Package ‘palaeoSig’

June 28, 2019

Type Package

Title Significance Tests for Palaeoenvironmental Reconstructions

Version 2.0-3

URL https://github.com/richardjtelford/palaeoSig

BugReports https://github.com/richardjtelford/palaeoSig/issues

Depends R (>= 2.10)

Suggests fields, knitr, rmarkdown, gstat, sp, tidyverse

Imports TeachingDemos, rioja, mgcv, MASS, tibble, dplyr, magrittr, ggplot2, forcats, assertr, vegan, rlang, ggrepel, tidyr, purrr

License GPL-3

LazyLoad yes

RoxygenNote 6.0.1

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Richard Telford [aut, cre, cph],
Mathias Trachsel [ctb]

Maintainer Richard Telford <Richard.Telford@bio.uib.no>

Repository CRAN

Date/Publication 2019-06-28 08:00:03 UTC
R topics documented:

- palaeoSig-package .. 2
- abundances .. 3
- agelme ... 4
- anamorph ... 6
- arctic.pollen .. 7
- Atlantic ... 7
- centipede_plot ... 8
- cor.mat.fun .. 9
- coverage_plot .. 10
- Hill.N2.core .. 11
- jointsig ... 11
- make.env ... 13
- make.set ... 14
- multi.mat ... 16
- obs.cor ... 17
- plot.fittedAgelme ... 20
- predict.agelme .. 20
- randomTF .. 22
- rne ... 24
- species ... 26
- STOR ... 28

Index

```
palaeoSig-package  Significance Tests of Quantitative Palaeoenvironmental Reconstructions
```

Description

Significance tests for quantitative palaeoenvironmental reconstructions derived from transfer functions. Functions from the `autocorTF` package are now included in `palaeoSig`.

Details

This package includes:
- significance tests for quantitative palaeoenvironmental reconstructions (`randomTF`, `obs.cor`)
- graphical methods to show autocorrelation in transfer functions (`rne`)
- null model test of transfer functions performance in a spatially autocorrelated environment - see vignette.

Several functions have from `autocorTF` version 1.0 and `palaeoSig` version 1.0 have been rewritten or replaced with more flexible or user friendly functions. See `news(package="palaeoSig")` for details.

See also my blog at https://quantpalaeo.wordpress.com/
Author(s)

Richard Telford <richard.telford@bio.uib.no>

References

See Also

rioja, *rda*

abundances

Generates abundances

Generates species abundances based on species response functions and environmental variables.

Usage

```r
abundances(env, spp, nc)
```

Arguments

- `env`: Environmental variables. Usually generated by `make.env`. Users may as well supply own environmental variables.
- `spp`: Species parameters. Usually generated by `species`.
- `nc`: Number of counts to be simulated. If omitted no simulation of the counting process is carried out.

Value

- `spp`: Data frame containing species abundances.
- `env`: Data frame containing environmental variables.
Estimation of the relationship between Calibrated age and depth

Description

Estimates the relationship of Calibrated age and depth for paleorecords. The function uses a smooth spline of the mgcv library by Simon Wood. It produces predicted confidence interval for the relationship approximating a mixed effect model, as there are two levels of uncertainty, i.e. within dated object and between dated objects.

Usage

```
agelme(deup, depdo, bpup, bpdo, use, weights=c(1,rep(0,length(deup)-1)), vspan=1, k=length(deup)-1, m=2, diagnostic=FALSE)
```

Arguments

- `deup` The upper depths of the dated slides
- `depdo` The lower depths of the dated slides
- `bpup` The younger calibrated ages of the dated slides
- `bpdo` The older calibrated ages of the dated slides
- `use` Logical vector of dates to include in the model. Default is to use all.
- `weights` Weights to be used for the estimation, default is fixed top-layer followed by inverse variance of within dated object
- `vspan` The span to be used for the diagnostic plots, default span = 1

Examples

```
spec <- species(nspp = 30, ndim = 10, Amax = runif, fun = runif, xpar = c(-50,150),
                range = 200, alpha = 4, gamma = 4)
env.var <- make.env(100, elen = rep(100,10), emean = rep(50,10), edistr = 'uniform',
                    ndim = 10)
spec.abun <- abundances(env.var, spec, 200)
```
Number of base function to start the shrinkage in the gam estimation procedure

The order of penalty for the term, i.e. the degree of continuity at the knots (default, m = 2 gives cubic smooth spline)

Logical, should diagnostic plots be made.

