Package ‘outForest’

January 13, 2020

Type Package
Title Multivariate Outlier Detection and Replacement
Version 0.1.0
Date 2020-01-09
Maintainer Michael Mayer <mayermichael179@gmail.com>
Description Provides a random forest based implementation of
the method described in Chapter 7.1.2 (Regression model based anomaly
detection) of Chandola et al. (2009)
<doi.acm.org/10.1145/1541880.1541882>. It works as follows: Each
numeric variable is regressed onto all other variables by a random
forest. If the scaled absolute difference between observed value and
out-of-bag prediction of the corresponding random forest is
suspiciously large, then a value is considered an outlier. The package
offers different options to replace such outliers, e.g. by realistic
values found via predictive mean matching. Once the method is trained
on a reference data, it can be applied to new data.
License GPL (>= 2)
URL https://github.com/mayer79/outForest
BugReports https://github.com/mayer79/outForest/issues
Depends R (>= 3.5.0)
VignetteBuilder knitr
Encoding UTF-8
LazyData true
Imports stats, graphics, FNN, ranger, missRanger (>= 2.1.0)
Suggests dplyr, knitr
RoxygenNote 7.0.2
NeedsCompilation no
Author Michael Mayer [aut, cre]
Repository CRAN
Date/Publication 2020-01-13 15:50:03 UTC
R topics documented:

Data .. 2
generateOutliers 3
is.outForest ... 4
outForest ... 4
outliers ... 7
plot.outForest 8
predict.outForest 9
print.outForest 10
process_scores 11
summary.outForest 12

Data

Description

Extracts data with optionally replaced outliers from object of class 'outForest'.

Usage

Data(object, ...)

Default S3 method:
Data(object, ...)

S3 method for class 'outForest'
Data(object, ...)

Arguments

object An object of class 'outForest'.
...

Arguments passed from or to other methods.

Value

A data.frame.

Methods (by class)

• default: Default method not implemented yet.
• outForest: Extract data from outForest object.

Examples

x <- outForest(iris)
head(Data(x))
generateOutliers

Adds Outliers to a Vector, Matrix or Data Frame

Description

Takes a vector, matrix or data frame and replaces some numeric values by outliers.

Usage

```r
generateOutliers(x, p = 0.05, sd_factor = 5, seed = NULL)
```

Arguments

- **x**
 A vector, matrix or data.frame.
- **p**
 Proportion of outliers to add to x. In case x is a data.frame, p can also be a vector of probabilities per column or a named vector (see examples).
- **sd_factor**
 Each outlier is generated by shifting the original value by a realization of a normal random variable with sd_factor times the original sample standard deviation.
- **seed**
 An integer seed.

Value

x with outliers.

See Also

`outForest`.

Examples

```r
generateOutliers(1:10, seed = 334, p = 0.3)
generateOutliers(cbind(1:10, 10:1), p = 0.2)
head(generateOutliers(iris))
head(generateOutliers(iris, p = 0.2))
head(generateOutliers(iris, p = c(0, 0, 0.5, 0.5, 0.5)))
head(generateOutliers(iris, p = c(Sepal.Length = 0.2)))
```
is.outForest Type Check

Description
Checks if an object inherits class 'outForest'.

Usage
is.outForest(x)

Arguments
x Any object.

Value
A logical vector of length one.

Examples
a <- outForest(iris)
is.outForest(a)
is.outForest("a")

outForest Multivariate Outlier Detection and Replacement by Random Forest

Predictions

Description
This function provides a random forest based implementation of the method described in Chapter 7.1.2 ("Regression Model Based Anomaly detection") of [1]. Each numeric variable to be checked for outliers is regressed onto all other variables using a random forest. If the scaled absolute difference between observed value and out-of-bag prediction is larger than some predefined threshold (default is 3), then a value is considered an outlier, see Details below. After identification of outliers, they can be replaced e.g. by predictive mean matching from the non-outliers. Since the random forest algorithm 'ranger' [2] does not allow for missing values, any missing value is first being imputed by chained random forests. The method can be viewed as a multivariate extension of a basic univariate outlier detection method where a value is considered an outlier if it is more than e.g. three times the standard deviation away from its mean. In the multivariate case, instead of comparing a value with the overall mean, rather the difference to the conditional mean is considered. The 'outForest' function estimates this conditional mean by a random forest. If the method is trained on a reference data with option allow_predictions, it can be applied to new data.
Usage

outForest(
 data,
 formula = . ~ .,
 replace = c("pmm", "predictions", "NA", "no"),
 pmm.k = 3,
 threshold = 3,
 max_n_outliers = Inf,
 max_prop_outliers = 1,
 min.node.size = 40,
 allow_predictions = FALSE,
 impute_multivariate = TRUE,
 impute_multivariate_control = list(pmm.k = 3, num.trees = 50, maxiter = 3L),
 seed = NULL,
 verbose = 1,
 ...
)

