name_characters) and ids (ontology$id_characters)
- `use.synonyms`: using synonyms list during search. It has to be included in ontology, see syn_extract()
- `min_set`: if TRUE eliminates higher order inferred ontology terms

Value

The list of matched ontology terms and their character ids.
annot_char_grep

Examples

getting ontology
data(HAO)
data(Sharkey_2011)
on ontology<-HAO

parsing synonyms
ontology$parsed_synonyms<-syn_extract(HAO)

reading in characters
char_et_states<-Sharkey_2011

embedding characters and character ids into ontology
id_characters<-paste("CHAR:",c(1:392), sep="\"")
names(name_characters)<-id_characters
ontology$name_characters<-name_characters
ontology$id_characters<-id_characters

running annotations

auto_annotations<-annot_all_chars(ontology)

annot_char_grep Annotate a character statement with ontology terms

Description

Matches character statement and returns most similar ontology terms

Usage

annot_char_grep(ontology, char.statement, use.synonyms = TRUE, min_set = TRUE)

Arguments

- ontology: ontology.
- char.statement: character statement
- use.synonyms: if TRUE then the synonyms are used during search. The synonyms have to be included in the ontology using syn_extract() function
- min_set: if TRUE eliminates higher order inferred ontology terms

Value

The vector of matches ontology terms.

Examples

data(HAO)
annot_char_grep(HAO, "Mola on right mandible")
chars_per_term Get number of chracters per each ontology term

Description

Returns matrix summarizing number of characters per each ontology terms in descending order

Usage

chars_per_term(ontology, annotations = "auto")

Arguments

- **ontology** ontology_index object with character annotations included (ontology$annot_characters).
- **annotations** which annotations to use: "auto" means automatic annotations, "manual" means manual ones. Alternatively, any other list element containing annotations can be specified.

Value

The matrix of ontology terms IDs, their names and character number.

Examples

data(HAO)
ontology<-HAO
ontology$terms_selected_id<-list(`CHAR:1`=c("HAO:0000653"), `CHAR:2`=c("HAO:0000653"))
chars_per_term(ontology, annotations="manual")

edges2list Convert edge matrix to list

Description

Takes two-column edge matrix (columns from and two) and produces a list

Usage

edges2list(edge.matrix)

Arguments

- **edge.matrix** Two-column edge matrix.

Value

The list.
exclude_terms

Examples

annot_list<-list(`CHAR:1`=c("HAO:0000933", "HAO:0000958"), `CHAR:2`=c("HAO:0000833", "HAO:0000258"))
edge.matrix<-list2edges(annot_list)
edges2list(edge.matrix)

exclude_terms

Ontology terms to exclude for sunburst plot

Description

List of ontology terms from Hymenoptera Anatomy Ontology that can be considered redundant and need to be excluded from some operations.

Usage

exclude_terms

Format

List containing ontological terms.

Examples

exclude_terms

export_annotations

Export annotation data

Description

This function converts character annotations stored in shiny_in object to table format.

Usage

export_annotations(
 ontology,
 annotations = "auto",
 incl.names = FALSE,
 sep.head = ",",
 sep.tail = NULL,
 collapse = NULL
)
export_cytoscape

Arguments

ontology Ontology which annotations to use: "auto" means automatic annotations, "manual" means manual ones. Alternatively, any other list element containing annotations can be specified.
annotations which annotations to use: "auto" means automatic annotations, "manual" means manual ones. Alternatively, any other list element containing annotations can be specified.
incl.names if TRUE includes terms' names and IDs, otherwise includes just IDs.
sep.head if incl.names=TRUE, this is a separator attached to the beginning of term's ID
sep.tail if incl.names=TRUE, this is a separator attached to the end of term's ID
collapse if NULL all annotations of a term placed in separate columns, if a value is specified (e.g., ";") then all annotations are collapsed in one line given that values

Value

Returns a table

Examples

data(Sharkey_2011)
data(HAO)
hao_obo<-onto_process(HAO, Sharkey_2011[,1], do.annot = FALSE)
ontofast <- new.env(parent = emptyenv())
ontofast$shiny_in <- make_shiny_in(hao_obo)
runOntoFast(is_a = c("is_a"), part_of = c("BFO:0000050"), shiny_in="shiny_in")
tb<-export_annotations(ontofast$shiny_in, annotations="manual", incl.names=TRUE,collapse="; ")
tb<-export_annotations(ontofast$shiny_in, annotations="auto", incl.names=TRUE,collapse="; ")
tb<-export_annotations(ontofast$shiny_in, annotations="auto", incl.names=TRUE,collapse=NULL)
save annotations in csv
write.csv(tb, "annotated_characters.csv")

export_cytoscape Export to Cytoscape format

Description

This function converts character annotations to Cytoscape format. It returns a table that can be saved as in csv format and imported in Cytoscape. In Cytoscape choose File -> Import -> Network -> File. Then assign columns to nodes and edges. Do not select columns that enumerate the tables' rows!

