Package ‘orloca’

March 4, 2020

Type Package
Depends methods, png, ucminf
Imports grDevices, graphics, knitr, rmarkdown, stats
VignetteBuilder knitr
Title Operations Research LOCational Analysis Models
Version 4.9
Date 2020-03-02
Author Manuel Munoz-Marquez <manuel.munoz@uca.es>
Maintainer Manuel Munoz-Marquez <manuel.munoz@uca.es>
Description Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem. The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See "The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995. <DOI:10.1007/BF01592245>. General global optimization algorithms are used to solve the problem, along with the ad-hoc Weiszfeld method, see "Sur le point pour lequel la Somme des distances de n points donnees est minimum", by Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937 or "On the point for which the sum of the distances to n given points is minimum", by E. Weiszfeld and F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.

Language en, es
License GPL (>= 3)
URL http://knuth.uca.es/orloca
RoxygenNote 7.0.2
Repository CRAN
Repository/R-Forge/Project orloca
Repository/R-Forge/Revision 54
Repository/R-Forge/DateTimeStamp 2020-03-02 12:31:44
Date/Publication 2020-03-04 16:00:05 UTC
NeedsCompilation no
R topics documented:

orloca-package .. 2
andalusia ... 4
as-methods ... 5
as.data.frame.loca.p ... 6
as.loca.p ... 7
as.loca.p.data.frame .. 8
as.loca.p.matrix ... 9
as.matrix.loca.p .. 10
countour.loca.p .. 11
distsum .. 12
distsumgra ... 13
distsummin ... 14
loca.p .. 16
persp.loca.p ... 17
plot ... 18
rloca.p .. 19
zsum .. 21
zsumgra .. 22
zsummin .. 22

Index 23

orloca-package Operations Research LOCational Analysis Models

Description

Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem.

Details

The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See "The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995, DOI:10.1007/BF01592245.

General global optimization algorithms are used to solve the problem, along with the adhoc Weiszfeld method, see "Sur le point pour lequel la Somme des distances de n points donnees est minimum", by E. Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937 or "On the point for which the sum of the distances to n given points is minimum", by E. Weiszfeld and F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009, DOI:10.1007/s10479-008-0352-z.

Package: orloca

Type: Package
The package provides a class (Loca.p) that represents a location problem with a finite set of demand points over the plane. Also, it is possible to plot the points and the objective function. Such objective function is the total weighted distances travelled by all the customers to the service.

Non-planar location problems could be handle in future versions of the package.

For a demo, load the package with library(orloca), and use demo(orloca).

The package is ready for internationalization. The author ask for translated version of the .mo file to include in the package.

Author(s)

Manuel Munoz-Marquez <manuel.munoz@uca.es>

Mantainer: Manuel Munoz-Marquez <manuel.munoz@uca.es>

References

See Also

Para la version en espanol, instale el paquete orloca.es y consulte la ayuda sobre orloca.es-package. (For the spanish version, install the orloca.es package and see the help about orloca.es-package).

Examples

```r
# A new unweighted loca.p object
o <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# Compute the sum of distances to point (3, 4)
distsum(o, 3, 4)

# Compute the sum of distances to point (3, 4) using lp norm
distsum(o, 3, 4, lp=2.5)

# Solve the optimization problem
```
distsummin(o)
Contour plot
contour(o)

Make a demo of the package
demo(orloca)

andalusia Cities of Andalusia

Description

The 'andalusia' data frame has 12 rows and 4 columns, which are the geographical position of the main capital cities of andalusia.

Format

name: The name of the city or relative position label.
x: The x coordinate of points.
y: The y coordinate of points.
city: If yes the point is a city in other case is a limit.

Usage

data('andalusia')

Source

The data are taken from wikipedia.

See Also

See also orloca-package.
Description

Conversions between loca.p class and some others classes

Arguments

- `x` is the object to convert to the new class object.
- `row.names` Unused.
- `optional` Unused.
- `...` Other arguments, unused.

Details

Methods to convert from and to loca.p class. NA's values are not allowed in any of the arguments.

The matrix to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of w.

The data.frame to convert into loca.p must have at least an x column for x coordinates, and an y column for y coordinates. Optionally, it can have w column, as the values of w.

Value

If the arguments have valid values, it returns a new object of the new class.

