Package ‘opGMMassessment’

February 12, 2023

Type Package
Title Optimized Automated Gaussian Mixture Assessment
Version 0.3.5
Author Jorn Lotsch [aut,cre] (<https://orcid.org/0000-0002-5818-6958>),
 Sebastian Malkusch [aut] (<https://orcid.org/0000-0001-6766-140X>),
 Martin Maechler [ctb],
 Peter Rousseeuw [ctb],
 Anja Struyf [ctb],
 Mia Hubert [ctb],
 Kurt Hornik [ctb]
Maintainer Jorn Lotsch <j.lotsch@em.uni-frankfurt.de>
Description Necessary functions for optimized automated evaluation of the number and parameters of Gaussian mixtures in one-dimensional data. Various methods are available for parameter estimation and for determining the number of modes in the mixture. A detailed description of the methods can be found in Lotsch, J., Malkusch, S. and A. Ultsch. (2022) <doi:10.1016/j.imu.2022.101113>.
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
Imports AdaptGauss, DataVisualizations, DistributionOptimization,
 cluster, mixtools, grDevices, methods, foreach, stats, utils,
 rlang, ggplot2, parallel, caTools, dplyr, mclust, mixAK,
 multimode, NbClust, ClusterR, doParallel
NeedsCompilation no
Repository CRAN
Date/Publication 2023-02-12 19:02:07 UTC

R topics documented:

Chromatogram ... 2
Chromatogram

Example data of lysophosphatidic acids, LPA.

Description

Data set containing times of detector hits after chromatographic separation of five different lysophosphatidic acids (Classes CLs = LPA 16:0, 18:0, 18:3, 20:0, and 20:4).

Usage

data("Chromatogram")

Details

Size 1166 x 3, stored in Chromatogram$[Cls, Time, Lipids]

Examples

data(Chromatogram)
str(Chromatogram)

GMMplotGG

Plot of Gaussian mixtures

Description

The function plots the components of a Gaussian mixture and superimposes them on a histogram of the data.

Usage

GMMplotGG(Data, Means, SDs, Weights, BayesBoundaries,
SingleGausses = TRUE, Hist = FALSE, Bounds = TRUE, SumModes = TRUE, PDE = TRUE)
Arguments

Data the data as a vector.
Means a list of mean values for a Gaussian mixture.
SDs a list of standard deviations for a Gaussian mixture.
Weights a list of weights for a Gaussian mixture.
BayesBoundaries a list of Bayesian boundaries for a Gaussian mixture.
SingleGausses whether to plot the single Gaussian components as separate lines.
Hist whether to plot a histogram of the original data.
Bounds whether to plot the Bayesian boundaries for a Gaussian mixture as vertical lines.
SumModes whether to plot the summed-up mixes.
PDE whether to use the Pareto density estimation instead of the standard R density function.

Value

Returns a ggplot2 object.

p1 the plot of Gaussian mixtures.

Author(s)

Jorn Lotsch and Sebastian Malkusch

References

Examples

```r
# example 1
data(iris)
Means0 <- tapply(X = as.vector(iris[,3]), INDEX = as.integer(iris$Species), FUN = mean)
SDs0 <- tapply(X = as.vector(iris[,3]), INDEX = as.integer(iris$Species), FUN = sd)
Weights0 <- c(1/3, 1/3, 1/3)
GMM.Sepal.Length <- GMMplotGG(Data = as.vector(iris[3]),
Means = Means0,
SDs = SDs0,
Weights = Weights0,
Hist = TRUE)
```
Mixture3

Example Gaussian mixture data.

Description

Data set containing 1000 instances distributed according to a Gaussian mixture with \(m = [-10, 0, 10], s = [1, 2, 3], w = [0.07, 0.05, 0.88] \).

Usage

```r
data("Mixture3")
```

Details

Size 1000 x 1

Examples

```r
data(Mixture3)
str(Mixture3)
```

opGMMassessment

Gaussian mixture assessment

Description

The package provides the necessary functions for optimized automated evaluation of the number and parameters of Gaussian mixtures in one-dimensional data. It provides various methods for parameter estimation and for determining the number of modes in the mixture.

Usage

```r
opGMMassessment(Data, FitAlg = "MCMC", Criterion = "LR", MaxModes = 8, MaxCores =getOption("mc.cores", 2L), PlotIt = FALSE, KS = TRUE, Seed)
```

Arguments

- **Data**: the data as a vector.
- **FitAlg**: which fit algorithm to use: "ClusterRGMM" = GMM from ClusterR, "densityMclust" from mclust, "DO" from DistributionOptimization (slow), "MCMC" = NMixMCMC from mixAK, or "normalmixEM" from mixtools.
- **Criterion**: which criterion should be used to establish the number of modes from the best GMM fit: "AIC", "BIC", "FM", "GAP", "LR" (likelihood ratio test), "NbClust" (from NbClust), "SI" (Silverman).
- **MaxModes**: the maximum number of modes to be tried.
opGMMassessment

MaxCores the maximum number of processor cores used under Unix.
PlotIt whether to plot the fit directly (plot will be stored nevertheless).
KS perform a Kolmogorow-Smirnow test of the fit versus original distribution.
Seed optional seed parameter set internally.

Value

Returns a list of Gaussian modes.

Cls the classes to which the cases are assigned according to the Gaussian mode membership.
Means means of the Gaussian modes.
SDs standard deviations of the Gaussian modes.
Weights weights of the Gaussian modes.
Boundaries Bayesian boundaries between the Gaussian modes.
Plot Plot of the obtained mixture.
KS Results of the Kolmogorov-Smirnov test.

Author(s)

Jorn Lotsch and Sebastian Malkusch

References

Examples

```r
## example 1
data(iris)
opGMMassessment(Data = iris$Petal.Length, 
   FitAlg = "normalmixEM", 
   Criterion = "BIC", 
   PlotIt = TRUE, 
   MaxModes = 5, 
   MaxCores = 1, 
   Seed = 42)
```
Index

* Clustering
 opGMMassessment, 4
* GMMplotGG
 GMMplotGG, 2
* data visualization
 GMMplotGG, 2
* opGMMassessment
 opGMMassessment, 4

Chromatogram, 2
GMMplotGG, 2
Mixture3, 4
opGMMassessment, 4