Package ‘pRecipe’

January 31, 2024

Title Precipitation R Recipes
Version 3.0.1-3
Description An open-access tool/framework to download, validate, visualize, and analyze multi-source precipitation data. More information and an example of implementation can be found in Vargas Godoy and Markonis (2023, <doi:10.1016/j.envsoft.2023.105711>).
Depends R (>= 4.0.0)
Imports grDevices, methods, parallel, stats, utils, data.table, doParallel, foreach, ggplot2, ggrepur, lubridate, magrittr, ncdf4, openair, raster, scales, sf, sp
License GPL-3
Encoding UTF-8
URL https://github.com/MiRoVaGo/pRecipe
BugReports https://github.com/MiRoVaGo/pRecipe/issues
RoxygenNote 7.3.1
Suggests kableExtra, knitr, rmarkdown, spelling, testthat (>= 3.0.0), tibble
Config/testthat/edition 3
Language en-US
VignetteBuilder knitr
NeedsCompilation no
Author Mijael Rodrigo Vargas Godoy [aut, cre]
(<https://orcid.org/0000-0002-1828-9266>), Yannis Markonis [aut, ths] (<https://orcid.org/0000-0003-0144-8969>)
Maintainer Mijael Rodrigo Vargas Godoy <mirovago@gmail.com>
Repository CRAN
Date/Publication 2024-01-31 15:30:10 UTC
R topics documented:

- `crop_data` ... 2
- `csi` ... 3
- `download_data` .. 4
- `download_e_obs` .. 5
- `far` ... 6
- `fldmean` .. 6
- `infoNC` ... 7
- `label` ... 8
- `muldpm` ... 9
- `nse` ... 10
- `plot_box` ... 11
- `plot_density` ... 12
- `plot_heatmap` ... 13
- `plot_line` .. 14
- `plot_map` ... 15
- `plot_summary` ... 15
- `plot_taylor` ... 16
- `pod` ... 17
- `pRecipe_masks` ... 18
- `remap` ... 18
- `saveNC` ... 19
- `subset_data` ... 20
- `tabular` ... 21
- `trend` ... 22
- `yearstat` .. 22

Index 24

| crop_data | Crop precipitation data sets |

Description

The function `crop_data` crops the data sets using a shapefile mask.

Usage

```r
crop_data(x, y)
```

```r
## S4 method for signature 'Raster'
crop_data(x, y)
```

```r
## S4 method for signature 'data.table'
crop_data(x, y)
```

```r
## S4 method for signature 'character'
crop_data(x, y)
```
Arguments

- **x**

 Raster* object; data.table (see details); filename (character; see details)

- **y**

 filename (character). Path to a *.shp* file

Details

If `x` is a data.table, its columns should be named: "lon", "lat", "date", and "value"

If `x` is a filename, it should point to a *.nc* file.

Value

Raster* object; data.table

Examples

```r
## Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(),
  
  
  
  
  "gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- crop_data(r, "cze.shp")
## End(Not run)
```

csi

Probability of Detection

Description

Function for calculating the critical success index.

Usage

```r
csi(x, ref, th)
```

Arguments

- **x**

 a data.table generated by `fldmean`

- **ref**

 a data.table with data used for evaluation

- **th**

 numeric. The value for detection threshold

Value

numeric
download_data

Download various precipitation data products

Description

The function download_data downloads the selected data product.