Usage

export_cytoscape(
 ontology,
 annotations = "auto",
 is_a = c("is_a"),
 part_of = c("BFO:0000050")
)
get_ancestors_chars

Arguments

- **ontology**: Ontology
- **annotations**: which annotations to use: "auto" means automatic annotations, "manual" means manual ones. Alternatively, any other list containing annotations can be specified.
- **is_a**: is_a
- **part_of**: part_of

Value

Returns a table

Examples

```r
data(HAO)
data(Sharkey_2011)
data(Sharkey_2011_annot)
ontology<-HAO
# processing ontology to incorporate character statements
ontology<-onto_process(ontology, Sharkey_2011[,1], do.annot = F)
# embedding manual annotations
ontology$annot_characters<-Sharkey_2011_annot
# exporting
cyto<-export_cytoscape(ontology, annotations = ontology$annot_characters,
is_a = c("is_a"), part_of = c("BFO:0000050"))
#write.csv(cyto, file="cyto.csv")
```

Description

Returns all ontology terms which are ancestors of a given character set

Usage

```r
get_ancestors_chars(ontology, char_id, annotations = "auto")
```

Arguments

- **ontology**: ontology_index object with character annotations included (ontology$annot_characters).
- **char_id**: IDs of character.
- **annotations**: which annotations to use: "auto" means automatic annotations, "manual" means manual ones. Alternatively, any other list element containing annotations can be specified.
get_descendants_chars

Description
Returns all characters located (associated) with given ontology term(s)

Usage
```
get_descendants_chars(ontology, annotations = "auto", terms, ...)
```

Arguments
- **ontology** ontology_index object.
- **annotations** which annotations to use: "auto" means automatic annotations, "manual" means manual ones. Alternatively, any other list element containing annotations can be specified.
- **terms** IDs of ontology terms for which descendants are queried.
- **...** other parameters for ontologyIndex::get_descendants() function

Value
The vector of character IDs.

Examples
```
data(HAO)
ontology<-HAO
ontology$terms_selected_id<-list('CHAR:1'=c("HAO:0000653"), 'CHAR:2'=c("HAO:0000653"))
get_descendants_chars(ontology, c("CHAR:1","CHAR:2"), annotations="manual")
```
get_onto_id
Get IDs for ontology names

Description
Returns IDs of ontology terms given terms’ names

Usage
`get_onto_id(vec_name, ontology, names = FALSE)`

Arguments
- `vec_name`
 names of terms
- `ontology`
 ontology
- `names`
 use element name

Value
vector of IDs.

Examples
```r
data(HAO)
vec_name=c("ventral mesofurco-profurcal muscle", "anatomical entity")
get_onto_id(vec_name, HAO)
```

get_onto_name
Get names for ontology IDs

Description
Returns names of ontology terms for ontology IDs

Usage
`get_onto_name(vec, onto, names = FALSE)`

Arguments
- `vec`
 ID or a vector of IDs
- `onto`
 ontology
- `names`
 use element name
Value

vector of names.

Examples

data(HAO)
get_onto_name("HAO:0002272", HAO)

Description

Anatomy ontology of Hymenoptera. This ontology was imported into R using get_OBO() function from ontologyIndex package (see the examples).

Usage

HAO

Format

List containing various ontological relationships and terms.

References

Hymenoptera Anatomy Ontology Portal

Examples

data(HAO)
you can also parse the original .obo file
get_OBO(system.file("data_onto", "HAO.obo", package = "ontoFAST"),
exttract_tags="everything", propagate_relationships = c("BFO:0000050", "is_a"))
list2edges

Convert list to edge matrix

Description

Takes a list of character annotations and creates an edge matrix comprising two columns: from and to. The list to table conversion can be done using ldply function from plyr package: `plyr::ldply(list, rbind)`.

