Package ‘pagoda2’

March 4, 2021

Title Single Cell Analysis and Differential Expression

Version 1.0.2

Description
Analyzing and interactively exploring large-scale single-cell RNA-seq datasets. ‘pagoda2’ primarily performs normalization and differential gene expression analysis, with an interactive application for exploring single-cell RNA-seq datasets. It performs basic tasks such as cell size normalization, gene variance normalization, and can be used to identify subpopulations and run differential expression within individual samples. ‘pagoda2’ was written to rapidly process modern large-scale scRNAseq datasets of approximately 1e6 cells. The companion web application allows users to explore which gene expression patterns form the different subpopulations within your data. The package also serves as the primary method for preprocessing data for conos, <https://github.com/kharchenkolab/conos>. This package interacts with data available through the ‘p2data’ package, which is available in a ‘drat’ repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/pagoda2>. The size of the ‘p2data’ package is approximately 6 MB.

License GPL-3

Copyright See the file COPYRIGHTS for various pagoda2 copyright details

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0), Matrix, igraph

biocViews

Imports dendsort, drat, fastcluster, graphics, grDevices, irlba, magrittr, MASS, mgcv, methods, N2R, parallel, plyr, R.utils, Rcpp, rjson, rlang, R6, RMTstat, Rook, Rtsne, scscore (>= 0.1.1), stats, urltools, utils

RoxygenNote 7.1.1

Suggests AnnotationDbi, base64enc, BiocGenerics, BiocParallel, colorRamps, data.table, dbscan, dplyr, ggplot2, GO.db, gridExtra, KernSmooth, knitr, org.Dr.eG.db, org.Hs.eG.db, org.Mm.eG.db, p2data, pcaMethods, pheatmap, rgl, rmarkdown, robustbase, scde, testthat, uwot
VignetteBuilder knitr
Additional_repositories https://kharchenkolab.github.io/drat/

URL https://github.com/kharchenkolab/pagoda2

BugReports https://github.com/kharchenkolab/pagoda2/issues

NeedsCompilation yes

LinkingTo Rcpp, RcppArmadillo, RcppProgress, RcppEigen

Author Nikolas Barkas [aut], Viktor Petukhov [aut], Peter Kharchenko [aut], Simon Steiger [eth], Evan Biederstedt [cre, aut]

Maintainer Evan Biederstedt <evan.biederstedt@gmail.com>

Repository CRAN

Date/Publication 2021-03-04 07:50:11 UTC

R topics documented:

armaCor .. 4
basicP2proc ... 4
basicP2web .. 6
buildWijMatrix ... 6
calcMulticlassified .. 7
cellsPerSelectionGroup 7
collapse.aspect.clusters 8
compareClusterings ... 8
extendedP2proc .. 9
factorFromP2Selection ... 9
factorListToMetadata .. 10
factorToP2selection .. 11
gene.vs.molecule.cell.filter 11
generateClassificationAnnotation 12
get.control.geneset .. 13
get.de.geneset .. 13
getCellInSelections .. 14
gerClusterLabelsFromSelection 14
gerColorsFromP2Selection 15
gerIntExtNamesP2Selection 16
hierDiffToGenesets .. 16
make.p2.app .. 17
minMaxScale ... 18
namedNames ... 19
p2.generate.dr.go .. 19
p2.generate.go .. 20
p2.generate.human.go .. 21
R topics documented:

- p2.generate.mouse.go .. 21
- p2.make.pagoda1.app ... 22
- p2.metadata.from.factor ... 23
- p2.toweb.hdea ... 24
- p2ViewPagodaApp .. 25
- pagoda.reduce.loading.redundancy 27
- pagoda.reduce.redundancy 28
- pagoda2WebApp-class ... 29
- pagoda2WebApp_arrayToJSON 30
- pagoda2WebApp_availableAspectsJSON 30
- pagoda2WebApp_call .. 31
- pagoda2WebApp_cellmetadataJSON 31
- pagoda2WebApp_cellOrderJSON 31
- pagoda2WebApp_geneInformationJSON 32
- pagoda2WebApp_generateDendrogramOfGroups 32
- pagoda2WebApp_generateEmbeddingStructure 32
- pagoda2WebApp_generateGeneKnnJSON 33
- pagoda2WebApp_getCompressedEmbedding 33
- pagoda2WebApp_packCompressFloat64Array 34
- pagoda2WebApp_packCompressInt32Array 34
- pagoda2WebApp_readStaticFile 34
- pagoda2WebApp_reducedDendrogramJSON 35
- pagoda2WebApp_serializeToStaticFast 35
- pagoda2WebApp_serverLog 35
- pagoda2WebApp_sparseMatList 36
- pathway.pc.correlation.distance 36
- plotMulticlassified .. 37
- plotOneWithValues ... 37
- plotSelectionOverlaps ... 38
- projectKNNs ... 38
- read.10x.matrices .. 40
- read10xMatrix ... 41
- readPagoda2SelectionAsFactor 42
- readPagoda2SelectionFile 42
- removeSelectionOverlaps 43
- score.cells.nb0 ... 43
- score.cells.puram ... 44
- sgdBatches ... 44
- show.app .. 45
- subsetSignatureToData .. 45
- tp2c.view.pathways .. 46
- validateSelectionsObject 48
- webP2proc .. 48
- winsorize.matrix .. 49
- writeGenesAsPagoda2Selection 50
- writePagoda2SelectionFile 50

Index 51
armaCor

armaCor - matrix column correlations. Allows faster matrix correlations with armadillo. Similar to cor() call, will calculate correlation between matrix columns.

Usage

armaCor(mat)

Arguments

mat matrix

Value

matrix with columns as correlations

basicP2proc

Perform basic 'pagoda2' processing, i.e. adjust variance, calculate pca reduction, make knn graph, identify clusters with multilevel, and generate largeVis and tSNE embeddings.

Usage

basicP2proc(
 cd,
 n.cores = 1,
 n.odgenes = 3000,
 nPcs = 100,
 k = 30,
 perplexity = 50,
 log.scale = TRUE,
 trim = 10,
 keep.genes = NULL,
 min.cells.per.gene = 0,
 min.transcripts.per.cell = 100,
basicP2proc

```r
get.largevis = TRUE,
get.tsne = TRUE,
make.geneknn = TRUE
)
```

Arguments

- `cd` count matrix whereby rows are genes, columns are cells.
- `n.cores` numeric Number of cores to use (default=1)
- `n.odgenes` numeric Number of top overdispersed genes to use (default=3e3)
- `nPcs` numeric Number of PCs to use (default=100)
- `k` numeric Default number of neighbors to use in kNN graph (default=30)
- `perplexity` numeric Perplexity to use in generating tSNE and largeVis embeddings (default=50)
- `log.scale` boolean Whether to use log scale normalization (default=TRUE)
- `trim` numeric Number of cells to trim in winsorization (default=10)
- `keep.genes` optional set of genes to keep from being filtered out (even at low counts) (default=NULL)
- `min.cells.per.gene` numeric Minimal number of cells required for gene to be kept (unless listed in `keep.genes`) (default=0)
- `min.transcripts.per.cell` numeric Minimumal number of molecules/reads for a cell to be admitted (default=100)
- `get.largevis` boolean Whether to calculate largeVis embedding (default=TRUE)
- `get.tsne` boolean Whether to calculate tSNE embedding (default=TRUE)
- `make.geneknn` boolean Whether pre-calculate gene kNN (for gene search) (default=TRUE)