Usage

```r
download_data(
    dataset = "all",
    path = ".",
    domain = "raw",
    timestep = "monthly"
)
```

Arguments

dataset a character string with the name(s) of the desired data set. Suitable options are:
- "all" for all of the below listed data sets (default),
- "20cr" for 20CR v3,
- "chirps" for CHIRPS v2.0,
- "cmap" for CMAP standard version,
- "cmorph" for CMORPH,
- "cpc" for CPC-Global,
- "cru-ts" for CRU_TS v4.06,
- "em-earth" for EM-EARTH,
- "era20c" for ERA-20C,
- "era5" for ERA5,
- "fldas" for FLDAS,
- "ghcn" for GHCN-M v2,
- "gldas-clsm" for GLDAS CLSM,
- "gldas-noah" for GLDAS NOAH,
- "gldas-vic" for GLDAS VIC,
- "gpc" for GPCC v2020,
- "gpcp" for GPCP v2.3,
- "gpm_imerg" for GPM IMERGM Final v06,
- "jra55" for JRA-55,
- "merra2" for MERRA-2,
- "mswep" for MSWEP v2.8,
- "ncep-doe" for NCEP/DOE,
- "ncep-ncar" for NCEP/NCAR,
- "persiann" for PERSIANN-CDR,
download_e_obs

- "precl" for PREC/L,
- "terraclimate" for TerraClimate,
- "trmm-3b43" for TRMM 3B43 v7,
- "udel" for UDEL v501.

path a character string with the path where the database will be downloaded.
domain a character string with the desired domain data set. Suitable options are:
 - "raw" for default available spatial coverage,
 - "global" for data sets with global (land and ocean) coverage,
 - "land" for data sets with land only coverage,
 - "ocean", for data sets with ocean only coverage.
timestep a character string with the desired time resolution. Suitable options are:
 - "monthly",
 - "yearly".

Value

No return value, called to download the required data sets.

Examples

```r
download_data("gldas-vic", tempdir(), timestep = "yearly")
```

download_e_obs

E- OBS data downloader

Description

Function for downloading E-OBS.

Usage

```r
download_e_obs(folder_path = ".", time_res = "monthly")
```

Arguments

- `folder_path` a character string with the path where the data will be downloaded.
- `time_res` a character string with the desired time resolution. Suitable options are:
 - "monthly",
 - "yearly".

Value

No return value, called to download the data set.
far

False Alarm Rate

Description

Function for calculating the false alarm rate.

Usage

```
far(x, ref, th)
```

Arguments

- `x` a data.table generated by `fldmean`
- `ref` a data.table with data used for evaluation
- `th` numeric. The value for detection threshold

Value

numeric

fldmean

Field mean

Description

The function `fldmean` computes the spatial weighted average for each timestep.

Usage

```
fldmean(x)
```

```
## S4 method for signature 'Raster'
fldmean(x)
```

```
## S4 method for signature 'data.table'
fldmean(x)
```

```
## S4 method for signature 'character'
fldmean(x)
```

Arguments

- `x` Raster* object; data.table (see details); filename (character, see details)
infoNC

Details

If 'x' is a data.table, its columns should be named: "lon", "lat", "date", and "value"

If 'x' is a filename, it should point to a *.nc file.

Value

data.table

Examples

```r
## Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(), 
"/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- fldmean(r)
## End(Not run)
```

Description

The function `infoNC` displays the specification of the desired file.

Usage

```r
infoNC(x)
```

```r
# S4 method for signature 'Raster'
infoNC(x)
```

```r
# S4 method for signature 'character'
infoNC(x)
```

Arguments

- **x** Raster* Object; character
Description

The function `label` adds data set name and source type.

Usage

`label(x, y)`

Arguments

- `x` data.table (see details)
- `y` character (see details)

Details

columns in ‘x’ should be named (if present): "lon", "lat", "date", and "value"

Available options are:

- "20cr" for 20CR v3,
- "chirps" for CHIRPS v2.0,
- "cmap" for CMAP standard version,
- "cmorph" for CMORPH,
- "cpc" for CPC-Global,
- "cru-ts" for CRU_TS v4.06,
- "em-earth" for EM-EARTH,
- "era20c" for ERA-20C,
- "era5" for ERA5,
- "fldas" for FLDAS,
- "ghcn" for GHCN-M v2,
- "gldas-clsm" for GLDAS CLSM,
- "gldas-noah" for GLDAS NOAH,
- "gldas-vic" for GLDAS VIC,
- "gleam" for GLEAM v3.7a,
- "gpcc" for GPCC v2020,
- "gpcp" for GPCP v2.3,
- "gpm_imerg" for GPM IMERGM Final v06,
- "jra55" for JRA-55,
- "merra2" for MERRA-2,
muldpm