Details

Note that the fixation of the top layer is done by a weight = 1, whereas the other weights follows inverse variance within object.

The diagnostic plots is used to check the quality of the estimation and to see if there is a need for an assumption of between object variance proportional to mean. The latter however is rarely encountered for paleodata.

Value

<table>
<thead>
<tr>
<th>tdf</th>
<th>Degrees of freedom used by the cubic smooth spline, a vector with first value for constant variance and second vector for variance equal to mu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>weights</td>
<td>A vector of the weights used by the cubic smooth spline</td>
</tr>
<tr>
<td>RES</td>
<td>A vector of the Residual sum of squares</td>
</tr>
<tr>
<td>Models</td>
<td>A list with the models from the cubic smooth spline, constant and mu variance, respectively</td>
</tr>
<tr>
<td>Data</td>
<td>A data.frame including the data used for the estimation</td>
</tr>
</tbody>
</table>

Author(s)

Einar Heegaard <einar.heegaard@bio.uib.no>

References

Examples

data(STOR)

fit.mod <- with(STOR,agelme(depthup,depthdo,cageup,cagedo))

#Predicting using the constant variance model,
#for each cm between 70 and 400 cm.
fit.pre <- predict(fit.mod,1:70:400)
plot(fit.pre)
Description

Creates functions that transform arbitrary distributions into a Gaussian distributions, and vice versa.

Usage

```r
anamorph(x, k, plot = FALSE)
```

Arguments

- `x` : data
- `k` : number of Hermite polynomials
- `plot` : plot

Details

Increasing `k` can give a better fit.

Value

Returns two function in a list

- `xtog` : Function to transform arbitrary variable `x` into a Gaussian distribution
- `gtox` : The back transformation

Author(s)

Richard Telford <Richard.Telford@bio.uib.no>

References

Examples

```r
set.seed(42)
x <- c(rnorm(50, 0, 1), rnorm(50, 6, 1))
hist(x)
anal.fun <- anamorph(x, 30, plot = TRUE)
xg <- anal.fun$xtog(x)
qqnorm(xg)
qline(xg)
all.equal(x, anal.fun$gtox(xg))
```
arctic.pollen

Arctic Pollen and associated environmental data

Description
Arctic pollen percent data and associated environmental data

Usage
arctic.env

Format
arctic.pollen A data frame with 828 observations on the percentage of 39 pollen taxa
arctic.env Environmental data for the pollen sites

Source
Data extracted from North American Pollen Database and New et al. (2002) by Fréchette et al. (2008). Following Fréchette (Pers. Comm.), three duplicate sites have been deleted.

References

Examples
data(arctic.pollen)
data(arctic.env)

atlantic

Atlantic core-top foram assemblages

Description
A dataset containing over 1000 foram assemblages from the Atlantic from Kucera et al (2005) and the 50m SST for the warmest season. Rare taxa and co-located assemblages are removed.

Usage
Atlantic

Format

A data frame with 1093 rows and 33 variables. `summ50` is 50m water temperature of the warmest season.

Source

https://doi.pangaea.de/10.1594/PANGAEA.227322
https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl?parameter=t

Examples

data(Atlantic)

Description

Plot of species WA optima and tolerance.