Value

a new 'Pagoda2' object

Examples

```r
## load count matrix
cm <- p2data::sample_BM1
## perform basic p2 processing
p2 <- basicP2proc(cm)
```
basicP2web

Generate a 'pagoda2' web application from a 'Pagoda2' object

Description

Generate a 'pagoda2' web application from a 'Pagoda2' object

Usage

basicP2web(p2, app.title = "Pagoda2", extraWebMetadata = NULL, n.cores = 4)

Arguments

p2 a 'Pagoda2' object
app.title name of application as displayed in the browser title (default='Pagoda2')
extraWebMetadata additional metadata generated by p2.metadata.from.fractor (default=NULL)
n.cores numeric Number of cores to use for differential expression calculation (default=4)

Value

a 'pagoda2' web object

buildWijMatrix

Rescale the weights in an edge matrix to match a given perplexity. From 'largeVis', <https://github.com/elbamos/largeVis>

Description

Rescale the weights in an edge matrix to match a given perplexity. From 'largeVis', <https://github.com/elbamos/largeVis>

Usage

buildWijMatrix(x, threads = NULL, perplexity = 50)

Arguments

x An edgematrix, either an ‘edgematrix’ object or a sparse matrix.
threads numeric The maximum number of threads to spawn (default=NULL). Determined automatically if NULL (default=NULL)
perplexity numeric Given perplexity (default=50)
calcMulticlassified

Value
A list with the following components:

'\texttt{dist}' An \([N,K]\) matrix of the distances to the nearest neighbors.

'\texttt{id}' An \([N,K]\) matrix of the node indexes of the nearest neighbors. Note that this matrix is 1-indexed, unlike most other matrices in this package.

'\texttt{k}' The number of nearest neighbors.

calcMulticlassified

\textit{Returns a list vector with the number of cells that are present in more than one selections in the provided p2 selection object}

Description
Returns a list vector with the number of cells that are present in more than one selections in the provided p2 selection object

Usage

calcMulticlassified(sel)

Arguments

\texttt{sel} a pagoda2 selection as generated by readPagoda2SelectionFile

Value

list vector with the number of cells that are present in more than one selections in the provided p2 selection object

cellsPerSelectionGroup

\textit{Get the number of cells in each selection group}

Description
Get the number of cells in each selection group

Usage
cellsPerSelectionGroup(selection)

Arguments

\texttt{selection} a pagoda2 selection list
Value

a named vector of cell numbers in each groups

collapse.aspect.clusters

Collapse aspect patterns into clusters

Description

Collapse aspect patterns into clusters

Usage

```r
collapse.aspect.clusters(d, dw, ct, scale = TRUE, pick.top = FALSE)
```

Arguments

- `d`: matrix of normalized aspect patterns (rows: significant aspects, columns: cells), normally the output xv in 'tamr', the combined pathways that show similar expression patterns
- `dw`: corresponding weight matrix to parameter 'd'
- `ct`: clusters, the output of fastcluster::hclust()
- `scale`: boolean Whether to scale aspects (default=TRUE)
- `pick.top`: boolean Whether to pick top aspects (default=FALSE)

Value

list of clusters from matrix of normalized aspect patterns and clusters from the corresponding weight matrix

compareClusterings

Compare two different clusterings provided as factors by plotting a normalised heatmap

Description

Compare two different clusterings provided as factors by plotting a normalised heatmap

Usage

```r
compareClusterings(cl1, cl2, filename = NA)
```
extendedP2proc

Arguments

cl1 clustering 1, a named factor
cl2 clustering 2, a named factor
filename an optional filename to save the plot instead of displaying it, will be passed to pheatmap (default=NA)

Value

invisible summary table that gets plotted

Description

Perform extended 'Pagoda2' processing. Generate organism specific GO environment and calculate pathway overdispersion.

Usage

extendedP2proc(p2, organism = "hs")

Arguments

p2 the 'Pagoda2' object
organism character Organisms hs (Homo Sapiens), mm (M. Musculus, mouse) or dr (D. Rerio, zebrafish) (default='hs')

Value

list of a 'Pagoda2' object and go.env

factorFromP2Selection

Returns a factor of cell membership from a p2 selection object the factor only includes cells present in the selection. If the selection contains multiclassified cells an error is raised

Description

Returns a factor of cell membership from a p2 selection object the factor only includes cells present in the selection. If the selection contains multiclassified cells an error is raised
factorListToMetadata

Usage

factorFromP2Selection(sel, use.internal.name = FALSE, flatten = FALSE)

Arguments

sel a pagoda2 selection as generated by readPagoda2SelectionFile
use.internal.name boolean Whether to use field 'internal.name' as factor names (default=FALSE)
flatten boolean Whether to ignore multiclassified cells, overwriting randomly (default=FALSE)

Value

factor of cell membership from a p2 selection object. The factor only includes cells present in the selection.

factorListToMetadata

Converts a list of factors into 'pagoda2' metadata optionally filtering down to the cells present in the provided 'pagoda2' app.

Usage

factorListToMetadata(factor.list, p2 = NULL)

Arguments

factor.list list of factors named by the cell identifier
p2 'pagoda2' app to filter the factors by, optional (default=NULL)

Value

'pagoda2' web metadata object
factorToP2selection Converts a names factor to a p2 selection object if colors are provided it assigns those, otherwise uses a rainbow palette

Description

Converts a names factor to a p2 selection object if colors are provided it assigns those, otherwise uses a rainbow palette

Usage

factorToP2selection(cl, col = NULL)

Arguments

c1 factor

col names vector of colors (default=NULL)

Value

a p2 selection object (list)

gene.vs.molecule.cell.filter Filter cells based on gene/molecule dependency

Description

Filter cells based on gene/molecule dependency

Usage

gene.vs.molecule.cell.filter(
 countMatrix,
 min.cell.size = 500,
 max.cell.size = 50000,
 p.level = min(0.001, 1/ncol(countMatrix)),
 alpha = 0.1,
 plot = TRUE,
 do.par = TRUE
)
generateClassificationAnnotation

Given a cell clustering (partitioning) and a set of user provided selections generate a cleaned up annotation of cluster groups that can be used for classification

Usage

generateClassificationAnnotation(clustering, selections)

Arguments

clustering a factor that provides the clustering
selections a p2 selection object that provided by the web interfact user

Value

a named factor that can be used for classification

Arguments

countMatrix input count matrix to be filtered
min.cell.size numeric Min allowed cell size (default=500)
max.cell.size numeric Max allowed cell size (default=5e4)
p.level numeric Statistical confidence level for deviation from the main trend, used for cell filtering (default=min(1e-3,1/ncol(countMatrix)))
alpha numeric Shading of the confidence band (default=0.1)
plot boolean Plot the molecule distribution and the gene/molecule dependency fit (default=TRUE)
do.par boolean Reset graphical parameters prior to plotting (default=TRUE)

Value

a filtered matrix

Description

Given a cell clustering (partitioning) and a set of user provided selections generate a cleaned up annotation of cluster groups that can be used for classification

Usage

generateClassificationAnnotation(clustering, selections)

Arguments

clustering a factor that provides the clustering
selections a p2 selection object that provided by the web interfact user