- "mswep" for MSWEP v2.8,
- "ncep-doe" for NCEP/DOE,
- "ncep-ncar" for NCEP/NCAR,
- "persiann" for PERSIANN-CDR,
- "precl" for PREC/L,
- "terraclimate" for TerraClimate,
- "trmm-3b43" for TRMM 3B43 v7,
- "udel" for UDEL v501.

Value
data.table

Examples

Not run:
r <- data.table::data.table("date" = as.Date("2000-01-01"), "value" = 42)
s <- label(r, "mswep")
End(Not run)

muldpm

Multiply by days per month

Description

The function muldpm multiplies the value by days per month.

Usage

muldpm(x)

S4 method for signature 'Raster'
muldpm(x)

S4 method for signature 'data.table'
muldpm(x)

S4 method for signature 'character'
muldpm(x)

Arguments

x Raster* object; data.table (see details); filename (character, see details)
Details

‘x’ object with monthly data in [units/day]
If ‘x’ is a data.table, its columns should be named: ”lon”, ”lat”, ”date”, and ”value”
If ‘x’ is a filename, it should point to a *.nc file.

Value

Raster* object; data.table

Examples

```r
## Not run:
tavg_brick <- raster::brick(’terraclimate_tavg.nc’)
pet_od <- pet(method = ”od”, tavg = tavg_brick)
pet_od <- muldpm(pet_od)
## End(Not run)
```

nse
Nash–Sutcliffe Efficiency

Description

Function for calculating the Nash–Sutcliffe efficiency.

Usage

```r
nse(x, ref)
```

Arguments

- **x**: a data.table generated by **fldmean**
- **ref**: a data.table with data used for evaluation

Value

numeric
Description

Convenient and aesthetic visualization of data in a boxplot.

Usage

```
plot_box(x, var = "Precipitation", unit = "mm")
```

```r
## S4 method for signature 'Raster'
plot_box(x, var = "Precipitation", unit = "mm")
```

```r
## S4 method for signature 'data.table'
plot_box(x, var = "Precipitation", unit = "mm")
```

```r
## S4 method for signature 'character'
plot_box(x, var = "Precipitation", unit = "mm")
```

Arguments

- `x`: Raster* object; data.table (see details); filename (character, see details)
- `var`: character (see details)
- `unit`: character (see details)

Details

If `x` is a data.table, its columns should be named: "lon", "lat", "date", and "value"

If `x` is a filename, it should point to a *.nc file.

`var` is a character string describing the variable to be used for the plot title

`unit` is a character string describing the unit of measurement to be used for the plot title

Value

ggplot object

Examples

```r
## Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(),
"/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- plot_box(r)
```

End(Not run)
plot_density

Histogram ggplot

Description

Convenient and aesthetic visualization of data in a histogram.

Usage

plot_density(x, var = "Precipitation", unit = "mm")

S4 method for signature 'Raster'
plot_density(x, var = "Precipitation", unit = "mm")

S4 method for signature 'data.table'
plot_density(x, var = "Precipitation", unit = "mm")

S4 method for signature 'character'
plot_density(x, var = "Precipitation", unit = "mm")

Arguments

x Raster* object; data.table (see details); filename (character, see details)
var character (see details)
unit character (see details)

Details

If ‘x’ is a data.table, its columns should be named: "lon", "lat", "date", and "value"
If ‘x’ is a filename, it should point to a *.nc file.
‘var’ is a character string describing the variable to be used for the axis title.
‘unit’ is a character string describing the unit of measurement to be used for the axis title.