Usage

centipede_plot(x, spp, minN2 = 1, mult = 1)

Arguments

- **x**: A tolerance weighted weighted-average model from WA
- **spp**: data.frame of species data used to train the WA model
- **minN2**: numeric giving minimum N2 for inclusion in plot
- **mult**: numeric multiplier for the tolerances

Details

Extracts and sorts WA optima and tolerances and generates a ggplot. Tends only to work well when there are a reasonable number of taxa, otherwise it is difficult to read the names on the axis. Rare taxa can be excluded with the minN2 argument. The tol.cut argument in WA may need to be set to prevent very small tolerances in rare taxa. This function is very similar to the caterpillar plot, but produces a ggplot.

Value

A `ggplot` object.
cor.mat.fun

Examples

```r
library(rioja)
data(SWAP)
mod <- WA(SWAP$spec, SWAP$ph, tolD=TRUE)
coef(mod)
centipede_plot(mod, spp = SWAP$spec, minN2 = 20)
```

cor.mat.fun Generates correlation matrix

Description

Generates a correlation matrix for the environmental variables generated in `make.env` and for correlated species optima in `species`. Only used when correlated environmental variables or optima are generated.

Usage

```r
cor.mat.fun(NDim, cors)
```

Arguments

- `NDim` Number of environmental variables that are subsequently generated with `make.env`.
- `cors` List of correlations between environmental variables. Each element of the list consists of three numbers, the first two numbers indicate the variables that are correlated, the third number is the correlation coefficient. If correlations between two variables are omitted the correlation remains 0.

Value

Correlation matrix

Author(s)

Mathias Trachsel

See Also

`make.env`, `species`

Examples

```r
correlations <- list(c(1, 2, 0.5), c(1, 4, 0.1), c(2, 5, 0.6))
cor.mat <- cor.mat.fun(5, correlations)
```
Description

A simple diagnostic plot showing the coverage of fossil taxa in modern calibration set

Usage

coverage_plot(spp, fos, n2_rare = 5, label = NULL)

Arguments

spp data.frame of modern species abundances
fos data.frame of fossil species abundances
n2_rare numeric value of Hill’s N2 below which species are highlighted as rare
label numeric label taxa where maximum fossil abundance - maximum modern abundance > label. Defaults to NULL which does not add labels

Details

Finds the maximum abundance of fossil taxa and plots this against the maximum abundance the taxa in the modern calibration set. Taxa with a Hill’s N2 less than rare in the calibration set are highlighted in blue. Taxa absent from the calibration set are highlighted in red. If there are many taxa above the 1:1 line, or important fossil taxa have a low N2 in the calibration set, reconstructions should be interpreted with caution.

Value

A ggplot object.

Examples

data("SWAP", package = "rioja")
data("RLGH", package = "rioja")
coverage_plot(spp = SWAP$spec, fos=RLGH$spec, n2_rare = 5, label = 0)
Calculate the effective number of species in the fossil data

Description

Gives a measure of the species diversity in the fossil data.

Usage

`Hill.N2.core(spp)`

Arguments

- `spp`: Species data

Details

Uses `hillNnR` from the rioja package

Value

Minimum, first quartile and median effective number of species

Note

If the effective number of species is small, WA based reconstructions are unlikely to be significant, and MAT based reconstructions should be tested instead.

Author(s)

Richard Telford

References

See Also

`hillNnR`

Examples

```r
require(rioja)
data(RLGH)

Hill.N2.core(RLGH$spec)
```
jointsig

Test if two variables jointly control changes in fossil data

Description

Generates synthetic variables with different proportion of two environmental variables, and tests how much variance in the fossil data reconstructions of these synthetic variables explain.

