Package ‘ordinalForest’

February 6, 2019

Type Package

Title Ordinal Forests: Prediction and Variable Ranking with Ordinal Target Variables

Version 2.3-1

Date 2019-02-06

Author Roman Hornung

Maintainer Roman Hornung <hornung@ibe.med.uni-muenchen.de>

Imports Rcpp (>= 0.11.2), combinat, ggplot2, nnet

LinkingTo Rcpp

Description The ordinal forest (OF) method allows ordinal regression with high-dimensional and low-dimensional data. After having constructed an OF prediction rule using a training dataset, it can be used to predict the values of the ordinal target variable for new observations. Moreover, by means of the (permutation-based) variable importance measure of OF, it is also possible to rank the covariates with respect to their importances in the prediction of the values of the ordinal target variable.

OF is presented in Hornung (2019).

The main functions of the package are: ordfor() (construction of OF) and predict.ordfor() (prediction of the target variable values of new observations).

References:

License GPL-2

Encoding UTF-8

RoxygenNote 6.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-02-06 11:20:03 UTC

R topics documented:

ordinalForest-package
Description

The ordinal forest (OF) method allows ordinal regression with high-dimensional and low-dimensional data. After having constructed an OF prediction rule using a training dataset, it can be used to predict the values of the ordinal target variable for new observations. Moreover, by means of the (permutation-based) variable importance measure of OF, it is also possible to rank the covariates with respect to their importances in the prediction of the values of the ordinal target variable. OF is presented in Hornung (2019).

Details

For a brief, practice-orientated introduction to OF see: ordfor

The main functions are: ordfor (construction of OF prediction rules) and predict.ordfor (prediction of the values of the target variable values of new observations).

NOTE: ordinalForest uses R code and C++ code from the R package ranger for the involved regression forests. ordinalForest does, however, not depend on ranger or import ranger, because it was necessary to copy the C++ code and parts of the R code from ranger to ordinalForest instead. The reason for this is that ranger’s C++ code had to be altered in order to calculate a suitable permutation variable importance measure for ordinal forests.

References

Examples

```r
# Not run:
# Illustration of the key functionalities of the package:
#*******************************************************************************

# Load example dataset:
data(hearth)

data(hearth)$Class

dim(hearth)```
### Description

This data includes 294 patients undergoing angiography at the Hungarian Institute of Cardiology in Budapest between 1983 and 1987.

### Format

A data frame with 294 observations, ten covariates and one ordinal target variable.
Details

The variables are as follows:

- **age**: numeric. Age in years
- **sex**: factor. Sex (1 = male; 0 = female)
- **chest_pain**: factor. Chest pain type (1 = typical angina; 2 = atypical angina; 3 = non-anginal pain; 4 = asymptomatic)
- **trestbps**: numeric. Resting blood pressure (in mm Hg on admission to the hospital)
- **chol**: numeric. Serum cholesterol in mg/dl
- **fbs**: factor. Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
- **restecg**: factor. Resting electrocardiographic results (1 = having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV); 0 = normal)
- **thalach**: numeric. Maximum heart rate achieved
- **exang**: factor. Exercise induced angina (1 = yes; 0 = no)
- **oldpeak**: numeric. ST depression induced by exercise relative to rest
- **class**: factor. Ordinal target variable - severity of coronary artery disease (determined using angiograms) (1 = no disease; 2 = degree 1; 3 = degree 2; 4 = degree 3; 5 = degree 4)

The original openML dataset was pre-processed in the following way:

1. The variables were re-named according to the description given on openML.
2. The missing values which were coded as ",-9" were replaced by NA values.
3. The variables slope, ca, and thal were excluded, because these featured too many missing values.
4. The categorical covariates were transformed into factors.
5. There were 6 restecg values of "2" which were replaced by "1".
6. The missing values were imputed: The missing values of the numerical covariates were replaced by the means of the corresponding non-missing values. The missing values of the categorical covariates were replaced by the modes of the corresponding non-missing values.

Source

OpenML: data.name: heart-h, data.id: 1565, link: [https://www.openml.org/d/1565/](https://www.openml.org/d/1565/)

References

**Examples**