See Also

See also loca.p

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# Conversion to matrix
m <- as.matrix(loca)

# Show matrix
m

# Conversion from matrix
as.loca.p(m)
```
as.data.frame.loca.p

as.data.frame.loca.p S3 method to convert from loca.p to data.frame

Description

Conversions between loca.p class and some others classes

Usage

S3 method for class 'loca.p'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x is the object to convert to the new class object.
row.names Unused.
optional Unused.
... Other arguments, unused.

Details

Methods to convert from and to loca.p class.
NA's values are not allowed in any of the arguments.
The matrix to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of w.
The data.frame to convert into loca.p must have at least an x column for x coordinates, and an y column for y coordinates. Optionally, it can have w column, as the values of w.

Value

If the arguments have valid values, it returns a new object of the new class.

See Also

See also loca.p

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Conversion to matrix
m <- as.matrix(loca)

Show matrix
as.loca.p

```r
m
# Conversion from matrix
as.loca.p(m)
```

as.loca.p

Description

Conversions between loca.p class and some others classes

Usage

```r
as.loca.p(x, ...)
```

Arguments

- `x` is the object to convert to the new class object.
- `...` Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The `matrix` to convert into `loca.p` must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of w.

The `data.frame` to convert into `loca.p` must have at least an x column for x coordinates, and an y column for y coordinates. Optionally, it can have w column, as the values of w.

Value

If the arguments have valid values, it returns a new object of the new class.

See Also

See also `loca.p`
Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Conversion to matrix
m <- as.matrix(loca)

Show matrix
m

Conversion from matrix
as.loca.p(m)

as.loca.p.data.frame as.loca.p.data.frame S3 method to convert from data.frame to loca.p

Description

Conversions between loca.p class and some others classes

Usage

as.loca.p.data.frame(x, ...)

Arguments

x is the object to convert to the new class object.
...

Other arguments, unused.

Details

Methods to convert from and to loca.p class.
NA's values are not allowed in any of the arguments.

The matrix to convert into loca.p must have at least two columns. The first column will be
consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values
of w.

The data.frame to convert into loca.p must have at least an x column for x coordinates, and an y
column for y coordinates. Optionally, it can have w column, as the values of w.

Value

If the arguments have valid values, it returns a new object of the new class.

See Also

See also loca.p
as.loca.p.matrix

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Conversion to matrix
m <- as.matrix(loca)

Show matrix
m

Conversion from matrix
as.loca.p(m)

as.loca.p.matrix as.loca.p.matrix S3 method to convert from matrix to loca.p

Description

Conversions between loca.p class and some others classes

Usage

as.loca.p.matrix(x, ...)

Arguments

x is the object to convert to the new class object.

... Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of w.

The data.frame to convert into loca.p must have at least an x column for x coordinates, and an y column for y coordinates. Optionally, it can have w column, as the values of w.

Value

If the arguments have valid values, it returns a new object of the new class.

See Also

See also loca.p
Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Conversion to matrix
m <- as.matrix(loca)

Show matrix
m

Conversion from matrix
as.loca.p(m)

as.matrix.loca.p
as.matrix.loca.p S3 method to convert from loca.p to matrix

Description

Conversions between loca.p class and some others classes

Usage

```r
## S3 method for class 'loca.p'
as.matrix(x, rownames.force = NA, ...)
```

Arguments

- `x` is the object to convert to the new class object.
- `rownames.force` If True the rownames is setted
- `...` Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of w.

The data.frame to convert into loca.p must have at least an x column for x coordinates, and an y column for y coordinates. Optionally, it can have w column, as the values of w.

Value

If the arguments have valid values, it returns a new object of the new class.
contour.loca.p

See Also

See also loca.p

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Conversion to matrix
m <- as.matrix(loca)

Show matrix
m

Conversion from matrix
as.loca.p(m)

contour.loca.p
Plots of the min-sum objective function

Description

contour provides a graphical representations of min-sum function (distsum).

Usage

S3 method for class 'loca.p'
contour(
x,
lp = numeric(0),
xmin = min(min(x@x), xleft),
xmax = max(max(x@x), xright),
ymin = min(min(x@y), ybottom),
ymax = max(max(x@y), ytop),
n = 100,
img = NULL,
xleft = min(x@x),
ybottom = min(x@y),
xright = max(x@x),
ytop = max(x@y),
...
)

Arguments

x The loca.p object to compute the objective.
lp If given, then \(l_p \) norm will be used instead of the Euclidean norm.
The minimum value for x axis.

xmax
The maximum value for x axis.

ymin
The minimum value for y axis.

ymax
The maximum value for y axis.

n
The number of divisions for grid.

img
A raster image to plot on background.

xleft
The left position of the image.

ybottom
The bottom position of the image.

xright
The right position of the image.

ytop
The top position of the image.

...
Other options.

Details

If $p < 1$ then l_p are not a norm, so only $p \geq 1$ are valid values.

Value

`contour.loca.p` plots a contour plot of min-sum function (`distsum`).

See Also

See also `orloca-package`, `plot.loca.p` and `loca.p`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# The contour plot of min-sum function for loca (a loca.p object)
contour(loca)
```