Usage

```r
jointsig(spp, fos, var1, var2, method = "randomTF", n = 99, r = 32, ...)  
## S3 method for class 'js'
plot(x, names.v1, names.v2, ...)
```

Arguments

- `spp`: Data frame of modern training set species data, transformed as required for example with sqrt
- `fos`: Data frame of fossil species data, with same species codes and transformations as `spp`
- `var1`: Training set environmental variable 1.
- `var2`: Training set environmental variable 2.
- `n`: number of random training sets used to generate the null model
- `method`: Which significance test to use. Current option are randomTF and obs.cor. The latter may give strange results - use with caution.
- `r`: How many synthetic variables to make. More is better but slower.
- `x`: Output from `jointsig`
- `names.v1`: Vector length 2 with names of the end members of the first environmental variable, e.g., c("cold", "warm") for temperature.
- `names.v2`: Ditto for the second variable.
- `...`: Other arguments to the significance test (some of these are required) or plot.

Details

With `method="randomTF"`, the function calculates the proportion of variance in the fossil data explained by transfer function reconstructions of synthetic variables. The synthetic variables are composed of two environmental variables, weighted between -1 and +1, so to represent a circle. This is compared with a null distribution of the proportion of variance explained by reconstructions based on random environmental variables. Any transfer function in the rioja library can be used. With `method="obs.cor"`, the aim is the same, but the function reports the correlation between the species weighted average optima on the synthetic variables and the species first axis scores. This option has some pathological behaviour and should probably be avoided.
make.env

Value
A list with components

PCA
The unconstrained ordination of the fossil data.

preds
A list of the containing the reconstructions for each environmental variable.

MAX
Proportion of the variance explained by the first axis of the unconstrained ordination. This is the maximum amount that a reconstruction of a single variable can explain.

EX
The proportion of the variance in the fossil data explained by each reconstruction.

sim.ex
The proportion of variance explained by each of the random environmental variables.

sig
The p-value of each reconstruction.

Author(s)
Richard Telford <richard.telford@bio.uib.no>

References
Unpublished method - use with caution. Can give spurious results with weighted averaging.

See Also
randomTF, obs.cor

Examples
```r
require(rioja)
data(SWAP)
data(RLGH)

rlgh.js <- jointsig(spp = sqrt(SWAP$spec), fos = sqrt(RLGH$spec), var1 = SWAP$pH, var2 = sample(SWAP$pH), method = "randomTF", n = 99, r = 32, fun = WA, col = 1)  # nonsense second variable

plot(rlgh.js, c("acid", "alkaline"), c("down", "up"))
```

make.env

Generates environmental variables

Description
Generates environmental variables used for generating species abundances. Environmental variables may be correlated, and may follow different distributions.
Usage

make.env(n, elen, emean, edistr, ecor, ndim)

Arguments

n Number of samples to be generated.
elen Range of the environmental variables. Single number or vector of length ndim.
emean Mean of the environmental variables. Single number or vector of length ndim.
edistr Distribution of the environmental variables. Currently 'uniform' and 'Gaussian' are supported.
ecor Correlation matrix of the environmental variables supplied by user. Object generated by cor.mat.fun. If omitted environmental variables are not correlated.
ndim Number of environmental variables to generate.

Value

Matrix of environmental variables. n rows and ndim columns.

Author(s)

Mathias Trachsel and Richard J. Telford

References

See Also

cor.mat.fun

Examples

env.vars <- make.env(100, elen = rep(100, 10), emean = rep(50, 10), edistr = 'uniform', ndim = 10)

make.set Function to simulate species data

Description

Function to simulate species data following Minchin (1987). This functions generates species response functions, simulates environmental variables and simulates species assemblages based on species response functions and environmental variables. Users can as well supply own species parameters (e.g. when simulating calibration and fossil datasets) and own environmental variables.
Usage

```r
make.set(ndim, n, elen, emean, edistr, ecor, cnt, spec, env,...)
```

Arguments

- `ndim`: Number of environmental variables to generate.
- `n`: Number of samples to be generated.
- `elen`: Range of the environmental variables. Single number or vector of length `ndim`.
- `emean`: Mean of the environmental variables. Single number or vector of length `ndim`.
- `edistr`: Distribution of the environmental variables. Currently 'uniform' and 'Gaussian' are supported.
- `ecor`: Correlation matrix of the environmental variables supplied by user. Object generated by `cor.mat.fun`. If omitted environmental variables are uncorrelated.
- `cnt`: Number of counts to be simulated.
- `spec`: Users may supply their own species parameters.
- `env`: Users may supply their own environmental variables.
- `...`: Arguments passed to `species`

Value

- `spp`: Species abundance data.
- `env`: Environmental variables used to simulate species abundance data.
- `spec`: Species parameters.

