Package ‘optiSolve’

March 10, 2020

Type Package
Title Linear, Quadratic, and Rational Optimization
Version 0.1.2
Date 2020-03-10
Author Robin Wellmann
Maintainer Robin Wellmann <r.wellmann@uni-hohenheim.de>
Depends R (>= 3.4)
Description Solver for linear, quadratic, and rational programs with linear, quadratic, and rational constraints. A unified interface to different R packages is provided. Optimization problems are transformed into equivalent formulations and solved by the respective package. For example, quadratic programming problems with linear, quadratic and rational constraints can be solved by augmented Lagrangian minimization using package 'alabama', or by sequential quadratic programming using solver 'slsqp'. Alternatively, they can be reformulated as optimization problems with second order cone constraints and solved with package 'cccp'.
License GPL-2
Imports Matrix, shapes, alabama, cccp, nloptr, MASS, methods, plyr, stringr, stats, Rcpp (>= 0.12.4)
RoxygenNote 7.0.2
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-10 07:10:09 UTC

R topics documented:

 optiSolve-package .. 2
 adjust ... 3
 cop ... 4
 lbcon ... 5
 lincon ... 7
 linfun ... 9
 myQ ... 10
Description

Solver for linear, quadratic, and rational programs with linear, quadratic, and rational constraints. A unified interface to different R packages is provided. Optimization problems are transformed into equivalent formulations and solved by the respective package. For example, quadratic programming problems with linear, quadratic and rational constraints can be solved by augmented Lagrangian minimization using package 'alabama', or by sequential quadratic programming using solver 'slsqp'. Alternatively, they can be reformulated as optimization problems with second order cone constraints and solved with package 'cccp'.

Details

The following steps are included in solving a constrained optimization problem (cop):

1) Define the objective with one of the following functions:

 - **linfun**: defines a linear objective function,
 - **quadfun**: defines a quadratic objective function,
 - **ratiofun**: defines a rational objective function.

2) Define the constraints by using the following functions:

 - **lincon**: defines linear equality and inequality constraints,
 - **quadcon**: defines quadratic constraints,
 - **ratiocon**: defines rational constraints,
 - **lbcon**: defines lower bounds for the variables,
 - **ubcon**: defines upper bounds for the variables.

3) Put the objective function and the constraints together to define the optimization problem:
adjust

```r
adjust
```

cop defines a constrained optimization problem.

4) Solve the optimization problem:

```r
solvecop solves a constrained optimization problem.
```

5) Check if the solution fulfils all constraints:

```r
validate checks if the solution fulfils all constraints, and calculates the values of the constraints.
```

Author(s)

Robin Wellmann

Maintainer: Robin Wellmann <r.wellmann@uni-hohenheim.de>

References

Description

Constraints and objective functions are adjusted so that they refer to a larger or smaller set of variables.

Usage

```r
adjust(x, ids)
```

Arguments

- **x**: Constraint or objective function of class "linFun", "linCon", "quadFun", "quadCon", "ratioFun", and "ratioCon".
- **ids**: Vector with ids of the variables.
Details

Constraints and objective functions are adjusted so that they refer to a larger or smaller set of variables. Additional variables do not affect the value of the constraint or objective function.

Value

A data frame (invisible) containing values and bounds of the constraints, the value of the objective function, and column valid which is TRUE if all constraints are fulfilled.

See Also

The main function for solving constrained programming problems is solvecop.

cop (Constrained Optimization Problem)

Description

Define a constrained optimization problem with a linear, quadratic, or rational objective function, and linear, quadratic, rational, and boundary constraints.

Usage

cop(f, max=FALSE, lb=NULL, ub=NULL, lc=NULL, ...)

Arguments

f Objective function, defined with function linfun, quadfun, or ratiofun.
max Logical value. Should the function be maximized? This is possible only for linear objective functions.
lb Lower bounds for the variables, defined with function lbcon.
ub Upper bounds for the variables, defined with function ubcon.
lc Linear inequality and equality constraints, defined with function lincon.
... Quadratic and rational inequality constraints, defined with functions quadcon and ratiocon.

