Package ‘overlapping’

August 20, 2019

Type Package

Title Estimation of Overlapping in Empirical Distributions

Version 1.5.4

Date 2019-08-17

Author Massimiliano Pastore

Maintainer Massimiliano Pastore <massimiliano.pastore@unipd.it>

Description Functions for estimating the overlapping area of two or more kernel density estimates from empirical data.

Depends R (>= 3.0.0), ggplot2, testthat

License GPL-2

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2019-08-20 15:40:02 UTC

R topics documented:

boot.overlap .. 2
cutnumeric ... 3
final.plot .. 4
overlap ... 5

Index 7
boot.overlap

Nonparametric Bootstrap for estimated overlapping area

Description

Bootstrap the estimated overlapping area of two or more kernel density estimations from empirical data.

Usage

```r
boot.overlap( x, B = 1000, ... )
```

Arguments

- `x` list of numerical vectors to be compared; each vector is an element of the list
- `B` integer, number of bootstrap draws
- `...` options, see function `overlap` for details

Details

If the list `x` contains more than two elements (i.e. more than two distributions) it computes bootstrap overlapping between all `q` number of paired distributions. For example, if `x` contains three elements, then `q = 3`; if `x` contains four elements, then `q = 6`, and so on.

Value

It returns a list containing the following components:

- `OVboot_stats` Data frame `q × 3`; each row containing the following statistics: `estOV`, estimated overlapping area; `bias`, difference between the bootstrap’s expected value and the observed value of the overlapping area: `E(\hat{\eta}^*) - \hat{\eta}`; `se`, bootstrap standard error \(\sigma_{\hat{\eta}} \).
- `OVboot_dist` Matrix `B × q`, `B` rows (bootstrap replicates) and `q` columns (depending on the number of elements of `x`); each column is a bootstrap distribution of an overlapping index.

Note

Call function `overlap`.

Author(s)

Massimiliano Pastore
References

Examples

set.seed(20150605)
x <- list(X1=rnorm(100), X2=rt(50,8), X3=rchisq(80,2))

bootstrapping
out <- boot.overlap(x, B = 10)
out$OVboot_stats

bootstrap quantile intervals
apply(out$OVboot_dist, 2, quantile, probs = c(.05, .9))

plot of bootstrap distributions
Y <- stack(data.frame(out$OVboot_dist))
ggplot(Y, aes(values)) + facet_wrap(~ind) + geom_density()

cutnumeric Numerical conversion

Description

It divides a numerical variable \(x \) in classes, and returns for each class the central value.

Internal function, generally not to be called by the user.

Usage

cutnumeric(x, n = 1000)

Arguments

\(x \) numeric vector
\(n \) number of classes

Details

It calls the \texttt{cut} function, and then converts factor classes in numeric classes, returning for each class its central value.
Value

It returns a numerical vector. The values are the central points of classes obtained by the function `cut`.

Author(s)

Massimiliano Pastore

See Also

cut

Examples

```r
x <- rnorm(50)
cutnumeric(x,5)
```

Description

Graphical representation of estimated densities and overlapping area.

Usage

```r
final.plot( x, OV = NULL )
```

Arguments

- `x` list of numerical vectors to be compared; each vector is an element of the list, see `overlap`
- `OV` Optional vector of overlapping areas obtained by `overlap`

Details

It requires the package `ggplot2`.

Author(s)

Massimiliano Pastore

Examples

```r
set.seed(20150605)
x <- list(X1=rnorm(100),X2=rt(50,8),X3=rchisq(80,2))
out <- overlap(x)
final.plot(x,out$OV)
```
Description

It gives the overlapped estimated area of two or more kernel density estimations from empirical data.

Usage

\[
\text{overlap(} x, \text{ nbins = 1024, plot = FALSE,}
\text{ partial.plot = FALSE, boundaries = NULL, ...)}
\]

Arguments

- **x**: list of numerical vectors to be compared; each vector is an element of the list
- **nbins**: number of equally spaced points at which the overlapping density is evaluated; see \text{density} for details
- **plot**: logical, if TRUE, final plot of estimated densities and overlapped areas is produced
- **partial.plot**: logical, if TRUE, partial paired distributions are plotted
- **boundaries**: an optional list for bounded distributions, see Details
- **...**: optional arguments to be passed to function \text{density}

Details

If the list \(x\) contains more than two elements (i.e. more than two distributions) it computes overlapping between all paired distributions. Partial plots refer to these paired distributions.

If \(\text{plot}=\text{TRUE}\), all overlapped areas are plotted. It requires \text{ggplot2}.

The optional list \text{boundaries} must contain two elements: from and to, indicating the empirical limits of input variables. Each element must be of length equal to the input data list \(x\) or, at least, length one when all boundaries are equal for all distributions. See examples below.

Value

It returns a list containing the following components:

- **DD**: Data frame with information used for computing overlapping, containing the following variables: \(x\), coordinates of the points where the density is estimated; \(y1\) and \(y2\), densities; \(ovy\), density for estimating overlapping area (i.e. \(\min(y1,y2)\)); \(ally\), density for estimating whole area (i.e. \(\max(y1,y2)\)); \text{dominance}, indicates which distribution has the highest density; \(k\), label indicating which distributions are compared.
- **OV**: Estimates of overlapped areas relative to each pair of distributions.
- **xpoints**: List of abscissas of intersection points among the density curves.
Note

Call function `final.plot`.

Author(s)

Massimiliano Pastore

References

Examples

```r
set.seed(20150605)
x <- list(X1=rnorm(100), X2=rt(50,8), X3=rchisq(80,2))
out <- overlap(x, plot=TRUE)
out$OV

# including boundaries
x <- list(X1=runif(100), X2=runif(100,.5,1))
boundaries <- list( from = c(0,.5), to = c(1,1) )
out <- overlap(x, plot=TRUE, boundaries=boundaries)
out$OV

# equal boundaries
x <- list(X1=runif(100), X2=runif(50), X3=runif(30))
boundaries <- list( from = 0, to = 1 )
out <- overlap(x, plot=TRUE, boundaries=boundaries)
out$OV

# changing kernel
out <- overlap(x, plot=TRUE, kernel="rectangular")
out$OV
```
Index

*Topic **utility**
 boot.overlap, 2
 cutnumeric, 3
 final.plot, 4
 overlap, 5

boot.overlap, 2

cut, 4

cutnumeric, 3

density, 5

final.plot, 4, 6

overlap, 2, 4, 5