distsum

Computes distsum function

Description

The objective function and the gradient function for the min-sum location problem.

Usage

```r
distsum(o, x = 0, y = 0, lp = numeric(0))
```
Arguments

- `o`: An object of `loca.p` class.
- `x`: The x coordinate of the point to be evaluated.
- `y`: The y coordinate of the point to be evaluated.
- `lp`: If given, then l_p norm will be used instead of the Euclidean norm.

Details

The function `zsum` is deprecated and will be removed from new versions of the package.

Value

The function `distsum` returns the objective function of the min-sum location problem, $\sum_{a_i \in o} w_i d(a_i, (x, y))$, where $d(a_i, (x, y))$ gives the euclidean or the l_p distances between a_i and the point (x, y).

See Also

See also `orloca-package` and `distsummin`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Evaluation of distsum at (0, 0)
distsum(loca)
# Evaluation of distsum at (1, 3)
distsum(loca, 1, 3)
# Compute the objective function at point (3, 4) using lp norm and p = 2.5
distsum(loca, 3, 4, lp=2.5)
# The gradient function at (1,3)
distsumgra(loca, 1, 3)
```

distsumgra

Computes the gradient of distsum function

Description

The gradient function for the min-sum location problem.

Usage

```
distsumgra(o, x = 0, y = 0, lp = numeric(0), partial = F)
```
Arguments

- **o**
 An object of `loca.p` class.

- **x**
 The x coordinate of the point to be evaluated.

- **y**
 The y coordinate of the point to be evaluated.

- **lp**
 If given, then l_p norm will be used instead of the Euclidean norm.

- **partial**
 If (x,y) is a demand point `partial=T` means ignore such point to compute the gradient. This option is mainly for internal use.

Details

The function `zsumgra` is deprecated and will be removed from new versions of the package.

Value

`distsumgra` returns the gradient vector of the function of the min-sum location problem, $\sum_{a_i\in o} w_i d(a_i, (x, y))$, where $d(a_i, (x, y))$ gives the euclidean or the l_p distances between a_i and the point (x, y).

See Also

See also `orloca-package` and `distsum`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Evaluation of distsum at (0, 0)
distsum(loca)

# Evaluation of distsum at (1, 3)
distsum(loca, 1, 3)
# Compute the objective function at point (3, 4) using lp norm and p = 2.5
distsum(loca, 3, 4, lp=2.5)
# The gradient function at (1,3)
distsumgra(loca, 1, 3)
```

distsummin

Returns the solution of the minimization problem

Description

Solve the min-sum location problem for a given `loca.p` class object.
Usage

distsummin(
o,
x = 0,
y = 0,
lp = numeric(0),
max.iter = 1e+05,
eps = 0.001,
verbose = FALSE,
algorithm = "Weiszfeld",
...)

Arguments

- o: An object of loca.p class.
- x: The x coordinate of the starting point. It’s default value is 0.
- y: The y coordinate of the starting point. It’s default value is 0.
- lp: If given, the l_p norm will be used instead of the Euclidean norm.
- max.iter: Maximum number of iterations allowed. It’s default value is 100000.
- eps: The module of the gradient in the stop rule. It’s default value is 1e-3.
- verbose: If TRUE the function produces detailed output. It’s default value is FALSE.
- algorithm: The method to be use. For this version of the package, the valid values are: "gradient" for a gradient based method, "search" for local search method (this option is deprecated), "ucminf" for optimization with ucminf from ucminf package, and "Weiszfeld" for the Weiszfeld method or any of the valid method for optim function, now "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "Weiszfeld" is the default value.
- ...: Other options for optimization algorithms.