Value

ggplot object

Examples

Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(),
="/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- plot_density(r)

End(Not run)
Description

Convenient and aesthetic visualization of data in a heatmap.

Usage

plot_heatmap(x, unit = "mm")

S4 method for signature 'Raster'
plot_heatmap(x, unit = "mm")

S4 method for signature 'data.table'
plot_heatmap(x, unit = "mm")

S4 method for signature 'character'
plot_heatmap(x, unit = "mm")

Arguments

x Raster* object; data.table (see details); filename (character, see details)
unit character (see details)

Details

If ‘x’ is a data.table, its columns should be named: "IOn", "Iat", "date", and "value"
If ‘x’ is a filename, it should point to a *.nc file.
‘unit’ is a character string describing the unit of measurement to be used for the axis title

Value

ggplot object

Examples

Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(),
"/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- plot_heatmap(r)

End(Not run)
Description

Convenient and aesthetic visualization of data in a line plot.

Usage

plot_line(x, var = "Precipitation", unit = "mm")
S4 method for signature 'Raster'
plot_line(x, var = "Precipitation", unit = "mm")
S4 method for signature 'data.table'
plot_line(x, var = "Precipitation", unit = "mm")
S4 method for signature 'character'
plot_line(x, var = "Precipitation", unit = "mm")

Arguments

x Raster* object; data.table (see details); filename (character, see details)
var character (see details)
unit character (see details)

Details

If `x` is a data.table, its columns should be named: "lon", "lat", "date", and "value"
If `x` is a filename, it should point to a *.nc file.
`var` is a character string describing the variable to be used for the axis title
`unit` is a character string describing the unit of measurement to be used for the axis title

Value

ggplot object

Examples

Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(),
"/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- plot_line(r)
End(Not run)
plot_map

Map ggplot

Description

Convenient and aesthetic visualization of data in a map

Usage

```r
plot_map(x, unit = "mm")
```

```r
## S4 method for signature 'Raster'
plot_map(x, unit = "mm")
```

```r
## S4 method for signature 'data.table'
plot_map(x, unit = "mm")
```

```r
## S4 method for signature 'character'
plot_map(x, unit = "mm")
```

Arguments

- `x` Raster* object; data.table (see details); filename (character, see details)
- `unit` character

Details

If ‘x’ is a data.table, its columns should be named: "lon", "lat", "date", and "value"

If ‘x’ is a filename, it should point to a *.nc file.

‘unit’ is a character string describing the unit of measurement to be used for the legend title

Value

ggplot object

plot_summary

Summary ggplot

Description

Convenient and aesthetic visualization of data in a summary plot.
Usage

plot_summary(x, var = "Precipitation", unit = "mm")

S4 method for signature 'Raster'
plot_summary(x, var = "Precipitation", unit = "mm")

S4 method for signature 'data.table'
plot_summary(x, var = "Precipitation", unit = "mm")

S4 method for signature 'character'
plot_summary(x, var = "Precipitation", unit = "mm")

Arguments

x Raster* object; data.table (see details); filename (character, see details)
var character (see details)
unit character (see details)

Details

If ‘x’ is a data.table, its columns should be named: "lon", "lat", "date", and "value"
If ‘x’ is a filename, it should point to a *.nc file.
‘var’ is a character string describing the variable to be used for the axis title
‘unit’ is a character string describing the unit of measurement to be used for the axis title

Value

ggplot object

Examples

Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(),
"/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- plot_summary(r)

End(Not run)

plot_taylor Taylor diagram

Description

Convenient and aesthetic visualization of data in a Taylor diagram.
Usage

plot_taylor(x, y, groups = "source", ...)

Arguments

x
data.table
y
data.table
groups
character
...
see details

Details

'x' columns should be named: "lon", "lat", "date", "value", "dataset", and "source". The last two columns are added using the label.

'y' columns should be named: "lon", "lat", "date", "value", "dataset", and "source". The last two columns are added using the label.