Value

a named factor that can be used for classification
get.control.geneset

Get a control geneset for cell scoring using the method described in Puram, Bernstein (Cell, 2018)

Description
Get a control geneset for cell scoring using the method described in Puram, Bernstein (Cell, 2018)

Usage
get.control.geneset(data, signature, n.bins = 25, n.genes.per.bin = 100)

Arguments
- data: matrix of expression, rows are cell, columns are genes
- signature: character vector The signature to evaluate, a character vector of genes
- n.bins: numeric Number of bins to put the genes in (default=25)
- n.genes.per.bin: numeric Number of genes to get from each bin (default=100)

Value
a character vector that can be used as a background signature

get.de.geneset

Generate differential expression genesets for the web app given a cell grouping by calculating DE sets between each cell set and everything else

Description
Generate differential expression genesets for the web app given a cell grouping by calculating DE sets between each cell set and everything else

Usage
get.de.geneset(pagObj, groups, prefix = "de_")

Arguments
- pagObj: pagoda object
- groups: named factor to do the de by
- prefix: character Prefix to assign to genesets generated (default="de_")

Value
a `pagoda2` web object
getCellsInSelections

Returns all the cells that are in the designated selections. Given a pagoda2 selections object and the names of some selections in it returns the names of the cells that are in these selections removed any duplicates.

Usage

getCellsInSelections(p2selections, selectionNames)

Arguments

p2selections a p2 selections object

selectionNames the names of some selections in the p2 object

Value

a character vector of cell names

getClusterLabelsFromSelection

Assign names to the clusters, given a clustering vector and a set of selections. This function will use a set of pagoda2 cell selection to identify the clusters in a a named factor. It is meant to be used to import user defined annotations that are defined as selections into a more formal categorization of cells that are defined by cluster. To help with this the function allows a percent of cells to have been classified in the selections into multiple groups, something which may be the result of the users making wrong selections. The percent of cells allows to be multiselected in any given group is defined by multiClassCutoff. Furthermore the method will assign each cluster to a selection only if the most popular cluster to the next most popular exceed the ambiguous.ratio in terms of cell numbers. If a cluster does not satisfy this condition it is not assigned.
getColorsFromP2Selection

Description

Assign names to the clusters, given a clustering vector and a set of selections. This function will use a set of pagoda2 cell selection to identify the clusters in a named factor. It is meant to be used to import user defined annotations that are defined as selections into a more formal categorization of cells that are defined by cluster. To help with this the function allows a percent of cells to have been classified in the selections into multiple groups, something which may be the result of the users making wrong selections. The percent of cells allows to be multiselected in any given group is defined by multiClassCutoff. Furthermore the method will assign each cluster to a selection only if the most popular cluster to the next most popular exceed the ambiguous.ratio in terms of cell numbers. If a cluster does not satisfy this condition it is not assigned.

Usage

getClusterLabelsFromSelection(
 clustering,
 selections,
 multiClassCutoff = 0.3,
 ambiguous.ratio = 0.5
)

Arguments

clustering a named factor of clusters, where every entry is a cell
selections a pagoda2 selection object
multiClassCutoff numeric Percent of cells in any one cluster that can be multiassigned (default=0.3)
ambiguous.ratio numeric Ratio of first and second cell numbers for any cluster to produce a valid clustering (default=0.5)

Value

a data.frame with two columns, one for cluster and one for selections, each cluster appears only once

getColorsFromP2Selection

Retrieves the colors of each selection from a p2 selection object as a names vector of strings

Description

Retrieves the colors of each selection from a p2 selection object as a names vector of strings

Usage

getColorsFromP2Selection(sel)
Arguments

sel pagoda2 selection object

Value

a named vector of hex colours

gGetIntExtNamesP2Selection

Get a mapping form internal to external names for the specified selection object

Description

Get a mapping form internal to external names for the specified selection object

Usage

getIntExtNamesP2Selection(x)

Arguments

x p2 selection object

Value

list of names from the specified selection object

hierDiffToGenesets

Converts the output of hierarchical differential expression aspects into genesets that can be loaded into a 'pagoda2' web app to retrieve the genes that make the geneset interactively

Description

Converts the output of hierarchical differential expression aspects into genesets that can be loaded into a 'pagoda2' web app to retrieve the genes that make the geneset interactively

Usage

hierDiffToGenesets(output)

Arguments

output output of getHierarchicalDiffExpressionAspects
make.p2.app

Value
a geneset that can be loaded into p2 web genesets

Description
Generate a Rook Server app from a 'Pagoda2' object. This generates a 'pagoda2' web object from a 'Pagoda2' object by automating steps that most users will want to run. This function is a wrapper about the 'pagoda2' web constructor. (Advanced users may wish to use that constructor directly.)

Usage
make.p2.app(
 r,
 dendrogramCellGroups,
 additionalMetadata = list(),
 geneSets,
 show.depth = TRUE,
 show.batch = TRUE,
 show.clusters = TRUE,
 appname = "Pagoda2 Application",
 innerOrder = NULL,
 orderDend = FALSE,
 appmetadata = NULL
)

Arguments
r
 a 'Pagoda2' object
dendrogramCellGroups
 a named factor of cell groups, used to generate the main dendrogram, limits zoom in
additionalMetadata
 a list of metadata other than depth, batch and cluster that are automatically added (default=list())
geneSets
 a list of genesets to show
show.depth
 boolean Include depth as a metadata row (default=TRUE)
show.batch
 boolean Include batch as a metadata row (default=TRUE)
show.clusters
 boolean Include clusters as a metadata row (default=TRUE)
appname character Application name (default="Pagoda2 Application")
innerOrder Ordering of cells inside the clusters provided in dendrogramCellGroups (default=NULL). This should be one of "odPCA", "reductdist", "graphbased", "knn". Defaults to NULL
orderDend boolean Whether to order dendrogram (default=FALSE)
appmetadata a 'pagoda2' web application metadata (default=NULL)

Value

a 'pagoda2' web object that presents a Rook compatible interface

minMaxScale

Scale the designated values between the range of 0 and 1

Description

Scale the designated values between the range of 0 and 1

Usage

```
minMaxScale(x)
```

Arguments

- `x` values to scale

Value

the scaled values

Examples

```
example_matrix = matrix(rep(c(1:5), 3), 5)
minMaxScale(example_matrix)
```
namedNames

Get a vector of the names of an object named by the names themselves. This is useful with `lapply` when passing names of objects as it ensures that the output list is also named.

Description

Get a vector of the names of an object named by the names themselves. This is useful with `lapply` when passing names of objects as it ensures that the output list is also named.