Details

The algorithms Weiszfeld and gradient include and optimality test for demand points. The Weiszfeld version of the algorithm also implements slow convergence test and accelerator procedure.

If $p < 1$ thus l_p is not a norm, so, only $p \geq 1$ are valid values.

Since l_2 norm is the Euclidean norm, when $p = 2$ distsumlpmin are equal to distsummin. But the computations involved are greater for the first form.

max.iter for SANN algorithm is the number of evaluation of objective function, so this method usually requires large values of max.iter to reach optimal value.

The function zsummin is deprecated and will be removed from new versions of the package.

Value

distsummin returns an array with the coordinates of the solution point.
See Also

See also orloca-package, loca.p and distsum.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Compute the minimum
sol <- distsummin(loca)

# Show the result
sol

# Evaluation of the objective function at solution point
distsum(loca, sol[1], sol[2])
```

loca.p

loca.p class for Operations Research LOCational Analysis

Description

An object of class loca.p represents a weighted location problem with a finite demand points set. The orloca-package is mainly devoted to deals with location problems.

Arguments

- `x` is a vector of the x coordinates of the demand points.
- `y` is a vector of the y coordinates of the demand points.
- `w` is a vector of weights of the demand points. If `w` is omitted then all weights are considered as 1.
- `label` If given, it is the label of the new object.

Details

The main generator of the loca.p class is `loca.p(x, y, w = numeric(0), label = "")`. An alternative form is `new("loca.p", x, y, w = numeric(0), label = ")`.

The lengths of `x` and `y` vector must be equals. The length of `w` must be equal to the previous ones or must be 0. NA's values are not allowed at any of the arguments.

Value

If the arguments have valid values, it returns a new object of class loca.p, else it returns an error.

`summary(x)` returns a summary of the `x` loca.p object and `print(x)` prints the `x` loca.p object in table format.
See Also

See also orloca-package.

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
or
loca <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

An example with weights and name
locb <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1),
 w = c(1, 2, 1, 2), label = "Weighted case")

persp.loca.p

Plots of the min-sum objective function

Description

persp provides a graphical representations of min-sum function (distsum).

Usage

S3 method for class 'loca.p'
persp(
x,
lp = numeric(0),
xmin = min(x@x),
xmax = max(x@x),
ymin = min(x@y),
ymax = max(x@y),
n = 10,
...
)

Arguments

x The loca.p object to compute the objective.
lp If given, then \(p \) norm will be used instead of the Euclidean norm.
xmin The minimum value for x axis.
xmax The maximum value for x axis.
ymin The minimum value for y axis.
ymax The maximum value for y axis.
n The number of divisions for grid.
... Other options.
Details

If $p < 1$ then l_p are not a norm, so only $p \geq 1$ are valid values.

Value

A plot a 3D plot or min-sum function.

See Also

See also orloca-package, plot.loca.p and loca.p.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# The 3D graphics
persp(loca)
```

Description

This method provides a graphical representations of an object of class loca.p.

Usage

```r
## S3 method for class 'loca.p'
plot(
  x,
  xlab = "", ylab = "",
  main = paste(gettext("Plot of loca.p", domain = "R-orloca"), ifelse(x@label == "", "", paste0(": \"", x@label, "\""))),
  img = NULL,
  xlim = c(min(xleft, min(x@x)), max(xright, max(x@x))),
  ylim = c(min(ybottom, min(x@y)), max(ytop, max(x@y))),
  xleft = min(x@x),
  ybottom = min(x@y),
  xright = max(x@x),
  ytop = max(x@y),
  ...
)
```
Arguments

- **x**: The `loca.p` object to plot.
- **xlab**: The label for x axis.
- **ylab**: The label for y axis.
- **main**: The main title for the plot.
- **img**: A raster image to plot on background.
- **xlim**: Limit over the x axes of the plot.
- **ylim**: Limit over the y axes of the plot.
- **xleft**: The left position of the image.
- **ybottom**: The bottom position of the image.
- **xright**: The right position of the image.
- **ytop**: The top position of the image.
- **...**: Other graphical options.

Details

The function plots the demand points with automatic limits evaluation.

Value

The function plots the required graphics.