```r
data(hearth)
table(hearth$Class)
dim(hearth)
head(hearth)
```

**Description**

Constructs prediction rules using the ordinal forest (OF) method presented in Hornung (2019). The following tasks can be performed using OF: 1) Predicting the values of an ordinal target variable for new observations based on covariate values (see `predict.ordfor`); 2) Ranking the importances of the covariates with respect to predicting the values of the ordinal target variable.

The default values for the hyperparameters `nsets`, `ntreeperdiv`, `ntreefinal`, `npermtrial`, and `nbest` were found to be in a reasonable range in Hornung (2019) and it should not be necessary to alter these values in most situations.

For details on OFs see the 'Details' section below.

**Usage**

```r
ordfor(depvarL dataL nsets 	1PPPL ntreeperdiv 	1PPL
ntreefinal 	UPPP perffunction 	c("equal"L "proportional"L
"oneclass"L "custom"IL classimpL classweightsL nbest 	1PL
naive 	falseL numNthreads 	nullL npermtrial 	UPPP
permperdefault 	falseL mtry 	nullL minNnodeNsize 	nullL
replace 	trueL sampleNfraction 	ifelse(replaceL 1L PN6SRIL
always.split.variables = NULL, keep.inbag = FALSE)
```

**Arguments**

- **depvar** character. Name of the dependent variable in `data`.
- **data** data.frame. Data frame containing the covariates and a factor-valued ordinal target variable. The order of the levels of the latter has to correspond to the order of the ordinal classes of the target variable.
- **nsets** integer. Number of score sets tried prior to the approximation of the optimal score set.
- **ntreeperdiv** integer. Number of trees in the smaller regression forests constructed for each of the `nsets` different score sets tried.
- **ntreefinal** integer. Number of trees in the larger regression forest constructed using the optimized score set (i.e., the OF).
**perffunction** character. Performance function. The default is "equal". See 'Details', subsection 'Performance functions' below and **perff**.

**classimp** character. Class to prioritize if perffunction="oneclass".

**classweights** numeric. Needed if perffunction="custom": vector of length equal to the number of classes. Class weights - the higher the weight w_j assigned to class j is chosen, the higher the accuracy of the OF with respect to discerning observations in class j from observations not in class j will tend to be.

**nbest** integer. Number of best score sets used to calculate the optimized score set.

**naive** boolean. If set to TRUE, a naive ordinal forest is constructed, that is, the score set used for the classes of the target variable is not optimized, but instead the following (naive) scores are used: 1,2,3,... Note that it is strongly recommended to set naive=FALSE (default). The only advantage of choosing naive=TRUE is that the computational burden is reduced. However, the precision of the predictions of a prediction rule obtained using naive ordinal forest can be considerably worse than that of a corresponding prediction rule obtained using ordinal forest.

**num.threads** integer. Number of threads. Default is number of CPUs available (passed to the modified ranger code).

**npermtrial** integer. Number of permutations of the class width ordering to try for the 2th to the nsetsth score set tried prior to the calculation of the optimized score set.

**permperdefault** boolean. If set to TRUE, npermtrial different permutations will per default be tried for the 2th to the nsetsth score set used during the optimization - also for J! < nsets. Default is FALSE.

**mtry** integer. Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.

**min.node.size** integer. Minimal node size. Default is 5.

**replace** boolean. Sample with replacement. Default is TRUE.

**sample.fraction** numeric. Fraction of observations to sample. Default is 1 for sampling with replacement and 0.632 for sampling without replacement.

**always.split.variables** character. Character vector with variable names to be always selected in addition to the mtry variables tried for splitting.

**keep.inbag** boolean. Save how often observations are in-bag in each tree. Default is FALSE.

---

**Details**

**Introduction:** The ordinal forest (OF) method allows ordinal regression with high-dimensional and low-dimensional data. After having constructed an OF prediction rule using a training dataset, it can be used to predict the values of the ordinal target variable for new observations. Moreover, by means of the (permutation-based) variable importance measure of OF, it is also possible to rank the covariates with respect to their importances in the prediction of the values of the ordinal target variable.

OF is presented in Hornung (2019). See the latter publication for details on the method. In the following, a brief, practice-orientated introduction to OF is provided.
Methods: The concept of OF is based on the following assumption: There exists a (possibly latent) refined continuous variable $y^*$ underlying the observed ordinal target variable $y$ ($y$ in $\{1, \ldots, J\}$, $J$ number of classes), where $y^*$ determines the values of $y$. The functional relationship between $y^*$ and $y$ takes the form of a monotonically increasing step function. Depending on which of $J$ intervals $[c_1, c_2]$, $[c_2, c_3]$, $\ldots$, $[c_J, c_{J+1}]$ contains the value of $y^*$, the ordinal target variable $y$ takes a different value.