Details

Define a constrained optimization problem with a linear, quadratic, or rational objective function, and linear, quadratic, rational, and boundary constraints. The optimization problem can be solved with function solvecop.
Value
An object of class COP, which may contain the following components

- **f**: List with S3-class "linFun", "quadFun", or "ratioFun", defining the objective function
- **max**: Logical value. Should the objective function be maximized?
- **lb**: List with S3-class "lbCon", defining lower bounds.
- **ub**: List with S3-class "ubCon", defining upper bounds.
- **lc**: List with S3-class "linCon", defining linear constraints
- **qc**: List with S3-class "quadCon", defining quadratic constraints
- **rc**: List with S3-class "ratioCon", defining rational constraints
- **x**: Vector with NAs
- **id**: Vector with names of the variables that are to be optimized
- **madeDefinite**: Logical variable indicating whether non-positive-semidefinite matrices have already been approximated by positive-definite matrices.

Author(s)
Robin Wellmann

See Also
The main function for solving constrained programming problems is solvecop.

lbcon | Lower Bounds

Description
Define lower bounds for the variables of the form
\[val \leq x. \]

Usage

lbcon(val=numeric(0), id=seq_along(val))

Arguments

- **val**: Numeric vector with lower bounds for the variables. If val is a single value, then this value will be used for all variables in vector id.
- **id**: Vector defining the names of the variables to which the constraint applies. Each variable name corresponds to one component of x. Variable names must be consistent across constraints.
Details

Define lower bounds for the variables of the form

\[\text{val} \leq x. \]

Vector \(x \) contains only the variables included in argument \(\text{id} \).

Value

An object of class \(\text{lbCon} \).

See Also

The main function for solving constrained programming problems is \(\text{solvecop} \).

Examples

Linear programming with linear and quadratic constraints

Example from animal breeding

The mean breeding value BV is maximized whereas the
mean kinship in the offspring \(x'Qx+d \) is restricted
Lower and upper bounds for females are identical, so
their contributions are not optimized.
Lower and upper bounds for some males are defined.

```r
data(phenotype)
data(myQ)
A <- t(model.matrix(~Sex-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==", "==")
Nf <- sum(phenotype$Sex=="female")
id <- phenotype$Indiv

lbval <- setNames(rep(0, length(id)), id)
ubval <- setNames(rep(NA, length(id)), id)
lbval[phenotype$Sex=="female"] <- 1/(2*Nf)
ubval[phenotype$Sex=="female"] <- 1/(2*Nf)
lbval["276000102379430"] <- 0.02
ubval["276000121507437"] <- 0.03

mycop <- cop(f = linfun(a=phenotype$BV, id=id, name="BV"),
             max = TRUE,
             lb = lbcon(lbval, id=id),
             ub = ubcon(ubval, id=id),
             lc = lincon(A=A, dir=dir, val=val, id=id),
             qc = quadcon(Q=myQ, d=0.001, val=0.045,
                          name="Kinship", id=rownames(myQ)))

res <- solvecop(mycop, solver="cccp2", quiet=FALSE)
```
lincon <- validate(mycop, res)

valid solver status
TRUE cccp2 optimal
#
Variable Value Bound OK?
--
BV 0.5501 max :
--
lower bounds all x >= lb : TRUE
upper bounds all x <= ub : TRUE
Sexfemale 0.5 == 0.5 : TRUE
Sexmale 0.5 == 0.5 : TRUE
Kinship 0.045 <= 0.045 : TRUE
--

res$x["276000102379430"]
res$x["276000121507437"]

lincon

Description
Define linear equality and inequality constraints of the form

\[Ax + d \text{dir} \text{val} \]

Usage

lincon(A, d=rep(0, nrow(A)), dir=rep("==", nrow(A)), val=rep(0, nrow(A)),
 id=1:ncol(A), use=rep(TRUE, nrow(A)), name=rownames(A))

Arguments

A Numeric matrix of the constraint coefficients.
d Numeric vector.
dir Character vector with the directions of the constraints. Each element must be
 one of "<", "=" and ">".
val Numeric vector with threshold values.
id Vector (if present), defining the names of the variables to which the constraint
 applies. Each variable name corresponds to one component of \(x \). Variable names
 must be consistent across constraints.
use Logical vector indicating the constraints to be included in the optimization prob-
 lem. If use[i]=FALSE, then linear constraint \(i \) does not affect the result, but the
 value of the linear function \(A[i,] x + d[i] \) will be reported by function validate.
name Vector with names of the constraints.
Details

Define linear inequality and equality constraints of the form

\[Ax + d \text{dirval} \]

(component wise). If parameter id is specified, then vector x contains only the indicated variables.