'groups' character to define panels. Suitable options are:

- "source" (default)
- "seasons" (only works properly with monthly data)

'...' extra arguments passed on to openair::TaylorDiagram

Value

plot object

pod
Probability Of Detection

Description

Function for calculating the probability of detection.

Usage

pod(x, ref, th)

Arguments

x
a data.table generated by fldmean
ref
a data.table with data used for evaluation
th
numeric. The value for detection threshold

Value

numeric
pRecipe_masks
Masks data

Description
Function for various masks.

Usage
pRecipe_masks()

Value
data.table

remap
Spatial aggregation

Description
The function remap aggregates data into a new grid resolution.

Usage
remap(x, y)

```r
## S4 method for signature 'Raster'
remap(x, y)

## S4 method for signature 'data.table'
remap(x, y)

## S4 method for signature 'character'
remap(x, y)
```

Arguments
- `x` Raster* object; data.table (see details); filename (character, see details)
- `y` numeric

Details
If `x` is a data.table, its columns should be named: "lon", "lat", "date", and "value"
If `x` is a filename, it should point to a *.nc file."
saveNC

Value

Raster* object; data.table

Examples

```r
## Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(), 
"/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- remap(r, 1)
## End(Not run)
```

Description

Function to save data compatible with pRecipe in .nc file

Usage

```r
saveNC(x, file, name = "tp", longname = "Total precipitation", units = "mm")
```

Arguments

- `x`: Raster* object
- `file`: character
- `name`: character
- `longname`: character
- `units`: character

Value

No return value, called to save a file

Examples

```r
## Not run:
save_nc(dummie_brick, "gpcp_tp_mm_global_197901_202205_025_monthly.nc")
## End(Not run)
```
subset_data

Subset data in space and time

Description

The function subset_data subsets the data in space within a bounding box, and/or in time within a year range.

Usage

subset_data(x, box = NULL, yrs = NULL)

S4 method for signature 'Raster'
subset_data(x, box = NULL, yrs = NULL)

S4 method for signature 'data.table'
subset_data(x, box = NULL, yrs = NULL)

S4 method for signature 'character'
subset_data(x, box = NULL, yrs = NULL)

Arguments

x

Raster* object; data.table (see details); filename (character, see details)

box

numeric. Bounding box in the form: (xmin, xmax, ymin, ymax)

yrs

numeric. Time range in the form: (start_year, end_year)

Details

If 'x' is a data.table, its columns should be named: "lon", "lat", "date", and "value"

If 'x' is a filename, it should point to a *.nc file.

If subsetting only in space or time then the arguments must be passed by name. I.e., subset_data(x, box = ...) (space) or subset_data(x, yrs = ...) (time)

Value

Raster* object; data.table

Examples

Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(), "/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
sd <- subset_data(r, c(12.24, 18.85, 48.56, 51.12), c(2000, 2010))
ss <- subset_data(r, box = c(12.24, 18.85, 48.56, 51.12))
st <- subset_data(r, yrs = c(2000, 2010))
tabular

Transform raster into data.table

Description

Function to transform a raster brick into a data.table

Usage

```r
tabular(x)
```

S4 method for signature 'Raster'

```r
tabular(x)
```

S4 method for signature 'character'

```r
tabular(x)
```

Arguments

- **x**
 Raster* object; filename (character, see details)

Value

data.table

Examples

```r
## Not run:
download_data("gldas-vic", tempdir(), timestep = "yearly")
r <- raster::brick(paste0(tempdir(), "/gldas-vic_tp_mm_land_194801_201412_025_yearly.nc"))
s <- tabular(r)
```

End(Not run)
Description
The function `trend` computes linear slope.