Arguments

data A data.frame to be assessed for numeric outliers.

formula A two-sided formula specifying variables to be checked (left hand side) and variables used to check (right hand side). Defaults to . ~ ., i.e. use all variables to check all (numeric) variables.

replace Should outliers be replaced by predicting mean matching on the OOB predictions ("pmm", the default), by OOB predictions ("predictions"), by NA ("NA"). Use "no" to keep outliers as they are.

pmm.k For replace = "pmm", how many nearest prediction neighbours (without outliers) be considered to sample observed values from?

threshold Threshold above which an outlier score is considered an outlier. The default is 3.

max_n_outliers Maximal number of outliers to identify. Will be used in combination with threshold and max_prop_outliers.

max_prop_outliers Maximal relative count of outliers. Will be used in combination with threshold and max_n_outliers.

min.node.size Minimal node size of the random forests. With 40, the value is relatively high. This reduces the impact of outliers.

allow_predictions Should the resulting outForest be used on new data? Default is FALSE as fitted random forests can be huge.

impute_multivariate If TRUE (default), missing values are imputed by missRanger::missRanger. Otherwise, by univariate sampling.

impute_multivariate_control Parameters passed to missRanger::missRanger if data contains missing values.
seed: Integer random seed.
verbose: Controls how much outliers is printed to screen. 0 to print nothing, 1 prints information.
... Arguments passed to ranger. If the data set is large, use less trees (e.g. num.trees = 20) and/or a low value of mtry.

Details
The outlier score of the i-th value x_ij of the j-th variable is defined as s_ij = (x_ij - pred_ij) / rmse_j, where pred_ij is the corresponding out-of-bag prediction of the j-th random forest and rmse_j its RMSE. If |s_ij| > L with threshold L, then x_ij is considered an outlier. For large data sets, just by chance, many values can surpass the default threshold of 3. To reduce the number of outliers, the threshold can be increased. Alternatively, the number of outliers can be limited by the two arguments max_n_outliers and max_prop_outliers. E.g. if at most ten outliers are to be identified, set max_n_outliers = 10.

Value
An object of type 'outForest' and a list with the following elements.
- Data: Original data set in unchanged row order but optionally with outliers replaced. Can be extracted with the Data function.
- outliers: Compact representation of outliers, for details see the outliers function used to extract them.
- n_outliers: Number of outliers per v.
- is_outlier: Logical matrix with outlier status. NULL if allow_predictions = FALSE.
- predData: data.frame with OOB predictions. NULL if allow_predictions = FALSE.
- allow_predictions: Same as allow_predictions.
- v: Variables checked.
- threshold: The threshold used.
- rmse: Named vector of RMSE of the random forests. Used for scaling the difference between observed values and predicted.
- forests: Named list of fitted random forests. NULL if allow_predictions = FALSE.
- used_to_check: Variables used for checking v.
- mu: Named vector of sample means of the original v (incl. outliers).

References

See Also
outliers, Data, plot.outForest, summary.outForest, predict.outForest.
outliers

Examples

```r
head(irisWithOut <- generateOutliers(iris, seed = 345))
(out <- outForest(irisWithOut))
outliers(out)
head(Data(out))
plot(out)
plot(out, what = "scores")
```

outliers

Extracts Outliers

Description

Extracts outliers from object of class `outForest`. The outliers are sorted by their absolute score in descending fashion.

Usage

```r
outliers(object, ...)
```

Default S3 method:

```r
outliers(object, ...)
```

S3 method for class 'outForest'

```r
outliers(object, ...)
```

Arguments

- **object**: An object of class 'outForest'.
- **...**: Arguments passed from or to other methods.

Value

A `data.frame` with one row per outlier. The columns are as follows:

- `row, col`: Row and column in original data with outlier.
- `observed`: Observed value.
- `predicted`: Predicted value.
- `rmse`: Scaling factor used to normalize the difference between observed and predicted.
- `score`: Outlier score defined as (observed-predicted)/rmse.
- `threshold`: Threshold above which an outlier score counts as outlier.
- `replacement`: Value used to replace observed value.

Methods (by class)

- `default`: Default method not implemented yet.
- `outForest`: Extract outliers from outForest object.
plot.outForest

Examples

x <- outForest(iris)
outliers(x)

plot.outForest

Plot for outForest

Description

This function can plot aspects of an 'outForest' object. For what = "counts", the number of outliers per variable is visualized as a barplot. For what = "scores", outlier scores (i.e. the scaled difference between predicted and observed value) are shown as scatter plot per variable.