Value

An object of class linCon.

See Also

The main function for solving constrained programming problems is solvecop.

Examples

Quadratic programming with linear constraints
Example from animal breeding
The mean kinship in the offspring x'Qx+d is minimized
and the mean breeding value is restricted.

```r
data(phenotype)
data(myQ)
A <- t(model.matrix(~Sex+BV-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5, 0.40)
dir <- c("==","==">=")
mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship", id=rownames(myQ)),
               lb = lbcon(0, id=phenotype$Indiv),
               ub = ubcon(NA, id=phenotype$Indiv),
               lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))
res <- solvecop(mycop, solver="cccp", quiet=FALSE)
validate(mycop, res)
```

```r
# valid solver status
# TRUE  cccp optimal
#
# Variable Value Bound OK?
# -------------------------------
# Kinship 0.0322 min :
# -------------------------------
# lower bounds all x >= lb : TRUE
# Sexfemale 0.5 == 0.5 : TRUE
# Sexmale 0.5 == 0.5 : TRUE
# BV 0.4 >= 0.4 : TRUE
# -------------------------------
```
linfun

Linear Objective Function

Description

Define a linear objective function of the form

\[f(x) = a'x + d \]

Usage

```
linfun(a, d=0, id=1:length(a), name="lin.fun")
```

Arguments

- `a` Numeric vector of the coefficients.
- `d` Numeric value.
- `id` Vector defining the names of the variables to which the function applies. Each variable name corresponds to one component of `x`. Variable names must be consistent across constraints.
- `name` Name for the objective function.

Details

Define linear objective function of the form

\[f(x) = a'x + d \]

Value

An object of class `linFun`.

See Also

The main function for solving constrained programming problems is `solvecop`.
Linear programming with linear and quadratic constraints
Example from animal breeding
The mean breeding value BV is maximized whereas the
mean kinship in the offspring x'Qx+d is restricted

```r
data(phenotype)
data(myQ)
A <- t(model.matrix(~Sex-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==","==")
mycop <- cop(f = linfun(a=phenotype$BV, id=phenotype$Indiv, name="BV"),
              max= TRUE,
              lb = lbcon(0, id=phenotype$Indiv),
              ub = ubcon(NA, id=phenotype$Indiv),
              lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv),
              qc = quadcon(Q=myQ, d=0.001, val=0.035, name="Kinship", id=rownames(myQ)))
res <- solvecop(mycop, solver="cccp2", quiet=FALSE)
validate(mycop, res)
```

valid solver status
TRUE cccp2 optimal

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Bound</th>
<th>OK?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>0.7667</td>
<td>max</td>
<td></td>
</tr>
<tr>
<td>lower bounds all x (\geq) lb</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexfemale</td>
<td>0.5</td>
<td>==</td>
<td>0.5</td>
</tr>
<tr>
<td>Sexmale</td>
<td>0.5</td>
<td>==</td>
<td>0.5</td>
</tr>
<tr>
<td>Kinship</td>
<td>0.035</td>
<td>(\leq)</td>
<td>0.035</td>
</tr>
</tbody>
</table>

myQ

Kinship Matrix

Description

Kinship matrix of the cattle listed in data frame `phenotype`. This is an (almost) positive semidefinite matrix.
myQ1

Usage

`data(myQ)`

Format

Matrix

Description

Matrix needed to compute kinship at native alleles for the cattle listed in data frame `phenotype`. This is an (almost) positive semidefinite matrix.

Usage

`data(myQ1)`

Format

Matrix

myQ2

Kinship Matrix

Description

Matrix needed to compute kinship at native alleles for the cattle listed in data frame `phenotype`. This is an (almost) positive semidefinite matrix.

