Package ‘overlapping’

March 2, 2020

Type Package

Title Estimation of Overlapping in Empirical Distributions

Version 1.6

Date 2020-03-01

Author Massimiliano Pastore

Maintainer Massimiliano Pastore <massimiliano.pastore@unipd.it>

Description Functions for estimating the overlapping area of two or more kernel density estimations from empirical data.

Depends R (>= 3.0.0), ggplot2, testthat

License GPL-2

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-02 09:30:02 UTC

R topics documented:

boot.overlap .. 2
cutnumeric .. 3
final.plot .. 4
overlap ... 5

Index 7
Nonparametric Bootstrap for estimated overlapping area

Description

Bootstrap the estimated overlapping area of two or more kernel density estimations from empirical data.

Usage

```r
boot.overlap( x, B = 1000, ... )
```

Arguments

- `x` list of numerical vectors to be compared; each vector is an element of the list
- `B` integer, number of bootstrap draws
- `...` options, see function `overlap` for details

Details

If the list `x` contains more than two elements (i.e. more than two distributions) it computes bootstrap overlapping between all `q` number of paired distributions. For example, if `x` contains three elements, then `q = 3`; if `x` contains four elements, then `q = 6`, and so on.

Value

It returns a list containing the following components:

- `OVboot_stats` Data frame `q × 3`; each row containing the following statistics: `estOV`, estimated overlapping area; `bias`, difference between the bootstrap’s expected value and the observed value of the overlapping area: `E(\hat{\eta}^*) - \hat{\eta}`; `se`, bootstrap standard error `\sigma_{\hat{\eta}}`.
- `OVboot_dist` Matrix `B × q`, `B` rows (bootstrap replicates) and `q` columns (depending on the number of elements of `x`); each column is a bootstrap distribution of an overlapping index.

Note

Call function `overlap`.

Author(s)

Massimiliano Pastore
References

Examples
set.seed(20150605)
x <- list(X1=rnorm(100), X2=rt(50,8), X3=rchisq(80,2))

bootstrapping
out <- boot.overlap(x, B = 10)
a <- OVboot_stats

bootstrap quantile intervals
apply(a$OVboot_dist, 2, quantile, probs = c(.05, .9))

plot of bootstrap distributions
Y <- stack(data.frame(a$OVboot_dist))
ggplot(Y, aes(values)) + facet_wrap(~ind) + geom_density()

cutnumeric Numerical conversion

Description
It divides a numerical variable \(x \) in classes, and returns for each class the central value.

Internal function, generally not to be called by the user.

Usage
cutnumeric(\(x \), \(n = 1000 \))

Arguments
\(x \) numeric vector
\(n \) number of classes

Details
It calls the \texttt{cut} function, and then converts factor classes in numeric classes, returning for each class its central value.
Value

It returns a numerical vector. The values are the central points of classes obtained by the function `cut`.

Author(s)

Massimiliano Pastore

See Also

cut

Examples

```r
x <- rnorm(50)
cutnumeric(x,5)
```

Description

Graphical representation of estimated densities and overlapping area.

Usage

```r
final.plot( x, OV = NULL )
```

Arguments

- **x**: list of numerical vectors to be compared; each vector is an element of the list, see `overlap`
- **OV**: Optional vector of overlapping areas obtained by `overlap`

Details

It requires the package `ggplot2`.

Author(s)

Massimiliano Pastore

Examples

```r
set.seed(20150605)
x <- list(X1=rnorm(100),X2=rt(50,8),X3=rchisq(80,2))
out <- overlap(x)
final.plot(x,out$OV)
```
Description

It gives the overlapped estimated area of two or more kernel density estimations from empirical data.

Usage

\[
\text{overlap}(\text{x, nbins = 1024, plot = FALSE,} \\
\quad \text{partial.plot = FALSE, boundaries = NULL, ... })
\]

Arguments

- **x**: list of numerical vectors to be compared; each vector is an element of the list
- **nbins**: number of equally spaced points at which the overlapping density is evaluated; see \text{density} for details
- **plot**: logical, if TRUE, final plot of estimated densities and overlapped areas is produced
- **partial.plot**: logical, if TRUE, partial paired distributions are plotted
- **boundaries**: an optional list for bounded distributions, see Details
- **...**: optional arguments to be passed to function \text{density}

Details

If the list \text{x} contains more than two elements (i.e. more than two distributions) it computes overlapping between all paired distributions. Partial plots refer to these paired distributions.

If \text{plot=}TRUE, all overlapped areas are plotted. It requires \text{ggplot2}.

The optional list \text{boundaries} must contain two elements: \text{from} and \text{to}, indicating the empirical limits of input variables. Each element must be of length equal to the input data list \text{x} or, at least, length one when all boundaries are equal for all distributions. See examples below.

Value

It returns a list containing the following components:

- **DD**: Data frame with information used for computing overlapping, containing the following variables: \text{x}, coordinates of the points where the density is estimated; \text{y1} and \text{y2}, densities; \text{ovy}, density for estimating overlapping area (i.e. \text{min(y1,y2)}); \text{ally}, density for estimating whole area (i.e. \text{max(y1,y2)}); \text{dominance}, indicates which distribution has the highest density; \text{k}, label indicating which distributions are compared.
- **OV**: Estimates of overlapped areas relative to each pair of distributions.
- **xpoints**: List of abscissas of intersection points among the density curves.
Note

Call function `final.plot`.

Author(s)

Massimiliano Pastore

References

Examples

```r
set.seed(20150605)
x <- list(X1=rnorm(100), X2=rt(50,8), X3=rchisq(80,2))
out <- overlap(x, plot=TRUE)
out$OV

# including boundaries
x <- list(X1=runif(100), X2=runif(100,.5,1))
boundaries <- list(from = c(0,.5), to = c(1,1))
out <- overlap(x, plot=TRUE, boundaries=boundaries)
out$OV

# equal boundaries
x <- list(X1=runif(100), X2=runif(50), X3=runif(30))
boundaries <- list(from = 0, to = 1)
out <- overlap(x, plot=TRUE, boundaries=boundaries)
out$OV

# changing kernel
out <- overlap(x, plot=TRUE, kernel="rectangular")
out$OV
```
Index

*Topic utility
 boot.overlap, 2
 cutnumeric, 3
 final.plot, 4
 overlap, 5

boot.overlap, 2

cut, 4

cutnumeric, 3

density, 5

final.plot, 4, 6

overlap, 2, 4, 5