In situations in which the values of the continuous target variable $y^*$ are known, they can be used in regression techniques for continuous response variables. The OF method is, however, concerned with settings in which only the values of the classes of the ordinal target variable are given. The main idea of OF is to optimize score values $s_1, \ldots, s_J$ to be used in place of the class values $1, \ldots, J$ of the ordinal target variable in standard regression forests by maximizing the out-of-bag (OOB) prediction performance measured by a performance function $g$ (see section "Performance functions").

The approximation of the optimal score set consists of two steps:

1) Construct a large number of regression forests ($b$ in $1, \ldots, nsets$) featuring limited numbers of trees, where each of these uses as the values of the target variable a randomly generated score set $s_{b,1}, \ldots, s_{b,J}$. For each forest constructed, calculate the value of the performance function $g$ using the OOB estimated predictions of the values of the ordinal target variable and the corresponding true values.

2) Calculate the approximated optimal score set $s_1, \ldots, s_J$ as a particular summary over the $nbest$ best score sets generated in 1), that is, those $nbest$ score sets that were associated with the highest values of the performance function $g$.

After calculating the optimized score set, a larger regression forest is constructed using this optimized score set $s_1, \ldots, s_J$ for the class values $1, \ldots, J$ of the target variable. This regression forest is the OF prediction rule.

Prediction is performed by majority voting of the predictions of the individual trees in the OF. OF features a permutation variable importance measure that considers the misclassification error as error function.

Hyperparameters: There are several hyperparameters, which do, however, not have to be optimized by the user in general, because the default values used for these hyperparameters were seen to be in a reasonable range and the results seem to be quite robust with respect to the choices of the hyperparameter values.

These hyperparameters are described in the following:

- $nsets$: Default value: 1000. The default value of the number of considered score sets in the approximation of the optimal score set is quite large. A large number of considered score sets is necessary to attain a high chance that some of the score sets are close enough to the optimal score set, that is, the score set that leads to the optimal OOB prediction performance with respect to the considered performance function (provided with the argument perffunction).

- $ntreeperdiv$: Default value: 100. A very small number of trees considered per tried score set might lead to too strong variability in the assessments of the performances achieved for the individual score sets. For ultra-high dimensional covariate data it might be necessary to choose a higher value for $ntreeperdiv$ than the default value 100.

- $ntreefinal$: Default value: 5000. The number of trees $ntreefinal$ plays the same role as in conventional regression forests.

- $npermtrial$: Default value: 500. As stated above it is necessary to consider a large number of tried score sets $nsets$ in the optimization in order to increase the chance that the best of
the considered score sets are close to the optimal score set. To further increase this chance, it is in addition necessary that the collection of score sets tried is heterogeneous enough across the iterations. OF uses a particular algorithm for sampling the score sets tried that leads to a strongly heterogeneous collection of sets. This algorithm features the hyperparameter npertrial, where it has been seen in Hornung (2019) that the results are quite robust with respect to the choice of the value of this parameter.

- nbest Default value: 10. In the case of a relatively small value of nsets, it is important that the number nbest of best score sets used to calculate the optimized score set is not strongly misspecified. A too large value of nbest leads to including suboptimal score sets into the calculation of the optimized score set that are too distinct from the optimal score set. Conversely, a too small value of nbest leads to a high variance of the optimized score set. The combination nsets=1000 and nbest=10 should lead to a good trade-off between the heterogeneity of the considered score sets and the variance in the estimation. In Hornung (2019) this combination delivered good results and it was seen that using a very large value of nbest can lead to worse results.

Performance functions: As noted above, the different score sets tried during the estimation of the optimal score set are assessed with respect to their OOB prediction performance. The choice of the specific performance function used in these assessments determines the specific kind of performance the ordinal forest should feature:

- perffunction="equal" This choice should be made if it is of interest to classify observations from each class with the same accuracy independent of the class sizes. Youden’s J statistic is calculated with respect to each class ("observation/prediction in class j" vs. "observation/prediction NOT in class j" (j=1,...,J)) and the simple average of the J results taken.
- perffunction="proportional" This choice should be made if the main goal is to classify correctly as many observations as possible. The latter is associated with a preference for larger classes at the expense of a lower classification accuracy with respect to smaller classes. Youden’s J statistic is calculated with respect to each class and subsequently a weighted average of these values is taken - with weights proportional to the number of observations representing the respective classes in the training data.