Usage

`data(myQ2)`

Format

Matrix
phenotype

Phenotypes of Genotyped Cattle

<table>
<thead>
<tr>
<th>Description</th>
<th>Phenotypes of cattle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td><code>data(phenotype)</code></td>
</tr>
<tr>
<td>Format</td>
<td>Data frame containing information on genotyped cattle. The columns contain the IDs of the individuals (<code>Indiv</code>), simulated breeding values (<code>BV</code>), simulated sexes (<code>Sex</code>), and genetic contributions from other breeds (<code>MC</code>).</td>
</tr>
</tbody>
</table>

print.copValidation

Print Validation of a Solution

<table>
<thead>
<tr>
<th>Description</th>
<th>Print the validation results for the solution of an optimization problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td><code>## S3 method for class 'copValidation'</code> \n</td>
</tr>
<tr>
<td>Arguments</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Details</td>
<td>Print the validation results for the solution of an optimization problem.</td>
</tr>
</tbody>
</table>
Value

A list of class copValidation (invisible) with components:

summary Data frame containing one row for each constraint with the value of the constraint in column Val, the bound for the constraint in column Bound, and column OK states if the constraint is fulfilled. The value of the objective function is shown in the first row. Additional rows contain the values of disabled constraints.

info Data frame with component valid indicating if all constraints are fulfilled, component solver containing the name of the solver used for optimization, and component status describing the solution as reported by the solver.

var Data frame with the values of the objective function and constraints at the optimum.

obj.fun Named numeric value with value and name of the objective function at the optimum.

See Also

The main function for solving constrained programming problems is solvecop.

Examples

Quadratic programming with linear constraints
Example from animal breeding
where the mean kinship in the offspring is minimized

data(phenotype)
data(myQ)

A <- t(model.matrix(~Sex+BV-1, data=phenotype))
rownames(A) <- c("male.cont","female.cont","Breeding.Value")
val <- c(0.5, 0.5, 0.40)
dir <- c("==","==">="

mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship", id=rownames(myQ)),
 lb = lbcon(0, id=phenotype$Indiv),
 ub = ubcon(NA, id=phenotype$Indiv),
 lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))

res <- solvecop(mycop, solver="cccp", quiet=FALSE, trace=FALSE)

head(res$x)

Evaluation <- validate(mycop, res, quiet=TRUE)

print(Evaluation)

valid solver status
TRUE cccp optimal
Variable Value Bound OK?

Kinship 0.0322 min :

lower bounds all x >= lb : TRUE
male.cont 0.5 == 0.5 : TRUE
female.cont 0.5 == 0.5 : TRUE
Breeding.Value 0.4 >= 0.4 : TRUE

Description

Define a quadratic constraint of the form

\[x'Qx + a'x + d \leq val \]

Usage

```r
quadratic(Q, a=rep(0, nrow(Q)), d=0, dir="\leq", val, id=1:nrow(Q), name="quadratic", use=TRUE)
```

Arguments

- `Q` Numeric symmetric matrix of the constraint coefficients.
- `a` Numeric vector.
- `d` Numeric value.
- `dir` Character string "\leq".
- `val` Numeric threshold value, which is the upper bound for the quadratic function.
- `id` Vector defining the names of the variables to which the constraint applies. Each variable name corresponds to one component of \(x \). Variable names must be consistent across constraints.
- `name` Name for the constraint.
- `use` Logical value indicating if the constraint should be included in the optimization problem. If `use=FALSE`, then constraint does not affect the result, but the value of the quadratic function will be reported by function `validate`.

Details

Define a quadratic inequality constraint of the form

\[x'Qx + a'x + d \leq val. \]

Vector \(x \) contains only the variables included in argument `id`.
Value

An object of class quadCon.

See Also

The main function for solving constrained programming problems is `solvecop`.