Usage

`namedNames(g)`

Arguments

`g`
an objects on which we can call names()

Value

vector with names of object

p2.generate.dr.go

Generate a GO environment for human for overdispersion analysis for the the back end

Description

Generate a GO environment for human for overdispersion analysis for the the back end

Usage

`p2.generate.dr.go(r)`

Arguments

`r`
a 'Pagoda2' object

Value

a GO environment object
Examples

```r
cm <- p2data::sample_BM1
p2 <- basicP2proc(cm)
p2.generate.dr.go(p2)
```

Description

Generate a GO environment for the organism specified

Usage

```r
p2.generate.go(
  r,
  organism = NULL,
  go2all.egs = NULL,
  eg.alias2eg = NULL,
  min.env.length = 5
)
```

Arguments

- `r` a `Pagoda2` object
- `organism` the organism (default=NULL). Currently 'hs' (human), 'mm' (mouse) and 'dr' (zebrafish) are supported.
- `go2all.egs` mappings between a given GO identifier and all of the Entrez Gene identifiers annotated at that GO term or to one of its child nodes in the GO ontology (default=NULL)
- `eg.alias2eg` mappings between common gene symbol identifiers and entrez gene identifiers (default=NULL)
- `min.env.length` numeric Minimum environment length (default=5)

Examples

```r
cm <- p2data::sample_BM1
p2 <- basicP2proc(cm)
p2.generate.go(p2, organism='hs')
```
p2.generate.human.go

Generate a GO environment for human for overdispersion analysis for the the back end

Description

Generate a GO environment for human for overdispersion analysis for the the back end

Usage

p2.generate.human.go(r)

Arguments

r a `Pagoda2` object

Value

a GO environment object

Examples

cm <- p2data::sample_BM1
p2 <- basicP2proc(cm)
p2.generate.human.go(p2)

p2.generate.mouse.go

Generate a GO environment for mouse for overdispersion analysis for the the back end

Description

Generate a GO environment for mouse for overdispersion analysis for the the back end

Usage

p2.generate.mouse.go(r)

Arguments

r a `Pagoda2` object

Value

a GO environment object
Examples

```r
cm <- p2data::sample_BM1
p2 <- basicP2proc(cm)
p2.generate.mouse.go(p2)
```

Description

Create `PAGODA1` web application from a `Pagoda2` object `PAGODA1` found here, with `SCDE`:

Usage

```r
p2.make.pagoda1.app(
p2,
col.cols = NULL,
row.clustering = NULL,
title = "pathway clustering",
zlim = NULL,
embedding = NULL,
inner.clustering = TRUE,
groups = NULL,
clusterType = NULL,
embeddingType = NULL,
veloinfo = NULL,
type = "PCA",
min.group.size = 1,
batch.colors = NULL,
n.cores = 10
)
```

Arguments

- **p2**: `Pagoda2` object
- **col.cols**: Matrix of column colors (default=NULL). Useful for visualizing cell annotations such as batch labels.
- **row.clustering**: Row dendrogram (default=NULL)
- **title**: character Title to use (default="pathway clustering")
p2.metadata.from.factor

Generate a list metadata structure that can be passed to a 'pagoda2' web object constructor as additional metadata given a named factor

Description

Generate a list metadata structure that can be passed to a 'pagoda2' web object constructor as additional metadata given a named factor

Usage

p2.metadata.from.factor(
 metadata,
 displayname = NULL,
 s = 1,
)
v = 1,
start = 0,
end = NULL,
pal = NULL
)

Arguments

metadata
	named factor with metadata for individual cells, names must correspond to cells
displayname

c character Name to display for the metadata (default=NULL)
s

numeric Value for rainbow palette (default=1)
v

numeric Value for rainbow palette (default=1)
start

numeric Starting value (default=0)
end

numeric Ending value (default=NULL)
pal

optional vector of colours to use, if provided overrides s,v,start and end parameters (default=NULL)

Value

list of data, levels, palette to be passed to 'pagoda2' web object constructor

p2.toweb.hdea Generate a 'pagoda2' web object from a 'Pagoda2' object using hierarchical differential expression

Description

Generate a 'pagoda2' web object from a 'Pagoda2' object using hierarchical differential expression

Usage

p2.toweb.hdea(p2, title = "")

Arguments

p2

p2 object
title

character Name of the pagoda object (default="")

Value

a 'pagoda2' web object
Description

Modified 'PAGODA1' app (from 'SCDE') for browsing 'pagoda2' results. Refer to 'ViewPagodaAppOld' and 'make.pagoda.app()' in 'SCDE'.

Public fields

- `results` Result object returned by `scde.expression.difference()` (default=NULL). Note to browse group posterior levels, use `return.posteriors = TRUE` in the `scde.expression.difference()` call.
- `type` Either 'counts' or a name of a 'reduction' in the 'Pagoda2' object
- `genes` List of genes to display in the Detailed clustering panel (default=list())
- `batch` Any batch or other known confounders to be included in the visualization as a column color track (default=NULL)
- `pathways` character vector Pathway or gene names (default=NULL)
- `name` App name (needs to be altered only if adding more than one app to the server using the 'server' parameter) (default=NULL)
- `trim` Trim quantity used for Winsorization for visualization
- `embedding` Embedding information (default=NULL)
- `veloinfo` Velocity information (default=NULL)
- `goenv` environment mapping pathways to genes (default=NULL)
- `renv` Global environment (default=NULL)

Methods

Public methods:

- `p2ViewPagodaApp$new()`
- `p2ViewPagodaApp$getgencedata()`
- `p2ViewPagodaApp$call()`
- `p2ViewPagodaApp$clone()`

Method `new()`: Initialize `p2ViewPagodaApp` class

Usage:

```r
p2ViewPagodaApp$new(results, pathways, genes, goenv, batch = NULL, name = "pathway overdispersion",
```
trim = 1.1/nrow(p2$counts),
embedding = NULL,
type,
veloinfo = NULL
)

Arguments:
results Result object returned by scde.expression.difference(). Note to browse group posterior levels, use return.posterior = TRUE in the scde.expression.difference() call.
pathways character vector Pathway or gene names (default=NULL)
genesis list Genes to display in the Detailed clustering panel (default=list())
goenv Environment mapping pathways to genes (default=NULL)
batch Any batch or other known confounders to be included in the visualization as a column color track (default=NULL)
name string App name (needs to be altered only if adding more than one app to the server using the ‘server’ parameter) (default="pathway overdispersion")
trim numeric Trim quantity used for Winsorization for visualization (default=1.1/nrow(p2$counts) whereby the 'counts' from the 'Pagoda2' object is the gene count matrix, normalized on total counts (default=NULL)
embedding Embedding information (default=NULL)
type Either 'counts' or a name of a 'reduction' in the 'pagoda2' object
veloinfo Velocity information (default=NULL)

Returns: new 'p2ViewPagodaApp' object

Method getgenecldata(): Helper function to get the heatmap data for a given set of genes
Usage:
p2ViewPagodaApp$getgenecldata(genes = NULL, gcl = NULL, ltrim = 0)
Arguments:
genesis character vector Gene names (default=NULL)
gcl pathway or gene-weighted PCA (default=NULL). If NULL, uses tp2c.view.pathways(self$genes, self$results$p2, goen=genev, vhc=self$results$hvc, plot=FALSE, trim=ltrim, n.genes=Inf).
ltrim numeric Winsorization trim that should be applied (default=0)

Returns: heatmap data for a given set of genes

Method call(): Call Rook application. Using client-side ExtJS framework and Inchlib HTML5 canvas libraries to create the graphical user interface for PAGODA
Usage:
p2ViewPagodaApp$call(env)
Arguments:
env The environment argument is a true R environment object which the application is free to modify. Please see the Rook documentation for more details.

Returns: modified 'PAGODA1' app

Method clone(): The objects of this class are cloneable with this method.
Usage:
p2ViewPagodaApp$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

desc

pagoda.reduce.loading.redundancy

Collapse aspects driven by the same combinations of genes. (Aspects are some pattern across cells e.g. sequencing depth, or PC corresponding to an undesired process such as ribosomal pathway variation.) Examines PC loading vectors underlying the identified aspects and clusters of aspects based on a product of loading and score correlation (raised to corr.power). Clusters of aspects driven by the same genes are determined based on the parameter "distance.threshold".