Author(s)

Mathias Trachsel and Richard J. Telford

References

See Also

- `make.env`, `species`, `cor.mat.fun`

Examples

```r
calib <- make.set(nspp = 90, ndim = 3, Amax = runif, fun = runif, xpar = c(-50, 150),
     srange = 400, alpha = 4, gamma = 4, n = 100, elen = rep(100,3), emean = rep(50,3),
     edistr = 'uniform', cnt = 1000)

# Provide species parameters generated above, so that the fossil data use the
# same species parameters.
fos <- make.set(ndim = 3,n = 100,elen = rep(100,3),emean = rep(50,3), edistr = 'uniform',
```
cnt = 1000, spec = calib$spec)

Supplying own environmental variables and species parameters.
env.vars <- make.env(100, elen = rep(100, 3),emean = rep(50, 3), edistr = 'uniform', ndim = 3)
fos <- make.set(cnt = 1000, spec = calib$spec, env = env.vars)

multi.mat
MAT for multiple variables

description

MAT for many environmental variables simultaneously. More efficient than calculating them separately for each variable.

Usage

multi.mat(training.spp, envs, core.spp, noanalogues = 10, method = "sq-chord",
 run = "both")

Arguments

t raining.spp Community data
envs Environmental variables - or simulations
core.spp Optional fossil data to make predictions for
noanalogues Number of analogues to use
method distance metric to use
run Return LOO predictions or predictions for fossil data

Value

Matrix of predictions

Author(s)

Richard Telford <Richard.Telford@bio.uib.no>

References

Examples

data(arctic.env)
data(arctic.pollen)

mMAT <- multi.mat(arctic.pollen, arctic.env[,9:67], noanalogues = 5)

obs.cor

Weighted correlation between weighted averaging optima and constrained ordination species scores.

Description

obs.cor calculates the weighted correlation between the species weighted average optima and the axis one species scores of an ordination constrained by the WA reconstruction.

Usage

obs.cor(spp, env, fos, ord = rda, n = 99, min.occur = 1, autosim, permute = FALSE)

S3 method for class 'obs.cor'
plot(x, xlab, ylab, f = 5, which = 1,
 variable_names = "env", abun = "abun.calib", p_val = 0.05, ...)

S3 method for class 'obs.cor'
identify(x, labels, ...)

S3 method for class 'obs.cor'
autoplot(x, which = 1, variable_names = "env",
 abun = "abun.calib", p_val = 0.05, nbins = 20, top = 0.7, ...)

Arguments

spp Data frame of modern training set species data, transformed if required, for example with sqrt
env Vector of a single environmental variable
fos Data frame of fossil species data. Species codes and tranformations should match those in spp.
ord Constrained ordination method to use. rda is the default, cca should also work. capscale won’t work without modifications to the code (or a wrapper).
n number of random training sets. More is better.
min.occur Minimum number of occurrences of species in the species and fossil data.
autosim Optional data frame of random values. This is useful if the training set is spatially autocorrelated and the supplied data frame contains autocorrelated random variables. If autosim is missing, and permute is FALSE, the transfer functions are trained on random variables drawn from a uniform distribution.

permute logical value. Generate random environmental variables by permuting existing variable. Only possible if there is only one environmental variable and autosim is missing.

x An obscor object.

xlab X-axis label if the default is unsatisfactory.

ylab Y-axis label if the default is unsatisfactory.

f Scale factor for the abundances, the maximum cex of points for the which=1 plot.

which Which type of plot. which = 1 gives a plot of RDA scores against species optima. which = 2 gives a histogram showing the null distribution of correlations between RDA scores and species optima, together with the observed correlation.

variable_names Name of environmental variable (only 1 currently) for the label on the observed correlation with which = 2

abun Which species weighting required for plots. See details

p_val P value to draw a line vertical line at (with which=2)

... Other arguments to plot or identify

labels Labels for the points in identify. By default, the species names from intersection of colnames(spp) and colnames(fos) are used.

nbins integer giving number of bins for the histogram

top Proportion of the figure below the environmental name labels.