Examples

```r
### Linear programming with linear and quadratic constraints ###
### Example from animal breeding ###
### The mean breeding value BV is maximized whereas the ###
### mean kinship in the offspring x'Qx+d is restricted ###

data(phenotype)
data(myQ)

A <- t(model.matrix(~Sex-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==","==")

mycop <- cop(f = linfun(a=phenotype$BV, id=phenotype$Indiv, name="BV"),
             max= TRUE,
             lb = lbcon(0, id=phenotype$Indiv),
             ub = ubcon(NA, id=phenotype$Indiv),
             lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv),
             qc = quadcon(Q=myQ, d=0.001, val=0.035, name="Kinship", id=rownames(myQ)))

res <- solvecop(mycop, solver="cccp2", quiet=FALSE)
validate(mycop, res)

# valid solver status
# TRUE  cccp2 optimal
#
# Variable  Value  Bound  OK?
# -------------------------------------
# BV  0.7667 max :
# -------------------------------------
# lower bounds all x >= lb : TRUE
# Sexfemale 0.5  == 0.5 : TRUE
# Sexmale 0.5  == 0.5 : TRUE
# Kinship 0.035 <= 0.035 : TRUE
# -------------------------------------
```
quadfun Quadratic Objective Function

Description

Define a quadratic objective function of the form

\[f(x) = x^T Q x + a^T x + d \]

Usage

quadfun(Q, a=rep(0, nrow(Q)), d=0, id=1:nrow(Q), name="quad.fun")

Arguments

Q Numeric symmetric matrix of the constraint coefficients.
a Numeric vector.
d Numeric value.
id Vector (if present), defining the names of the variables to which the function applies. Each variable name corresponds to one component of \(x \). Variable names must be consistent across constraints.
name Name for the objective function.

Details

Define a quadratic objective function of the form

\[f(x) = x^T Q x + a^T x + d \]

Value

An object of class quadFun.

See Also

The main function for solving constrained programming problems is solvecop.

Examples

```r
### Quadratic programming with linear constraints ###
### Example from animal breeding ###
### The mean kinship in the offspring x' Q x + d is minimized ###
### and the mean breeding value is restricted. ###
data(phenotype)
data(myQ)
```
A <- t(model.matrix(~Sex+BV-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5, 0.40)
dir <- c("==","==",">=")

cop(f = quadfun(Q=myQ, d=0.001, name="Kinship", id=rownames(myQ)),
 lb = lbcon(0, id=phenotype$Indiv),
 ub = ubcon(NA, id=phenotype$Indiv),
 lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))

t <- solvecop(mycop, solver="cccp", quiet=FALSE)

validate(mycop, t)

valid solver status
TRUE cccp optimal
#
Variable Value Bound OK?

Kinship 0.0322 min :

lower bounds all x >= lb : TRUE
Sexfemale 0.5 == 0.5 : TRUE
Sexmale 0.5 == 0.5 : TRUE
BV 0.4 >= 0.4 : TRUE

ratiocon

Rational Constraint

Description

Define a rational constraint of the form

$$\frac{x^TQ_1x + a_1^T x + d_1}{x^TQ_2x + a_2^T x + d_2} \leq val$$

Usage

```r
ratiocon(Q1, a1=rep(0, nrow(Q1)), d1=0, Q2, a2=rep(0, nrow(Q2)), d2=0, dir="<="\n           val, id=1:nrow(Q1), name="rational", use=TRUE)
```

Arguments

- **Q1**: Numeric quadratic matrix.
- **a1**: Numeric vector.
- **d1**: Numeric value.
- **Q2**: Numeric quadratic matrix.
- **a2**: Numeric vector.
d2
Numeric value.
dir
Character string "<=".
val
Numeric threshold value, which is the upper bound for the rational function.
id
Vector defining the names of the variables to which the constraint applies. Each variable name corresponds to one component of \(x \). Variable names must be consistent across constraints.
name
Name for the constraint.
use
Logical value indicating if the constraint should be included in the optimization problem. If use=FALSE, then the constraint does not affect the result, but the value of the rational function will be reported by function validate.

Details
Define a rational inequality constraint of the form

\[
x^T Q_1 x + a^T_1 x + d_1 \\
\frac{x^T Q_2 x + a^T_2 x + d_2}{x^T Q_2 x + a^T_2 x + d_2} \leq val.
\]

Vector \(x \) contains only the variables included in argument \(id \).

For rational constraints it is required that there is a linear constraint ensuring that \(\text{sum}(x) \) is a constant. Furthermore, the denominator must be non-negative.

Value
An object of class ratioCon.

See Also
The main function for solving constrained programming problems is solvecop.