Usage

`list2edges(annotated.char.list, col_order_inverse = FALSE)`

Arguments

- `annotated.char.list`: Character list with ontology annotations.
- `col_order_inverse`: The default creates the first columns consisting if character IDs and the second columns consisting of ontology annotations. The inverse order changes the columns order.

Value

Two-column matrix.

Examples

```r
annot_list<-list(CHAR:1=c("HAO:0000933", "HAO:0000958"), CHAR:2=c("HAO:0000833", "HAO:0000258"))
list2edges(annot_list)
# use plyr package and run
plyr::ldply(annot_list, rbind)
```

make_shiny_in

Make an ontology object for visualization

Description

Make an ontology object for visualization in a separate environment "ontofast"

Usage

`make_shiny_in(ontology)`

Arguments

- `ontology`: Ontology
onto_process

Value

Ontology index object named as shiny_in.

Examples

data(Sharkey_2011)
data(HAO)
hao_obo<-onto_process(HAO, Sharkey_2011[,1], do.annot = FALSE)
ontofast <- new.env(parent = emptyenv())
ontofast$shiny_in <- make_shiny_in(hao_obo)
runOntoFast(is_a = c("is_a"), part_of = c("BFO:0000050"), shiny_in="shiny_in")

onto_process

Shortcut to process characters and ontology

Description

This is a shortcut function to make characters and ontology suitable for visualization using onto-
FAST interactive tools.

Usage

onto_process(ontology, name_characters, do.annot = TRUE, ...)

Arguments

ontology Ontology
name_characters a vector of character names
do.annot specifies if you need to run automatic annotations or not
... other arguments for annot_all_chars() function

Value

Ontology index object named

Examples

data(Sharkey_2011)
data(HAO)
hao_obo<-onto_process(HAO, Sharkey_2011[,1], do.annot = FALSE)
ontofast <- new.env(parent = emptyenv())
ontofast$shiny_in <- make_shiny_in(hao_obo)
runOntoFast(is_a = c("is_a"), part_of = c("BFO:0000050"), shiny_in="shiny_in")
paths_sunburst

Return ontology paths for characters

Description

Returns ontology paths for all characters. These paths can be used to create a sunburst plot of ontological dependencies.

Usage

paths_sunburst(
 ontology,
 annotations = "auto",
 exclude.terms = NULL,
 include.terms = NULL,
 use.chars = TRUE,
 sep = "-
"
)

Arguments

- **ontology**: ontology_index object with character annotations included.
- **annotations**: which annotations to use: "auto" means automatic annotations, "manual" means manual ones. Alternatively, any other list element containing annotations can be specified.
- **exclude.terms**: list of terms to exclude
- **include.terms**: list of terms to include
- **use.chars**: indicate whether character ids should be included in output
- **sep**: separator used to delimit ontology terms

Value

Table.

Examples

ontology_partof=get_OBO(system.file("data_onto", "HAO.obo", package = "ontoFAST"),
 extract_tags="everything", propagate_relationships = c("BFO:0000050"))
ontology_partof<-onto_process(ontology_partof, Sharkey_2011[,1], do.annot = F)
ontology_partof$annot_characters<-Sharkey_2011$annot

tb<-paths_sunburst(ontology_partof,
 annotations = ontology_partof$annot_characters, exclude.terms=exclude_terms)
library(sunburst)
sunburst(tb)
runOntoFast Run ontoFAST interactively

Description

This function runs ontoFAST in interactive mode. Interactive mode allows character annotation and navigation through ontology network.

Usage

runOntoFast(
 is_a = c("is_a"),
 part_of = c("BFO:0000050"),
 nchar = "all",
 show.chars = TRUE,
 shiny_in = "shiny_in",
 file2save = "OntoFAST_shiny_in.RData",
 ...
)

Arguments

- **is_a** term for is_a relationships
- **part_of** term for part_of relationships
- **nchar** number of characters to show
- **show.chars** shows character statements
- **shiny_in** a name of ontology (shiny_in) object in "ontofast" enviroment
- **file2save** a name of the file to which shiny_in object is saved in interactive mode
- **...** other arguments

Value

runs ontoFAST interactively using Shiny.