Description

Collapse aspects driven by the same combinations of genes. (Aspects are some pattern across cells e.g. sequencing depth, or PC corresponding to an undesired process such as ribosomal pathway variation.) Examines PC loading vectors underlying the identified aspects and clusters of aspects based on a product of loading and score correlation (raised to corr.power). Clusters of aspects driven by the same genes are determined based on the parameter "distance.threshold".

Usage

pagoda.reduce.loading.redundancy(
 tam,
 pwpca,
 clpca = NULL,
 plot = FALSE,
 cluster.method = "complete",
 distance.threshold = 0.01,
 corr.power = 4,
 abs = TRUE,
 n.cores = 1,
 ...
)

Arguments

tam output of pagoda.top.aspects(), i.e. a list structure containing the following items: xv: a matrix of normalized aspect patterns (rows: significant aspects, columns: cells) xvw: corresponding weight matrix gw: set of genes driving the significant aspects df: text table with the significance testing results

pwpca output of pagoda.pathway.wPCA(), i.e. a list of weighted PCA info for each valid gene set
pagoda.reduce.redundancy

Collapse aspects driven by similar patterns (i.e. separate the same sets of cells) Examines PC loading vectors underlying the identified aspects and clusters aspects based on score correlation. Clusters of aspects driven by the same patterns are determined based on the distance.threshold.

Description

Collapse aspects driven by similar patterns (i.e. separate the same sets of cells) Examines PC loading vectors underlying the identified aspects and clusters aspects based on score correlation. Clusters of aspects driven by the same patterns are determined based on the distance.threshold.

Usage

```r
pagoda.reduce.redundancy(
  tamr,
  distance.threshold = 0.2,
  cluster.method = "complete",
  distance = NULL,
)```

clpca

output of pagoda.gene.clusters() (optional) (default=NULL). The output of pagoda.gene.clusters() is a list structure containing the following fields: clusters: a list of genes in each cluster values xf: extreme value distribution fit for the standardized lambda1 of a randomly generated pattern tci: index of a top cluster in each random iteration cl.goc: weighted PCA info for each real gene cluster varm: standardized lambda1 values for each randomly generated matrix cluster clvlm: a linear model describing dependency of the cluster lambda1 on a Tracy-Widom lambda1 expectation

plot

boolean Whether to plot the resulting clustering (default=FALSE)

cluster.method

string One of the standard clustering methods to be used (default="complete")

distance.threshold

numeric Similarity threshold for grouping interdependent aspects (default=0.01)

corr.power

numeric Power to which the product of loading and score correlation is raised (default=4)

abs

boolean Whether to use absolute correlation (default=TRUE)

n.cores

numeric Number of cores to use during processing (default=1)

... additional arguments are passed to the pagoda.view.aspects() method during plotting

Value

a list structure analogous to that returned by pagoda.top.aspects(), but with addition of a $cnam element containing a list of aspects summarized by each row of the new (reduced) $xv and $xvw
Arguments

tamr

Combined pathways that show similar expression patterns, output of pagoda.reduce.loading.redundancy()
distance.threshold

numeric Similarity threshold for grouping interdependent aspects (default=0.2)
cluster.method

character One of the standard clustering methods to be used (default="complete")
distance

distance matrix (default=NULL)
weighted.correlation

boolean Whether to use a weighted correlation in determining the similarity of patterns (default=TRUE)
plot

boolean Whether to show plot (default=FALSE)
top

boolean Restrict output to the top N aspects of heterogeneity (default=Inf, i.e. no restriction)
trim

numeric Winsorization trim to use prior to determining the top aspects (default=0)
abs

boolean Whether to use absolute correlation (default=FALSE)
...

additional arguments are passed to the pagoda.view.aspects() method during plotting

Value

List structure analogous to that returned by pagoda.top.aspects(), but with addition of a $cnam element containing a list of aspects summarized by each row of the new (reduced) $xv and $xvw

pagoda2WebApp-class

pagoda2WebApp class to create ‘pagoda2’ web applications via a Rook server

Description

pagoda2WebApp class to create ‘pagoda2’ web applications via a Rook server
Fields

- `originalP2object` Input 'Pagoda2' object
- `name` string Display name for the application
- `mat` Embedding
- `cellmetadata` Metadata associated with 'Pagoda2' object
- `mainDendrogram` Dendrogram from hclust() of all cells in the 'Pagoda2' object
- `geneSets` Gene sets in the 'Pagoda2' object
- `rookRoot` Rook server root directory
- `appmetadata` pagoda2 web application metadata

pagoda2WebApp_arrayToJSON

Description
Serialise an R array to a JSON object

Arguments

- `arr` An array (default=NULL)

Value
Serialised version of the array in JSON, which includes dimension information as separate fields

pagoda2WebApp_availableAspectsJSON

Description
Parse pathways from originalP2object$misc$pathwayOD$xv into JSON

Value
JSON with parsed cell order from mainDendrogram$cellorder
pagoda2WebApp_call

Description
Handle httpd server calls

Arguments

- **env**
  The environment argument is a true R environment object which the application is free to modify. Please see the Rook documentation for more details.

pagoda2WebApp_cellmetadataJSON

Description
Parse cellmetadata into JSON

Value
JSON with parsed cellmetadata

pagoda2WebApp_cellOrderJSON

Description
Parse mainDendrogram$cellorder into JSON

Value
JSON with parsed cell order from mainDendrogram$cellorder
pagoda2WebApp_generateEmbeddingStructure

Description
Parse originalP2object$misc$varinfo[,c("m","qv")], into JSON

Value
JSON with parsed information from genename, dispersion, mean gene expression

pagoda2WebApp_generateDendrogramOfGroups

Description
Generate a dendrogram of groups

Arguments
dendrogramCellGroups
Cell groups to input into hclust()

Value
List of hcGroups, cellorder, and cluster.sizes

pagoda2WebApp_generateEmbeddingStructure

Description
Generate information about the embeddings we are exporting

Value
List with embeddings
**pagoda2WebApp_generateGeneKnnJSON**

**Description**
Generate a JSON list representation of the gene kNN network

**Arguments**
- **graph**
  Input graph

**Value**
JSON with gene kNN network

---

**pagoda2WebApp_getCompressedEmbedding**

**Description**
Compress the embedding

**Arguments**
- **reduc**
  reduction
- **embed**
  embedding

**Value**
compressed embedding as JSON
pagoda2WebApp_packCompressFloat64Array

Description
Compress float64 array

Arguments
v float64 array

Value
compressed array

pagoda2WebApp_packCompressInt32Array

Description
Compress int32 array

Arguments
v int32 array

Value
compressed array

pagoda2WebApp_readStaticFile

Description
Read a static file from the filesystem, and put in the response

Arguments
filename path to filename

Value
Content to display or error page
**pagoda2WebApp_reducedDendrogramJSON**

**Description**
Parse dendrogram into JSON

**Value**
JSON with parsed dendrogram

**pagoda2WebApp_serializeToStaticFast**

**Description**
Convert serialized file to static file

**Arguments**
- **binary.filename**
  path to binary file (default=NULL)
- **verbose**
  boolean Whether to give verbose output (default=FALSE)

**Value**
static file written by `WriteListToBinary(expL=exportList, outfile=binary.filename, verbose=verbose)`

**pagoda2WebApp_serverLog**

**Description**
Logging function for console

**Arguments**
- **message**
  Message to output for the console

**Value**
printed message
Description
Create simple List from sparse Matrix with Dimnames as JSON

Arguments
matsparse Sparse matrix

Value
List with slots i, p, x

pathway.pc.correlation.distance
Calculate correlation distance between PC magnitudes given a number of target dimensions

Description
Calculate correlation distance between PC magnitudes given a number of target dimensions

Usage
pathway.pc.correlation.distance(pcc, xv, n.cores = 1, target.ndf = NULL)

Arguments
pcc weighted PC magnitudes e.g. scde::pagoda.pathway.wPCA() gives the weighted PC magnitudes for each gene provided; e.g. scde::pagoda.gene.clusters() gives the weighted PC magnitudes for de novo gene sets identified by clustering on expression
xv a matrix of normalized aspect patterns (rows: significant aspects, columns: cells)
n.cores numeric Number of cores to use (default=1)
target.ndf numeric Target dimensions (default=NULL)

Value
correlation distance matrix, akin to stats dist
**plotMulticlassified**  
*Plot multiclassified cells per selection as a percent barplot*

**Description**

Plot multiclassified cells per selection as a percent barplot

**Usage**