Examples

```R
### Constrained optimization with rational objective
### function and linear and quadratic constraints
### Example from animal breeding
### The mean kinship at native alleles in the offspring is minimized
### The mean breeding value and the mean kinship are constrained

data(phenotype)
data(myQ)
data(myQ1)
data(myQ2)

A <- t(model.matrix(~Sex+BV+MC-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5, 0.4, 0.5)
dir <- c("==", "==", ">=", "<=")
```
mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship", id=rownames(myQ)),
 lb = lbcon(0, id=phenotype$Indiv),
 ub = ubcon(NA, id=phenotype$Indiv),
 lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv),
 rc = ratiocon(Q1=myQ1, Q2=myQ2, d1=0.0004, d2=0.00025, val=0.040,
 id=rownames(myQ1), name="nativeKinship")
)

res <- solve(mycop, solver="slsqp", quiet=FALSE)

validate(mycop, res)

valid solver status
TRUE slsqp successful completion
#
Variable Value Bound OK?

Kinship 0.0324 min :

lower bounds all x >= lb : TRUE
Sexfemale 0.5 == 0.5 : TRUE
Sexmale 0.5 == 0.5 : TRUE
BV 0.4 >= 0.4 : TRUE
MC 0.4668 <= 0.5 : TRUE
nativeKinship 0.04 <= 0.04 : TRUE

cop

Rational Objective Function

Description

Define a rational objective function of the form

\[f(x) = \frac{x^T Q_1 x + a_1 x + d_1}{x^T Q_2 x + a_2 x + d_2} \]

Usage

```r
cop(Q1, a1=rep(0, nrow(Q1)), d1=0, Q2, a2=rep(0, nrow(Q2)), d2=0,
    id=1:nrow(Q1), name="ratio.fun")
```

Arguments

- `Q1` Numeric quadratic matrix.
- `a1` Numeric vector.
- `d1` Numeric value.
- `Q2` Numeric quadratic matrix.
a2 Numeric vector.
d2 Numeric value.
id Vector defining the names of the variables to which the constraint applies. Each variable name corresponds to one component of x. Variable names must be consistent across constraints.
name Name for the constraint.

Details
Define a rational objective function of the form
\[
f(x) = \frac{x^T Q_1 x + a_1 x + d_1}{x^T Q_2 x + a_2 x + d_2}
\]
Reasonable bounds for the variables should be provided because the function can have several local optima. Solvers 'slsqp' (the default) and 'alabama' are recommended.

Value
An object of class ratioFun.

See Also
The main function for solving constrained programming problems is solvecop.

Examples

```r
### Constrained optimization with rational objective function and linear and quadratic constraints ###
### Example from animal breeding ###
### The mean kinship at native alleles in the offspring is minimized ###
### The mean breeding value and the mean kinship are constrained ###

data(phenotype)
data(myQ)
data(myQ1)
data(myQ2)

Ax <- t(model.matrix(~Sex+BV+MC-1, data=phenotype))
Ax[,1:5]
val <- c(0.5, 0.5, 0.4, 0.5 )
dir <- c("==", "==", ">=", "<=")
mycop <- cop(f = ratiofun(Q1=myQ1, Q2=myQ2, d1=0.0004, d2=0.00025, id=rownames(myQ1), name="nativeKinship"),
        lb = lbcon(0, id=phenotype$Indiv),
        ub = ubcon(NA, id=phenotype$Indiv),
        lc = lincon(A=Ax, dir=dir, val=val, id=rownames(myQ1),
                   name="Kinship", id=rownames(myQ1))
```
solvecop

```r
res <- solvecop(mycop, quiet=FALSE)
validate(mycop, res)
```

valid solver status
TRUE slsqp successful completion

Variable Value Bound OK?

nativeKinship 0.0366 min :

lower bounds all x >= lb : TRUE
Sexfemale 0.5 == 0.5 : TRUE
Sexmale 0.5 == 0.5 : TRUE
BV 0.4 >= 0.4 : TRUE
MC 0.4963 <= 0.5 : TRUE
Kinship 0.035 <= 0.035 : TRUE

solvecop *Solve a Constrained Optimization Problem*

Description

Solve a constrained optimization problem with a linear, quadratic, or rational objective function, and linear, quadratic, rational, and boundary constraints.