Examples

data(Sharkey_2011)
data(HAO)
hao_obo<-onto_process(HAO, Sharkey_2011[,1], do.annot = FALSE)
ontofast <- new.env(parent = emptyenv())
ontofast$shiny_in <- make_shiny_in(hao_obo)
runOntoFast(is_a = c("is_a"), part_of = c("BFO:0000050"), shiny_in="shiny_in")
Description

Anatomy ontology of Hymenoptera + Dung beetles. This ontology was imported into R using `get_OBO()` function from ontologyIndex packages (see the examples). The added terms for dung beetle anatomy have prefix "SCR".

Usage

`Scarab`

Format

List containing various ontological relationships and terms.

References

Hymenoptera Anatomy Ontology Portal

Examples

data(Scarab)

you can also parse the original .obo file
get_OBO(system.file("data_onto", "HAO4scarabs.obo", package = "ontoFAST"),
extract_tags="everything", propagate_relationships = c("BFO:0000050", "is_a"))

Description

A table of characters and character states from Hymenoptera character matrix (Sharkey et al., 2011: Cladistics). The table contains 392 character statements.

Usage

`Sharkey_2011`
Format

A data table with 392 rows; each row is a character statement with character states:

CHARACTER STATEMENTS: Character statements

STATES states of the character

STATES

References

Examples

```r
data(Sharkey_2011)
# read .csv file directly
char_et_states<-read.csv(system.file("data_onto", "Sharkey_2011.csv",
package = "ontoFAST"), header=TRUE, stringsAsFactors = FALSE, na.strings = "")
```

Sharkey_2011_annot
Hymenoptera characters annotated with ontology terms

Description

List of character IDs and their ontology annotations. The characters are from Hymenoptera phylogeny (Sharkey et al., 2011: Cladistics). The ontology annotations are from Hymenoptera Anatomy Ontology (HAO).

Usage

Sharkey_2011_annot

Format

List containing characters and ontology terms.

References

Examples

Sharkey_2011_annot
syn_extract

Link synonyms with ontology terms

Description

Extracts and parses synonyms from ontology to make them readable and searchable.

Usage

```r
syn_extract(ontology, list_id = "synonym")
```

Arguments

- **ontology**: ontology_index object.
- **list_id**: ID of list where synonyms are stored.

Value

A vector of ontology IDs and synonym names.

Examples

```r
data(HAO)
syn_extract(HAO)
```

table2list

Converts a table to list

Description

Takes a table where each row consists of character ID + an ontology annotation and returns a list. Each character is assigned its own ID CHAR:XXXX.

Usage

```r
table2list(table, id_col = c(1), descendants_cols = c(2:ncol(table)))
```

Arguments

- **table**: A character table with annotations.
- **id_col**: A column ID corresponding to character.
- **descendants_cols**: IDs of columns corresponding to character annotations.
Value

The list.

Examples

converting Sharkey_2011 dataset to list of character states
table2list(Sharkey_2011)

Tarasov_2017_annot Dung beetle characters annotated with ontology terms

Description

List of character IDs and their ontology annotations. All 232 characters are from Scarabaeinae phylogeny (Tarasov, 2017: Zootaxa). The ontology annotations are from a modified version Hy-
menoptera Anatomy Ontology (HAO) that was enriched with additional terms (SCR:) to accommo-
date anatomy of the dung beetles.

Usage

Tarasov_2017_annot

Format

List containing characters and ontology terms.

References

Tarasov, S., 2017. A cybertaxonomic revision of the new dung beetle tribe Parachoriini (Coleoptera:
Scarabaeidae: Scarabaeinae) and its phylogenetic assessment using molecular and morphological
data. Zootaxa, 4329(2), pp.101-149. (Read)

Examples

Tarasov_2017_annot
Index

* datasets
 exclude_terms, 5
 HAO, 10
 Scarab, 15
 Sharkey_2011, 15
 Sharkey_2011_annot, 16
 Tarasov_2017_annot, 18

annot_all_chars, 2
annot_char_grep, 3
chars_per_term, 4
dges2list, 4
exclude_terms, 5
export_annotations, 5
export_cytoscape, 6

get_ancestors_chars, 7
get_descendants_chars, 8
get_onto_id, 9
get_onto_name, 9

HAO, 10
list2edges, 11
make_shiny_in, 11
onto_process, 12
paths_sunburst, 13
runOntoFast, 14

Scarab, 15
Sharkey_2011, 15
Sharkey_2011_annot, 16
syn_extract, 17

table2list, 17
Tarasov_2017_annot, 18