```r
plotMulticlassified(sel)
```

**Arguments**

- `sel`: pagoda2 selection object

**Value**

ggplot2 object

**plotOneWithValues**  
*Plot the embedding of a 'Pagoda2' object with the given values*

**Description**

Plot the embedding of a 'Pagoda2' object with the given values

**Usage**

```r
plotOneWithValues(
 p2obj,
 values,
 title = "",
 type = "PCA",
 embeddingType = "tSNE"
)
```

**Arguments**

- `p2obj`: the 'Pagoda2' object
- `values`: the values to plot, fed into p2obj$plotEmbedding(colors=values)
- `title`: character Title for the plot (default="")
- `type`: character Type reduction on which the embedding is based on (default="PCA")
- `embeddingType`: character Type of embedding to plot (default="tSNE")

**Value**

NULL, simply updates p2obj$plotEmbedding()
plotSelectionOverlaps  Get a dataframe and plot summarising overlaps between selection of a pagoda2 selection object ignore self overlaps

Description

Get a dataframe and plot summarising overlaps between selection of a pagoda2 selection object ignore self overlaps

Usage

plotSelectionOverlaps(sel)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sel</td>
<td>a pagoda2 selection object</td>
</tr>
</tbody>
</table>

Value

a list that contains a ggplot2 object and a datatable with the overlaps data

projectKNNs  Project a distance matrix into a lower-dimensional space. (from elbamos/largeVis)

Description

Takes as input a sparse matrix of the edge weights connecting each node to its nearest neighbors, and outputs a matrix of coordinates embedding the inputs in a lower-dimensional space.

Usage

projectKNNs(
  wij,
  dim = 2,
  sgd_batches = NULL,
  M = 5,
  gamma = 7,
  alpha = 1,
  rho = 1,
  coords = NULL,
  useDegree = FALSE,
  momentum = NULL,
  seed = NULL,
  threads = NULL,
  verbose = getOption("verbose", TRUE)
)
}
projectKNNs

Arguments

wij  A symmetric sparse matrix of edge weights, in C-compressed format, as created with the Matrix package.
dim  numeric The number of dimensions for the projection space (default=2)
sgd_batches numeric The number of edges to process during SGD (default=NULL). Defaults to a value set based on the size of the dataset. If the parameter given is between 0 and 1, the default value will be multiplied by the parameter.
M  numeric (largeVis) The number of negative edges to sample for each positive edge (default=5).
gamma numeric (largeVis) The strength of the force pushing non-neighbor nodes apart (default=7).
alpha numeric (largeVis) The hyperparameter in the distance function (default=1). The default distance function, \(1/(1 + \alpha ||y_i - y_j||^2)\). The function relates the distance between points in the low-dimensional projection to the likelihood that the two points are nearest neighbors. Increasing \(\alpha\) tends to push nodes and their neighbors closer together; decreasing \(\alpha\) produces a broader distribution. Setting \(\alpha\) to zero enables the alternative distance function. \(\alpha\) below zero is meaningless.
rho (largeVis) numeric Initial learning rate (default=1)
coords An initialized coordinate matrix (default=NULL)
useDegree boolean Whether to use vertex degree to determine weights in negative sampling (if TRUE) or the sum of the vertex’s edges (if FALSE) (default=FALSE)
momentum If not NULL, SGD with momentum is used, with this multiplier, which must be between 0 and 1 (default=NULL). Note that momentum can drastically speed-up training time, at the cost of additional memory consumed.
seed numeric Random seed to be passed to the C++ functions (default=NULL). Sampled from hardware entropy pool if NULL (the default). Note that if the seed is not NULL (the default), the maximum number of threads will be set to 1 in phases of the algorithm that would otherwise be non-deterministic.
threads numeric The maximum number of threads to spawn (default=NULL). Determined automatically if NULL (the default).
verbose boolean Verbosity (default=getOption("verbose", TRUE))

Details

The algorithm attempts to estimate a \(d\)-dimensional embedding using stochastic gradient descent and negative sampling.

The objective function is:

\[
O = \sum_{(i,j) \in E} w_{ij} (\log f(||p(e_{ij}) = 1||) + \sum_{k=1}^{M} E_{jk} p_n(j)^\gamma \log(1 - f(||p(e_{ijk}) - 1||)))
\]

where \(f()\) is a probabilistic function relating the distance between two points in the low-dimensional projection space, and the probability that they are nearest neighbors.
The default probabilistic function is $1/(1 + \alpha \|x\|^2)$. If $\alpha$ is set to zero, an alternative probabilistic function, $1/(1 + \exp(x^2))$ will be used instead.

Note that the input matrix should be symmetric. If any columns in the matrix are empty, the function will fail.

**Value**

A dense [N,D] matrix of the coordinates projecting the w_ij matrix into the lower-dimensional space.

**Note**

If specified, seed is passed to the C++ and used to initialize the random number generator. This will not, however, be sufficient to ensure reproducible results, because the initial coordinate matrix is generated using the R random number generator. To ensure reproducibility, call `set.seed` before calling this function, or pass it a pre-allocated coordinate matrix.

The original paper called for weights in negative sampling to be calculated according to the degree of each vertex, the number of edges connecting to the vertex. The reference implementation, however, uses the sum of the weights of the edges to each vertex. In experiments, the difference was imperceptible with small (MNIST-size) datasets, but the results seems aesthetically preferable using degree. The default is to use the edge weights, consistent with the reference implementation.

**Examples**

```r
data(CO2)
CO2$Plant <- as.integer(CO2$Plant)
CO2$Type <- as.integer(CO2$Type)
CO2$Treatment <- as.integer(CO2$Treatment)
co <- scale(as.matrix(CO2))
Very small datasets often produce a warning regarding the alias table. This is safely ignored.
suppressWarnings(vis <- largeVis(t(co), K = 20, sgd_batches = 1, threads = 2))
suppressWarnings(coords <- projectKNNs(vis$wij, threads = 2))
plot(t(coords))
```

---

**read.10x.matrices**

Quick loading of 10X CellRanger count matrices

**Description**

Quick loading of 10X CellRanger count matrices

**Usage**