Usage

```r
solvecop(op, solver="default", make.definite=FALSE, X=NULL, quiet=FALSE, ...)
```

Arguments

- `op`: An optimization problem, usually created with function `cop`.
- `solver`: Character string with the name of the solver. Available solvers are “alabama”, ”cccp“, ”cccp2“, and ”slsqp“. Solver “csdp” is temporarily disabled because the package Rcsdp has been removed from Cran. The default means that the solver is chosen automatically. The solvers are described in the Details section.
- `make.definite`: Logical variable indicating whether non-positive-semidefinite matrices should be approximated by positive-definite matrices. This is always done for solvers that are known not to converge otherwise.
- `X`: Starting vector of parameter values (not needed). Any initial vector, even those violating linear inequality constraints, may be specified. Ignored by solvers “cccp” and “csdp”. For “slsqp” the lower and upper bounds must not be violated.
- `quiet`: Logical variable indicating whether output to console should be switched off.
... Tuning parameters of the solver. The available parameters depend on the solver and will be printed when the function is used with `quiet=FALSE`. In section Details it is mentioned where descriptions of these parameters can be found.

Details

Solve a constrained optimization problem with a linear, quadratic, or rational objective function, and linear, quadratic, rational, and boundary constraints.

Solver

"alabama": The augmented lagrangian minimization algorithm `auglag` from package `alabama` is called. The method combines the objective function and a penalty for each constraint into a single function. This modified objective function is then passed to another optimization algorithm with no constraints. If the constraints are violated by the solution of this sub-problem, then the size of the penalties is increased and the process is repeated. The default methods for the unconstrained optimization in the inner loop is the quasi-Newton method called `BFGS`. Tuning parameters used for the outer loop are described in the details section of the help page of function `auglag`. Tuning parameters used for the inner loop are described in the details section of the help page of function `optim`.

"cccp" and "cccp2": Function `cccp` from package `cccp` for solving cone constrained convex programs is called. For solver "cccp", quadratic constraints are converted into second order cone constraints, which requires to approximate non-positive-semidefinite matrices by positive-definite matrices. For solver "cccp2", quadratic constraints are defined by functions. The implemented algorithms are partially ported from CVXOPT. Tuning parameters are those from function `ctrl`.

"slsqp": The sequential (least-squares) quadratic programming (SQP) algorithm `slsqp` for gradient-based optimization from package `nloptr`. The algorithm optimizes successive second-order (quadratic/least-squares) approximations of the objective function, with first-order (affine) approximations of the constraints. Available parameters are described in `nlopts`.

Value

A list with the following components:

- `x` Named numeric vector with parameters optimizing the objective function while satisfying constraints, if convergence is successful.
- `solver` Name of the solver used for optimization.
- `status` Message indicating type of convergence as reported by the solver.

Author(s)

Robin Wellmann

Examples

```r
### Quadratic programming with linear constraints
### Example from animal breeding
### where the mean kinship in the offspring is minimized
```
data(phenotype)
data(myQ)

A <- t(model.matrix(~Sex+BV-1, data=phenotype))
rownames(A) <- c("male.cont", "female.cont", "Breeding.Value")
val <- c(0.5, 0.5, 0.40)
dir <- c("==", "==", ">=")

mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship", id=rownames(myQ)),
 lb = lbcon(0, id=phenotype$Indiv),
 ub = ubcon(NA, id=phenotype$Indiv),
 lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))

res <- solveCop(mycop, solver="cccp", quiet=FALSE, trace=FALSE)

head(res$x)

hist(res$x, breaks=50, xlim=c(0,0.5))

Evaluation <- validate(mycop, res)

Evaluation$summary
Evaluation$info
Evaluation$obj.fun
Evaluation$var
EvaluationvarBreeding.Value

ubcon

Upper Bounds

Description

Define upper bounds for the variables of the form

\[x \leq val. \]

Usage

`ubcon(val=numeric(0), id=seq_along(val))`

Arguments

- **val**

 Numeric vector with upper bounds for the variables. If `val` is a single value, then this value will be used for all variables in vector `id`.
id Vector defining the names of the variables to which the constraint applies. Each variable name corresponds to one component of x. Variable names must be consistent across constraints.

Details

Define upper bounds for the variables of the form

\[x \leq val. \]

Vector x contains only the variables included in argument id.