Details

Obs.cor calculates the (weighted) correlation between the species WA optima in the calibration set and their ordination axis one scores in the fossil data. Seven different weights for the species are implemented.

- "abun.fos" - weight by the mean abundance in the fossil data.
- "abun.calib" - weight by the mean abundance in the calibration data
- "abun.joint" - weight by the product of the mean abundance in the fossil and calibration data
- "n2.fos" - weight by the effective number of occurrences (Hill’s N2) of each species in the fossil data
- "n2.calib" - weight by the effective number of occurrences (Hill’s N2) of each species in the calibration data
- "n2.joint" - weight by the product of n2.calib and n2.fos
- "unweighted" - all species receive same weight. This is unlikely to be the best option but is included for completeness.

It is unclear which of these weights is likely to be best, research is in progress. A square root transformation of the species data is often useful. n = 99 is too small in practice to give a smooth histogram of the null model. n = 999 is better.
obs.cor

Value

obs.cor returns an obscor object, which is a list

- ob Observed correlation. Data.frame with columns Optima, RDA1 and abun containing the species optima, ordination axis 1 scores, and abundance used to weight the species respectively and a vector containing the weighted and unweighted correlations between species optima and ordination scores.
- sim Matrix with the correlation between species weighted average optima and ordination scores in the first column and the weighted correlation in the second column. Each row represents a different random environmental variable.
- sigs p-value for the observed correlation between species weighted average optima and ordination scores for each of the weights.

Methods (by generic)

- plot: Plots for obscor object
- identify: Identify species on obs.cor plot
- autoplot: autoplots for obscor object

Note

The test of the weighted correlation between species optima and ordination axis scores is more powerful, especially with a small number of fossil observations, that the test of variance explained in randomTF but is only applicable to WA and will have a large type II error if there are few species.

Author(s)

Richard Telford <richard.telford@uib.no>

References

See Also

randomTF, WA, rda, cca

Examples

```r
require(rioja)
data(SWAP)
data(RLGH)
rlgh.obs <- obs.cor(spp = sqrt(SWAP$spec), env = SWAP$pH, fos = sqrt(RLGH$spec))
rlgh.obs$sig
plot(rlgh.obs, which=1)
plot(rlgh.obs, which=2)
```
require(ggplot2)
autoplot(rlgh.obs, which=1)
autoplot(rlgh.obs, which=2, variable_names = "pH")

plot.fittedAgelme
Plots fitted agelme model and dates

Description

Plots fitted agelme model and dates

Usage

S3 method for class 'fittedAgelme'
plot(x, main, xlab = "Depth",
ylab = "Calibrated Age", ...)

Arguments

x Fitted agelme model.
main Title of the plot.
xlab xlabel of the plot.
ylab ylabel of the plot.
... Other arguments to plot.

Examples

data(STOR)
fit.mod <- with(STOR, agelme(depthup, depthdo, cageup, cagedo))
#Predicting using the constant variance model,
#for each cm between 70 and 400 cm.
fit.pre <- predict(fit.mod, 1, 70:400)
plot(fit.pre)

predict.agelme
Predicts the Calibrated age

Description

This function uses the output from 'agelme' to predict the Calibrated ages for specified depths.

Usage

S3 method for class 'agelme'
predict(object, v = 1, depth,...)

predict.agelme

Arguments

- **object** An 'agelme' model
- **v** Using constant (1) or mu (2) variance
- **depth** A vector of the depths to be predicted
- ... Other arguments, currently unused.