```r
read.10x.matrices(matrixPaths, version = "V3", n.cores = 1, verbose = TRUE)
```
**Arguments**

- `matrixPaths` a single path to the folder containing matrix.mtx, genes.tsv and barcodes.tsv files, OR a named list of such paths
- `version` string Version of 10x output to read (default='V3'). Must be one of 'V2' or 'V3'.
- `n.cores` numeric Cores to utilize in parallel (default=1)
- `verbose` boolean Whether to output verbose output (default=TRUE)

**Value**

a sparse matrix representation of the data (or a list of sparse matrices if a list of paths was passed)

---

**read10xMatrix**

This function reads a matrix generated by the 10x processing pipeline from the specified directory and returns it. It aborts if one of the required files in the specified directory do not exist.

**Description**

This function reads a matrix generated by the 10x processing pipeline from the specified directory and returns it. It aborts if one of the required files in the specified directory do not exist.

**Usage**

`read10xMatrix(path, version = "V3", transcript.id = "SYMBOL", verbose = TRUE)`

**Arguments**

- `path` string Location of 10x output
- `version` string Version of 10x output to read (default='V3'). Must be one of 'V2' or 'V3'.
- `transcript.id` string Transcript identifier to use (default='SYMBOL'). Must be either 'SYMBOL' (e.g. "Sox17") or 'ENSEMBL' (e.g. "ENSMUSG00000025902"). This value is case-sensitive.
- `verbose` boolean Whether to return verbose output

**Value**

parsed 10x outputs into a matrix
**readPagoda2SelectionAsFactor**

*Read a pagoda2 cell selection file and return it as a factor while removing any multiclassified cells*

**Description**

Read a pagoda2 cell selection file and return it as a factor while removing any multiclassified cells

**Usage**

`readPagoda2SelectionAsFactor(filepath, use.internal.name = FALSE)`

**Arguments**

- `filepath`: name of the selection file
- `use.internal.name`: boolean Use field 'internal.name' as factor names (default=FALSE). Passed to `factorFromP2Selection`

**Value**

a name factor with the membership of all the cells that are not multiclassified

**readPagoda2SelectionFile**

*Reads a 'pagoda2' web app exported cell selection file exported as a list of list objects that contain the name of the selection, the color (as a hex string) and the identifiers of the individual cells*

**Description**

Reads a 'pagoda2' web app exported cell selection file exported as a list of list objects that contain the name of the selection, the color (as a hex string) and the identifiers of the individual cells

**Usage**

`readPagoda2SelectionFile(filepath)`

**Arguments**

- `filepath`: the path of the file load
**removeSelectionOverlaps**

Remove cells that are present in more than one selection from all the selections they are in.

**Description**

Remove cells that are present in more than one selection from all the selections they are in.

**Usage**

```r
removeSelectionOverlaps(selections)
```

**Arguments**

- `selections` a pagoda2 selections list

**Value**

a new list with the duplicated cells removed

---

**score.cells.nb0**

Score cells by getting mean expression of genes in signatures

**Description**

Score cells by getting mean expression of genes in signatures.

**Usage**

```r
score.cells.nb0(data, signature)
```

**Arguments**

- `data` matrix
- `signature` the genes in the signature

**Value**

cell scores
score.cells.puram

Puram, Bernstein (Cell, 2018) Score cells as described in Puram, Bernstein (Cell, 2018)

Description

Puram, Bernstein (Cell, 2018) Score cells as described in Puram, Bernstein (Cell, 2018)

Usage

score.cells.puram(data, signature, correct = TRUE, show.plot = FALSE, ...)

Arguments

data matrix of expression, rows are cell, columns are genes
signature character vector The signature to evaluate, a character vector of genes
correct boolean Perform background correction by getting a semi-random geneset (default=TRUE)
show.plot boolean If corrected values are calculated show plot of corrected vs original scores (default=FALSE)
... options for get.control.geneset()

Value

a score for each cell

sgdBatches

Calculate the default number of batches for a given number of vertices and edges. The formula used is the one used by the 'largeVis' reference implementation. This is substantially less than the recommendation \( E \times 10000 \) in the original paper.

Description

Calculate the default number of batches for a given number of vertices and edges. The formula used is the one used by the 'largeVis' reference implementation. This is substantially less than the recommendation \( E \times 10000 \) in the original paper.

Usage

sgdBatches(N, E = 150 * N/2)
show.app

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of vertices</td>
</tr>
<tr>
<td>E</td>
<td>Number of edges (default = 150*N/2)</td>
</tr>
</tbody>
</table>

Value

The recommended number of sgd batches.

Examples

```r
Observe that increasing K has no effect on processing time
N <- 70000 # MNIST
K <- 10:250
plot(K, sgdBatches(rep(N, length(K)), N * K / 2))

Observe that processing time scales linearly with N
N <- c(seq(from = 1, to = 10000, by = 100), seq(from = 10000, to = 10000000, by = 1000))
plot(N, sgdBatches(N))
```

show.app

Directly open the 'pagoda2' web application and view the 'p2web' application object from our R session

Description

Directly open the 'pagoda2' web application and view the 'p2web' application object from our R session

Usage

```r
show.app(app, name, port, ip, browse = TRUE, server = NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>app</td>
<td>'pagoda2' application object</td>
</tr>
<tr>
<td>name</td>
<td>character Name of the application to view</td>
</tr>
<tr>
<td>port</td>
<td>numeric Port number</td>
</tr>
<tr>
<td>ip</td>
<td>numeric IP address</td>
</tr>
<tr>
<td>browse</td>
<td>boolean Whether to load the app into an HTML browser (default=TRUE)</td>
</tr>
<tr>
<td>server</td>
<td>server If NULL, will grab server with get.scds.server(port=port, ip=ip) (default=NULL)</td>
</tr>
</tbody>
</table>

Value

application within browser
subsetSignatureToData

Subset a gene signature to the genes in the given matrix with optional warning if genes are missing

Description

Subset a gene signature to the genes in the given matrix with optional warning if genes are missing.

Usage

subsetSignatureToData(data, signature, raise.warning = TRUE)

Arguments

data matrix
signature character vector The gene signature from which to subset a character vector of genes
raise.warning boolean Warn if genes are missing (default=TRUE)

Value

The filtered subset of gene signatures

tp2c.view.pathways

View pathway or gene-weighted PCA 'Pagoda2' version of the function pagoda.show.pathways() Takes in a list of pathways (or a list of genes), runs weighted PCA, optionally showing the result.

Description

View pathway or gene-weighted PCA 'Pagoda2' version of the function pagoda.show.pathways() Takes in a list of pathways (or a list of genes), runs weighted PCA, optionally showing the result.

