Package ‘pRF’

October 14, 2022

Title Permutation Significance for Random Forests
Version 1.2
Type Package
Date 2015-10-02
Author Ankur Chakravarthy
Maintainer Ankur Chakravarthy <ankur.chakravarthy.10@ucl.ac.uk>
Description Estimate False Discovery Rates (FDRs) for importance metrics from
random forest runs.
License GPL-3
Depends R(>= 3.1.0)
Imports ggplot2, permute, randomForest, reshape2, dplyr(>= 0.4.1),
multitest(>= 2.25.0)
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-11 17:12:20

R topics documented:

 pRF-package ... 2
 pRF .. 2
 sigplot .. 4

Index 6
pRF-package

Permutation based approaches to Random Forest feature selection

Description

Functions to estimate the statistical significance of the Increase in MSE and Decrease in Gini Coefficient metrics of random forest feature importance. The main functions are pRF and sigplot. See documentation on these functions for information on how to use them.

Details

Package: pRF
Type: Package
Version: 1.0
Date: 2015-02-23
License: GPL-3

Author(s)

Ankur Chakravarthy
Maintainer: ankur.chakravarthy.10@ucl.ac.uk

References

The concept of permuting response variables is loosely based off

Description

The workhorse function - estimates statistical significance of feature importance by permuting the response variable

Usage

pRF(response, predictors, n.perms, alpha = 0.05, mtry = NULL, type = c("classification", "regression"), ntree = 500, seed=12345, ...)

Arguments

response
a character vector or a factor for classification containing the group memberships for classification, a numeric vector for regression

predictors
A matrix consisting of features (measurements) corresponding to samples. The orientation per se does not matter - the function orients them correctly for Random Forest learning.

n.perms
Number of permutations to estimate significance. If the number of all possible permutations is less than this the latter will be used for estimation.

alpha
The significance level threshold of p.values for estimating false discovery rate using the two-step BH method for correlated test statistics, as implemented in the multtest package's mt.rawp2adjp function.

mtry
see ?randomForest for details - defines how many features are randomly sampled for building trees

type
string, set to "classification" or "regression"

ntree
number of trees in the random forest, see documentation from the randomForest package for details.

seed
set seed to ensure reproducibility from run to run and to standardise runs on actual and permuted data

...
Arguments to pass on to the randomForest function

Value

A standardised list containing

- Res.table
 A data.frame containing significance, FDR, and the feature name. \(b= \) number of permutations yielding a higher importance than observed + 1, \(m= \) number of permutations + 1

- obs
 named numeric vector, contains observed importances

- perms
 data.frame, contains importance values from permutations

- Model
 the randomForest model that was fit to the original data

Author(s)

Ankur Chakravarthy

References

The main function is based on the idea presented in

The permutation p.values in the package are exact, calculated according to

False discovery rates account for correlations using the Two-Step BH procedure, initially reported in Yoav Benjamini, Abba M. Krieger, and Daniel Yekutieli, 'Adaptive Linear Step-up Procedures That Control the False Discovery Rate', Biometrika, 93 (2006), 491-507.

Examples

```r
#Load the iris dataset
data(iris)

#Set up the predictors object
predictors=iris[,c(1:4)]
colnames(predictors)<-colnames(iris[1:4])

#Execute the main pRF function
p.test<-pRF(response=factor(iris$Species),
predictors=iris[,c(1:4)],n.perms=20,mtry=3,
type="classification",alpha=0.05)

#Put together a dataframe that consists of the
#significance stats and observed importance metrics
df<-cbind(p.test$Res.table,p.test$obs)
```

Description

Plots observed importance and null distribution for a pRF output list.

Usage

`sigplot(pRF.list,threshold)`

Arguments

- `pRF.list` output from a pRF run.
- `threshold` False Discovery Rate cutoff for plotting. Default is 0.05

Value

a ggplot2 plot

Author(s)

Ankur Chakravarthy
See Also
pRF

Examples

Load the iris dataset
data(iris)

Set up the predictors object
predictors=iris[,c(1:4)]
colnames(predictors)<-colnames(iris[,1:4])

Execute the main pRF function
p.test<-pRF(response=factor(iris$Species),
predictors=iris[,c(1:4)],n.perms=20,mtry=3,
type="classification",alpha=0.05)

Plot
sigplot(pRF.list=p.test,threshold=0.1)
Index

pRF, 2
pRF-package, 2
sigplot, 4