Value

An object of class ubCon.

See Also

The main function for solving constrained programming problems is `solvecop`.

Examples

```r
### Linear programming with linear and quadratic constraints ###
### Example from animal breeding ###
### The mean breeding value BV is maximized whereas the ###
### mean kinship in the offspring x'Qx+d is restricted ###
### Lower and upper bounds for females are identical, so ###
### their contributions are not optimized. ###
### Lower and upper bounds for some males are defined. ###

data(phenotype)
data(myQ)

A <- t(model.matrix(~Sex-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==", "==")
Nf <- sum(phenotype$Sex=="female")
id <- phenotype$Indiv

lbval <- setNames(rep(0, length(id)), id)
ubval <- setNames(rep(NA, length(id)), id)

lbval[phenotype$Sex=="female"] <- 1/(2*Nf)
ubval[phenotype$Sex=="female"] <- 1/(2*Nf)

lbval["276000102379430"] <- 0.02
ubval["276000102379437"] <- 0.03

mycop <- cop(f = linfun(a=phenotype$BV, id=id, name="BV"),
             max= TRUE,
             lb = lbcon(lbval, id=id),
             ...)```
validate

\[ ub = ubcon(ubval, id=id), \]
\[ lc = lincon(A=A, dir=dir, val=val, id=id), \]
\[ qc = quadcon(Q=myQ, d=0.001, val=0.045, \]
\[ \quad name="Kinship", id=rownames(myQ)) \]

res <- solvecop(mycop, solver="cccp2", quiet=FALSE)

Evaluation <- validate(mycop, res)

# valid solver status
# TRUE cccp2 optimal
#
# Variable Value Bound OK?
# -------------------------------------
# BV 0.5501 max
# -------------------------------------
# lower bounds all x >= lb : TRUE
# upper bounds all x <= ub : TRUE
# Sexfemale 0.5 == 0.5 : TRUE
# Sexmale 0.5 == 0.5 : TRUE
# Kinship 0.045 <= 0.045 : TRUE
# -------------------------------------

validate 

Validate a Solution

Description

Validate a solution of an optimization problem.

Usage

validate(op, sol, quiet=FALSE, tol=0.0001)

Arguments

op The constrained optimization problem defined with function cop.
sol The solution of the optimization problem obtained with function solvecop.
quiet Logical variable indicating whether output to console should be switched off.
tol The tolerance. A constraint is considered fulfilled even if the value exceeds (falls below) the threshold value by tol.

Details

Validate a solution of an optimization problem by checking if the constraints are fulfilled.
Values and bounds of the constraints are printed.
Value

A list of class copValidation with components:

summary Data frame containing one row for each constraint with the value of the constraint in column `Val`, the bound for the constraint in column `Bound`, and column `OK` states if the constraint is fulfilled. The value of the objective function is shown in the first row. Additional rows contain the values of disabled constraints.

info Data frame with component valid indicating if all constraints are fulfilled, component solver containing the name of the solver used for optimization, and component status describing the solution as reported by the solver.

var Data frame with the values of the objective function and constraints at the optimum.

obj.fun Named numeric value with value and name of the objective function at the optimum.

Author(s)

Robin Wellmann

See Also

The main function for solving constrained programming problems is `solvecop`. 
Index

*Topic datasets
  myQ, 10
  myQ1, 11
  myQ2, 11
  phenotype, 12

*Topic package
  optiSolve-package, 2

adjust, 3
auglag, 22
cccp, 22
cop, 3, 4, 21, 25
ctrl, 22
lbcon, 2, 4, 5
lincon, 2, 4, 7
linfun, 2, 4, 9
myQ, 10
myQ1, 11
myQ2, 11
nl.opts, 22
optim, 22
optiSolve (optiSolve-package), 2
optiSolve-package, 2
phenotype, 10, 11, 12
print (print.copValidation), 12
print.copValidation, 12
quadcon, 2, 4, 14
quadfun, 2, 4, 16
ratiocon, 2, 4, 17
ratiofun, 2, 4, 19
slsqp, 22
solvecop, 3–6, 8, 9, 13, 15, 16, 18, 20, 21, 24–26
ubcon, 2, 4, 23
validate, 3, 7, 12, 14, 18, 25

27