Usage

tp2c.view.pathways(
  pathways,
  p2,
  goenv = NULL,
  batch = NULL,
  n.genes = 20,
  two.sided = TRUE,
  n.pc = rep(1, length(pathways)),
  colcols = NULL,
  zlim = NULL,
labRow = NA,
vhc = NULL,
cexCol = 1,
cexRow = 1,
nstarts = 50,
row.order = NULL,
show.Colv = TRUE,
plot = TRUE,
trim = 1.1/\text{nrow(p2$counts)},
showPC = TRUE,
...
)

Arguments

pathways character vector of pathway or gene names
p2 'Pagoda2' object
goenv environment mapping pathways to genes (default=NULL)
batch factor (corresponding to rows of the model matrix) specifying batch assignment of each cell, to perform batch correction (default=NULL).
n.genes integer Number of genes to show (default=20)
two.sided boolean If TRUE, the set of shown genes should be split among highest and lowest loading (default=TRUE). If FALSE, genes with highest absolute loading should be shown.
n.pc integer vector Number of principal component to show for each listed pathway(default=rep(1, length(pathways)))
colcols column color matrix (default=NULL)
zlim numeric z color limit (default=NULL)
labRow row labels (default=NA)
vhc cell clustering (default=NULL)
cexCol positive numbers, used as cex.axis in for the row or column axis labeling(default=1)
cexRow positive numbers, used as cex.axis in for the row or column axis labeling(default=1)
nstarts integer Number of random starts to use (default=50)
row.order row order (default=NULL). If NULL, uses order from hclust.
show.Colv boolean Whether to show cell dendrogram (default=TRUE)
plot boolean Whether to plot (default=TRUE)
trim numeric Winsorization trim that should be applied (default=1.1/\text{nrow(p2$counts)}). Note that p2 is a 'Pagoda2' object.
showPC boolean (default=TRUE)
...
parameters to pass to my.heatmap2. Only if plot is TRUE.

Value
cell scores along the first principal component of shown genes (returned as invisible)
validateSelectionsObject

Validates a pagoda2 selection object

Description

Validates a pagoda2 selection object

Usage

validateSelectionsObject(selections)

Arguments

selections the pagoda2 selection object to be validated

Value

a logical value indicating if the object is valid

webP2proc

Generate a 'pagoda2' web object

Description

Generate a 'pagoda2' web object

Usage

webP2proc(
  p2,
  additionalMetadata = NULL,
  title = "Pagoda2",
  make.go.sets = TRUE,
  make.de.sets = TRUE,
  go.env = NULL,
  make.gene.graph = TRUE,
  appmetadata = NULL
)
Arguments

- **p2**: a 'Pagoda2' object
- **additionalMetadata**: 'pagoda2' web metadata object (default=NULL)
- **title**: character string Title for the web app (default='Pagoda2')
- **make.go.sets**: boolean Whether GO sets should be made (default=TRUE)
- **make.de.sets**: boolean Whether differential expression sets should be made (default=TRUE)
- **go.env**: the GO environment used for the overdispersion analysis (default=NULL)
- **make.gene.graph**: logical specifying if the gene graph should be make, if FALSE the find similar genes functionality will be disabled on the web app
- **appmetadata**: 'pagoda2' web application metadata (default=NULL)

Value

a 'pagoda2' web application

---

**winsorize.matrix**

Sets the ncol(mat)*trim top outliers in each row to the next lowest value same for the lowest outliers

---

Description

Sets the ncol(mat)*trim top outliers in each row to the next lowest value same for the lowest outliers

Usage

winsorize.matrix(mat, trim)

Arguments

- **mat**: Numeric matrix
- **trim**: numeric Fraction of outliers (on each side) that should be Winsorized, or (if the value is >= 1) the number of outliers to be trimmed on each side

Value

Winsorized matrix

Examples

```r
set.seed(0)
mat <- matrix(c(rnorm(5*10,mean=0,sd=1), rnorm(5*10,mean=5,sd=1)), 10, 10) # random matrix
mat[1,1] <- 1000 # make outlier
range(mat) # look at range of values
win.mat <- winsorize.matrix(mat, 0.1)
range(win.mat) # note outliers removed
```
writeGenesAsPagoda2Selection

Writes a list of genes as a gene selection that can be loaded in the web interface

Description

Writes a list of genes as a gene selection that can be loaded in the web interface

Usage

writeGenesAsPagoda2Selection(name, genes, filename)

Arguments

name the name of the selection
genes a string vector of the gene names
filename the filename to save to

Value

NULL, writes to filepath the list of genes as a gene selection that can be loaded in the web interface

writePagoda2SelectionFile

Writes a pagoda2 selection object as a p2 selection file that be be loaded to the web interface

Description

Writes a pagoda2 selection object as a p2 selection file that be be loaded to the web interface

Usage

writePagoda2SelectionFile(sel, filepath)

Arguments

sel pagoda2 selection object
filepath name of file to which to write

Value

NULL, writes to filepath the pagoda2 selection object as a p2 selection file that be be loaded to the web interface
Index

armaCor, 4
basicP2proc, 4
basicP2web, 6
buildWijMatrix, 6
calcMulticlassified, 7
cellsPerSelectionGroup, 7
collapse.aspect.clusters, 8
compareClusterings, 8
extendedP2proc, 9
factorFromP2Selection, 9
factorListToMetadata, 10
factorToP2selection, 11
gene.vs.molecule.cell.filter, 11
generateClassificationAnnotation, 12
get.control.geneset, 13
get.de.geneset, 13
getCellsInSelections, 14
getClusterLabelsFromSelection, 14
getColorsFromP2Selection, 15
getIntExtNamesP2Selection, 16
hierDiffToGenesets, 16
make.p2.app, 17
minMaxScale, 18
namedNames, 19
p2.generate.dr.go, 19
p2.generate.go, 20
p2.generate.human.go, 21
p2.generate.mouse.go, 21
p2.make.pagoda1.app, 22
p2.metadata.from.factor, 23
p2.toweb.hdea, 24
p2ViewPagodaApp, 25
pagoda.reduce.loading.redundancy, 27
pagoda.reduce.redundancy, 28
pagoda2WebApp (pagoda2WebApp-class), 29
pagoda2WebApp-class, 29
pagoda2WebApp_arrayToJSON, 30
pagoda2WebApp_availableAspectsJSON, 30
pagoda2WebApp_call, 31
pagoda2WebApp_cellmetadatJSON, 31
pagoda2WebApp_cellOrderJSON, 31
pagoda2WebApp_geneInformationJSON, 32
pagoda2WebApp_generateDendrogramOfGroups, 32
pagoda2WebApp_generateEmbeddingStructure, 32
pagoda2WebApp_generateGeneKnnJSON, 33
pagoda2WebApp_getCompressedEmbedding, 33
pagoda2WebApp_packCompressFloat64Array, 34
pagoda2WebApp_packCompressInt32Array, 34
pagoda2WebApp_readStaticFile, 34
pagoda2WebApp_reducedDendrogramJSON, 35
pagoda2WebApp_serializeToStaticFast, 35
pagoda2WebApp_serverLog, 35
pagoda2WebApp_sparseMatList, 36
pathway.pc.correlation.distance, 36
plotMulticlassified, 37
plotOneWithValues, 37
plotSelectionOverlaps, 38
projectKNNs, 38
read.10x.matrices, 40
read10xMatrix, 41
readPagoda2SelectionAsFactor, 42
readPagoda2SelectionFile, 42
removeSelectionOverlaps, 43
score.cells.nb0, 43
score.cells.puram, 44
set.seed, 40
sgdBatches, 44
show.app, 45
subsetSignatureToData, 46

tp2c.view.pathways, 46

validateSelectionsObject, 48

webP2proc, 48
winsorize.matrix, 49
writeGenesAsPagoda2Selection, 50
writePagoda2SelectionFile, 50