Usage
```
trend(x)
```

S4 method for signature 'Raster'
```
trend(x)
```

S4 method for signature 'data.table'
```
trend(x)
```

S4 method for signature 'character'
```
trend(x)
```

Arguments
- **x**
 - Raster* object; data.table (see details); filename (character, see details)

Details
- If `x` is a data.table, its columns should be named: "lon", "lat", "date", and "value"
- If `x` is a filename, it should point to a *.nc file.

Value
- Raster* object; data.table

Description
The function `yearstat` aggregates the data from monthly to yearly.
yearstat

Usage

yearstat(x, stat = "sum")

S4 method for signature 'Raster'
yearstat(x, stat = "sum")

S4 method for signature 'data.table'
yearstat(x, stat = "sum")

S4 method for signature 'character'
yearstat(x, stat = "sum")

Arguments

x Raster* object; data.table (see details); filename (character, see details)
stat character

Details

If ‘x’ is a data.table, its columns should be named: "lon", "lat", "date", and "value"
If ‘x’ is a filename, it should point to a *.nc file.
‘stat’ is a character string describing the desired aggregation function. Suitable options are:
 • "max"
 • "mean"
 • "median"
 • "min"
 • "sum" (default)

Value

Raster* object; data.table

Examples

Not run:
download_data("gldas-vic", path = tempdir())
r <- raster::brick(paste0(tempdir(),
 "/gldas-vic_tp_mm_land_194801_201412_025_monthly.nc"))
s <- yearstat(r, "mean")

End(Not run)
Index

crop_data, 2
crop_data, character-method (crop_data), 2
crop_data, data.table-method (crop_data), 2
crop_data, Raster-method (crop_data), 2
csi, 3
download_data, 4
download_e_obs, 5
far, 6
fldmean, 3, 6, 10, 17
fldmean, character-method (fldmean), 6
fldmean, data.table-method (fldmean), 6
fldmean, Raster-method (fldmean), 6
infoNC, 7
infoNC, character-method (infoNC), 7
infoNC, Raster-method (infoNC), 7
label, 8, 17
muldpm, 9
muldpm, character-method (muldpm), 9
muldpm, data.table-method (muldpm), 9
muldpm, Raster-method (muldpm), 9
nse, 10
plot_box, 11
plot_box, character-method (plot_box), 11
plot_box, data.table-method (plot_box), 11
plot_box, Raster-method (plot_box), 11
plot_density, 12
plot_density, character-method (plot_density), 12
plot_density, data.table-method (plot_density), 12
plot_density, Raster-method (plot_density), 12
plot_heatmap, 13
plot_heatmap, character-method (plot_heatmap), 13
plot_heatmap, data.table-method (plot_heatmap), 13
plot_heatmap, Raster-method (plot_heatmap), 13
plot_line, 14
plot_line, character-method (plot_line), 14
plot_line, data.table-method (plot_line), 14
plot_line, Raster-method (plot_line), 14
plot_map, 15
plot_map, character-method (plot_map), 15
plot_map, data.table-method (plot_map), 15
plot_map, Raster-method (plot_map), 15
plot_summary, 15
plot_summary, character-method (plot_summary), 15
plot_summary, data.table-method (plot_summary), 15
plot_summary, Raster-method (plot_summary), 15
plot_taylor, 16
pod, 17
pRecipe_masks, 18
remap, 18
remap, character-method (remap), 18
remap, data.table-method (remap), 18
remap, Raster-method (remap), 18
saveNC, 19
subset_data, 20
subset_data, character-method (subset_data), 20
INDEX

subset_data, data.table-method
 (subset_data), 20
subset_data, Raster-method
 (subset_data), 20

tabular, 21
 tabular, character-method (tabular), 21
 tabular, Raster-method (tabular), 21
TaylorDiagram, 17
trend, 22
 trend, character-method (trend), 22
 trend, data.table-method (trend), 22
 trend, Raster-method (trend), 22

yearstat, 22
 yearstat, character-method (yearstat), 22
 yearstat, data.table-method (yearstat), 22
 yearstat, Raster-method (yearstat), 22