- perffunction="oneclass" This choice should be made if it is merely relevant that observations in class categ can be distinguished as reliably as possible from observations not in class categ. Class categ must be passed to ordfor via the argument categ. Youden’s J statistic is calculated with respect to class categ.
- perffunction="custom" This choice should be made if there is a particular ranking of the classes with respect to their importance. Youden’s J statistic is calculated with respect to each class. Subsequently, a weighted average with user-specified weights (provided via the argument classweights) is taken. In this way, classes with higher weights are prioritized by the OF algorithm over classes with smaller weights.

Value

ordfor returns an object of class ordfor. An object of class "ordfor" is a list containing the following components:

- forestfinal object of class "ranger". Regression forest constructed using the optimized score set (i.e., the OF). Required by predict.ordfor.
- bordersbest vector of length J+1. Average over the nbest best partitions of [0,1]. Required by predict.ordfor.
ordfor

- **forests** list of length \( nsets \). The regression forests constructed for the \( nsets \) different score sets tried prior to the approximation of the optimal score set.
- **perffunctionvalues** vector of length \( nsets \). Performance function values for all score sets tried prior to the approximation of the optimal score set.
- **bordersb** matrix of dimension \( nsets \times (J+1) \). All \( nsets \) partitions of \([0,1]\) considered.
- **classes** character vector of length \( J \). Classes of the target variable.
- **nsets** integer. Number of score sets tried prior to the approximation of the optimal score set.
- **ntreeperdiv** integer. Number of trees per score set considered.
- **ntreefinal** integer. Number of trees of the OF prediction rule.
- **perffunction** character. Performance function used.
- **classimp** character. If **perffunction**="oneclass": class to prioritize, NA else.
- **nbest** integer. Number of best score sets used to approximate the optimal score set.
- **classfreq** table. Class frequencies.
- **varimp** vector of length \( p \). Permutation variable importance for each covariate. Currently the misclassification error is used as error measure in the variable importance.

**References**


**Examples**

data(hearth)

set.seed(123)
hearthsubset <- hearth[sort(sample(1:nrow(hearth), size=floor(nrow(hearth)*1/2))),]
ordforres <- ordfor(depvar="Class", data=hearthsubset, nsets=60, nbest=5, ntreeperdiv=100, ntreefinal=1000, perffunction = "equal")
# NOTE: nsets=60 is not enough, because the prediction performance of the resulting ordinal forest will be suboptimal!! In practice, nsets=1000 (default value) or a # larger number should be used.
ordforres

sort(ordforres$varimp, decreasing=TRUE)
Performance functions based on Youden's J statistic

Description
These performance functions based on Youden's J statistic are used in `ordfor` to measure the performance of the smaller regression forests constructed prior to the approximation of the optimal score set. These functions may, however, also be used to measure the precision of predictions on new data or the precision of OOB predictions.

Usage

perff_equal(ytest, ytestpred, categ, classweights)

perff_proportional(ytest, ytestpred, categ, classweights)

perff_oneclass(ytest, ytestpred, categ, classweights)

perff_custom(ytest, ytestpred, categ, classweights)

Arguments

ytest: factor. True values of the target variable.
ytestpred: factor. Predicted values of the target variable.
categ: character. Needed in the case of `perff_oneclass`: Class to prioritize.
classweights: numeric. Needed in the case of `perff_custom`: Vector of length equal to the number of classes. Class weights - classes with higher weights are to be prioritized over those with smaller weights.

Details

`perff_equal` should be used if it is of interest to classify observations from each class with the same accuracy independent of the class sizes. Youden’s J statistic is calculated with respect to each class ("observation/prediction in class j" vs. "observation/prediction NOT in class j" (j=1,...,J)) and the simple average of the J results taken.

`perff_proportional` should be used if the main goal is to classify correctly as many observations as possible. The latter is associated with a preference for larger classes at the expense of a lower classification accuracy with respect to smaller classes. Youden’s J statistic is calculated with respect to each class and subsequently a weighted average of these values is taken - with weights proportional to the number of observations representing the respective classes in the training data.

`perff_oneclass` should be used if it is merely relevant that observations in class `categ` can be distinguished as reliably as possible from observations not in class `categ`. Class `categ` must be passed to `perff_oneclass` via the argument `categ`. Youden's J statistic is calculated with respect to class `categ`.

`perff_custom` should be used if there is a particular ranking of the classes with respect to their importance. Youden’s J statistic is calculated with respect to each class. Subsequently, a weighted
average with user-specified weights (provided via the argument `classweights`) is taken. In this way, classes with higher weights are prioritized by the OF algorithm over classes with smaller weights.

**References**


**Examples**