Usage

S3 method for class 'outForest'
plot(x, what = c("counts", "scores"), ...)

Arguments

x An object of class outForest.
what What should be plotted? One of "counts" (the default) or "scores".
... Further arguments passed to graphics::barplot or graphics::stripchart.

Value

An object of class ggplot2.

Examples

irisWithOutliers <- generateOutliers(iris, seed = 345)
x <- outForest(irisWithOutliers, verbose = 0)
plot(x)
plot(x, what = "scores")
predict.outForest

Out-of-Sample Application

Description

Identify outliers in new data set based on previously fitted 'outForest' object. The result of predict is again an object of type 'outForest'. All its methods can be applied to it.

Usage

```r
## S3 method for class 'outForest'
predict(
  object,
  newdata,
  replace = c("pmm", "predictions", "NA", "no"),
  pmm.k = 3,
  threshold = object$threshold,
  max_n_outliers = Inf,
  max_prop_outliers = 1,
  seed = NULL,
  ...)
```

Arguments

- `object`: An object of class "outForest".
- `newdata`: A new data.frame to be assessed for numeric outliers.
- `replace`: Should outliers be replaced by predicting mean matching (from the original non-outliers) on the predictions ("pmm", the default), by predictions ("predictions"), by NA ("NA"). Use "no" to keep outliers as they are.
- `pmm.k`: For `replace = "pmm"`, how many nearest prediction neighbours (from the original non-outliers) be considered to sample observed values from?
- `threshold`: Threshold above which an outlier score is considered an outlier.
- `max_n_outliers`: Maximal number of outliers to identify. Will be used in combination with `threshold` and `max_prop_outliers`.
- `max_prop_outliers`: Maximal relative count of outliers. Will be used in combination with `threshold` and `max_n_outliers`.
- `seed`: Integer random seed.
- `...`: Further arguments passed from other methods.

Value

An object of type `outForest`.
print.outForest

See Also

outForest, outliers, Data.

Examples

(\texttt{out} <- \texttt{outForest(iris, allow_predictions = TRUE)})
\texttt{iris1} <- \texttt{iris[1,]}
\texttt{iris1}\$\texttt{Sepal.Length} <- -1
\texttt{pred} <- \texttt{predict(out, newdata = iris1)}
\texttt{outliers(pred)}
\texttt{Data(pred)}
\texttt{plot(pred)}
\texttt{plot(pred, what = "scores")}

\texttt{print.outForest} \hspace{1cm} \textit{Prints outForest}

Description

Print method for an object of class \texttt{outForest}.

Usage

\texttt{## S3 method for class 'outForest'
print(x, \ldots)}

Arguments

\begin{itemize}
\item \texttt{x} \hspace{1cm} A on object of class \texttt{outForest}.
\item \ldots \hspace{1cm} Further arguments passed from other methods.
\end{itemize}

Value

Invisibly, the input is returned.

Examples

\texttt{x} <- \texttt{outForest(iris)}
\texttt{x}
process_scores

Process Scores

Description

Internal function used to process scores and replace outliers.

Usage

```r
process_scores(
  data,  
  scores,  
  predData,  
  v,  
  rmse,  
  replace,  
  pmm.k,  
  threshold,  
  max_n_outliers,  
  max_prop_outliers,  
  allow_predictions,  
  obj = NULL
)
```

Arguments

- `data` Data set.
- `scores` Matrix with outlier scores.
- `predData` Prediction data.frame.
- `v` Variables checked.
- `rmse` rmse.
- `replace` replace.
- `pmm.k` pmm.k.
- `threshold` threshold.
- `max_n_outliers` max_n_outliers.
- `max_prop_outliers` max_prop_outliers.
- `allow_predictions` allow_predictions.
- `obj` outForest object.

Value

A list.
Summary.outForest

Summarizes outForest

Description

Summary method for an object of class `outForest`. Besides the number of outliers per variables, it shows the worst outliers.

Usage

```r
## S3 method for class 'outForest'
summary(object, ...)
```

Arguments

- `object` A on object of class `outForest`.
- `...` Further arguments passed from other methods.

Value

A list of summary statistics.

Examples

```r
out <- outForest(iris, seed = 34, verbose = 0)
summary(out)
```
Index

Data, 2, 6, 10

generateOutliers, 3

is.outForest, 4

outForest, 3, 4, 10
outliers, 6, 7, 10

plot.outForest, 6, 8
predict.outForest, 6, 9
print.outForest, 10
process_scores, 11

summary.outForest, 6, 12