See Also

See also `orloca-package`, `loca.p` and `plot`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# The plot of loca object
plot(loca)
```

Description

`rloca.p` function returns a random instance of `loca.p` class object at a given rectangular region.
Usage

rloca.p(
 n,
 xmin = 0,
 xmax = 1,
 ymin = 0,
 ymax = 1,
 wmin = 1,
 wmax = 1,
 label = "",
 groups = 0,
 xgmin = xmin,
 xgmax = xmax,
 ygmin = ymin,
 ygmax = ymax
)

Arguments

 n The number of demand points.
 xmin Minimum value for the x coordinates of the demand points.
 xmax Maximum value for the x coordinates of the demand points.
 ymin Minimum value for the y coordinates of the demand points.
 ymax Maximum value for the y coordinates of the demand points.
 wmin Minimum value for weights
 wmax Maximum value for weights
 label The label for the new loca.p object.
 groups The number of (almost) equal size groups to generate, or a list size of the groups
to generate. In the second case n will be ignored.
 xgmin Minimum value for the x coordinate of demand points with respect to the group
 reference point.
 xgmax Maximum value for the x coordinate of demand points with respect to the group
 reference point.
 ygmin Minimum value for the y coordinate of demand points with respect to the group
 reference point.
 ygmax Maximum value for the y coordinate of demand points with respect to the group
 reference point.

Details

n must be at least 1.
xmin must be less or equal than xmax.
ymin must be less or equal than ymax.
If a non zero value is given for \texttt{groups} parameter, then a reference point for each group are generated. At second stage, the offset part for each demand point are generated, and added to the reference point generated at the first stage.

Note that \texttt{groups = 1} is not equivalent to the default value \texttt{groups = 0}, because in the first case a reference point are generated at the first stage.

\textbf{Value}

If the arguments are valid values, it returns a new object of \texttt{loca.p} class, else it returns an error.

\textbf{See Also}

See also \texttt{orloca-package} and \texttt{loca.p}.

\textbf{Examples}

\begin{verbatim}
A random loca.p object at unit square with 5 demand points
rloca.p(5)
At another region
rloca.p(10, xmin=-2, xmax=2, ymin=-2, ymax=2)
Five groups
rloca.p(48, groups=5)
Three unequal groups
rloca.p(1, groups=c(10, 7, 2))
\end{verbatim}

\textbf{Description}

The function \texttt{zsum} is deprecated and could be removed in next version of the package. Use \texttt{distsum} instead.

\textbf{Usage}

\texttt{zsum(...)}

\textbf{Arguments}

\begin{verbatim}
... Parameters passed to distsum
\end{verbatim}
The function zsumgra is deprecated and could be removed in next version of the package. Use `distsumgra` instead.

Usage

`zsumgra(...)`

Arguments

`...` Parameters passed to `distsumgra`

The function zsummin is deprecated and could be removed in next version of the package. Use `distsummin` instead.

Usage

`zsummin(...)`

Arguments

`...` Parameters passed to `distsummin`
Index

*Topic andalusia
andalusia, 4

*Topic classes
as-methods, 5
distsum, 12
distsumgra, 13
distsummin, 14
loca.p, 16
persp.loca.p, 17
plot, 18

*Topic datagen
rloca.p, 19

*Topic data
andalusia, 4

*Topic deprecated
zsum, 21
zsumgra, 22
zsummin, 22

*Topic hplot
contour.loca.p, 11
persp.loca.p, 17
plot, 18

*Topic methods
as-methods, 5

*Topic optimize
distsum, 12
distsumgra, 13
distsummin, 14
loca.p, 16
orloca-package, 2

*Topic package
orloca-package, 2

andalusia, 4
as-methods, 5
as.data.frame (as-methods), 5
as.data.frame.loca.p, 6
as.loca.p, 7

as.loca.p, data.frame-method
(as-methods), 5
as.loca.p, matrix-method (as-methods), 5
as.loca.p.data.frame, 8
as.loca.p.matrix, 9
as.matrix (as-methods), 5
as.matrix.loca.p, 10

contour.loca.p, 11
distsum, 12, 14, 16, 21
distsum.loca.p-method (distsum), 12
distsumgra, 13, 22
distsumgra.loca.p-method (distsumgra), 13
distsummin, 13, 14, 22
distsummin.loca.p-method (distsummin), 14

loca.p, 5–9, 11, 12, 16, 18, 19

orloca-package, 2

persp.loca.p, 17
plot, 18, 19
plot.loca.p, 12, 18
print (loca.p), 16

rloca.p, 19

summary (loca.p), 16

zsum, 21
zsumgra, 22
zsummin, 22