```r
set.seed(123)
trainind <- sort(sample(1:nrow(hearth), size=floor(nrow(hearth)*(1/2))))
testind <- sort(sample(setdiff(1:nrow(hearth), trainind), size=20))

datatrain <- hearth[trainind,

datatest <- hearth[testind,

ordforres <- ordfor(depvar="Class", data=datatrain, nsets=60, nbest=5)
NOTE: nsets=60 is not enough, because the prediction performance of the resulting
ordinal forest will be suboptimal!! In practice, nsets=1000 (default value) or a larger
number should be used.
preds <- predict(ordforres, newdata=datatest)

perff_equal(ytest=datatest$Class, ytestpred=preds$ypred)
perff_proportional(ytest=datatest$Class, ytestpred=preds$ypred)
perff_oneclass(ytest=datatest$Class, ytestpred=preds$ypred, categ="1")
perff_oneclass(ytest=datatest$Class, ytestpred=preds$ypred, categ="2")
perff_oneclass(ytest=datatest$Class, ytestpred=preds$ypred, categ="3")
perff_oneclass(ytest=datatest$Class, ytestpred=preds$ypred, categ="4")
perff_oneclass(ytest=datatest$Class, ytestpred=preds$ypred, categ="5")

perff_custom(ytest=datatest$Class, ytestpred=preds$ypred, classweights=c(1,2,1,1,1))

perff_equal, perff_proportional, and perff_oneclass are special cases of perff_custom:

perff_custom(ytest=datatest$Class, ytestpred=preds$ypred, classweights=c(1,1,1,1,1))
perff_equal(ytest=datatest$Class, ytestpred=preds$ypred)

perff_custom(ytest=datatest$Class, ytestpred=preds$ypred, classweights=table(datatest$Class))
perff_proportional(ytest=datatest$Class, ytestpred=preds$ypred)

perff_custom(ytest=datatest$Class, ytestpred=preds$ypred, classweights=c(0,0,0,1,0))
```

predict.ordfor

Description
Prediction of test data using ordinal forest.

Usage
## S3 method for class 'ordfor'
predict(object, newdata, ...)

Arguments
- object: object of class ordfor. See function ordfor.
- newdata: data.frame. Data frame containing new data.
- ...: further arguments passed to or from other methods.

Value
predict.ordfor returns an object of class ordforpred. An object of class "ordforpred" is a list containing the following components:
- ypred: vector of length nrow(newdata). Factor-valued test data predictions.
- classfreqtree: matrix of dimension nrow(newdata) x J. The value in the j-th column of the i-th row contains the frequency of trees that predicted class j for test observation i.

References

Examples
data(hearth)
set.seed(123)
trainind <- sort(sample(1:nrow(hearth), size=floor(nrow(hearth)*(1/2))))
testind <- sort(sample(setdiff(1:nrow(hearth), trainind), size=20))
datatrain <- hearth[trainind,]
datatest <- hearth[testind,]
ordforres <- ordfor(depvar="Class", data=datatrain, nsets=60, nbest=5)
# NOTE: nsets=60 is not enough, because the prediction performance of the resulting # ordinal forest will be suboptimal!! In practice, nsets=1000 (default value) or a larger
```r
number should be used.
preds <- predict(ordforres, newdata=datatest)
preds
table(data.frame(true_values=datatest$Class, predictions=preds$ypred))
head(preds$classfreqtree)
```
Index

hearth, 3
ordfor, 2, 5, 10, 12
ordinalForest (ordinalForest-package), 2
ordinalForest-package, 2

perff, 6, 10
perff_custom (perff), 10
perff_equal (perff), 10
perff_oneclass (perff), 10
perff_proportional (perff), 10
predict.ordfor, 2, 5, 8, 12