Value

A list with three items

- **v** Whether constant variance or mu variance used.
- **fit** A data.frame of the predictions including 95% confidence interval.
 - **Depth** The depths for the predicted ages
 - **Estage** Predicted age
 - **Lowlim** Lower 95% confidence interval
 - **Upplim** Upper 95% confidence interval
 - **Tsd** Total standard deviation
- **data** A data.frame containing the age and depth information of the radiocarbon dates.

Author(s)

Einar Heegaard <einar.heegaard@bio.bui.no

References

Examples

```r
data(STOR)

fit.mod <- with(STOR,agelme(depthup,depthdo,cageup,cagedo))

# Predicting using the constant variance model,
# for each cm between 70 and 400 cm.
fit.pre <- predict(fit.mod,1,70:400)
plot(fit.pre)
```
randomTF

Proportion of variance in the fossil data explained by an environmental reconstruction

Description

Calculate the proportion of variance in the fossil data explained by an environmental reconstruction with a constrained ordination. This value is compared with a null distribution calculated as the proportion of variance in the fossil data explained by reconstructions from transfer functions trained on random data.

Usage

randomTF(spp, env, fos, n = 99, fun, col, condition, autosim, ord = rda, permute = FALSE, models, make_models = FALSE, ...)

S3 method for class 'palaeoSig'
plot(x, variable_names, top = 0.7, adj = c(0, 0.5), p_val = 0.05, ...)

S3 method for class 'palaeoSig'
autoplot(x, variable_names, nbins = 20, top = 0.7, p_val = 0.05)

Arguments

spp Data frame of modern training set species data, transformed as required for example with \texttt{sqrt}

env Data frame of training set environmental variables or vector with single environmental variable

fos Data frame of fossil species data, with same species codes and transformations as \texttt{spp}

n number of random training sets. More is better.

fun Transfer function method. Additional arguments to \texttt{fun} can be passed with \ldots

col Some transfer functions return more than one column of results, for example with different \texttt{waps} components. \texttt{col} selects which column to use. See the relevant transfer function method help file.

condition Optional data frame of reconstructions to partial out when testing if multiple independent reconstructions are possible.

autosim Optional data frame of random values. This is useful if the training set is spatially autocorrelated and the supplied data frame contains autocorrelated random variables. If \texttt{autosim} is missing, and \texttt{permute} is FALSE, the transfer functions are trained on random variables drawn from a uniform distribution.

ord Constrained ordination method to use. \texttt{rda} is the default, \texttt{cca} should also work. \texttt{capscale} won’t work without modifications to the code (or a wrapper).
permute logical value. Generate random environmental variables by permuting existing variable. Only possible if there is only one environmental variable and autosim is missing.

models list of models made by randomTF with argument make_models = TRUE

make_models logical, should a list of transfer functions trained on random data be returned

Other arguments to the transfer function. For example to change the distance metric in MAT. Also extra arguments to plot.

x Output from randomTF

variable_names Names of environmental variables. If missing, taken from env data.frame.

top Proportion of the figure below the environmental name labels.

adj Adjust the position that the environmental names are plotted at.

p_val P value to draw a line vertical line at (with which=2)

nbins integer giving number of bins for the histogram

Details

The function calculates the proportion of variance in the fossil data explained by the transfer function reconstruction. This is compared with a null distribution of the proportion of variance explained by reconstructions based on random environmental variables. Reconstructions can be partialled out to test if multiple reconstructions are statistically significant. If the environment is spatially autocorrelated, a red-noise null should be used instead of the default white noise null. The red noise environmental variables can be generated with the gstat package.

Any transfer function in the rioja package can be used. Other methods (e.g. random forests) can be used by making a wrapper function.

If reconstructions from several sites are to be tested using the same training set it can be much faster to train the models on random environmental data once and then use them repeatedly. This can be done with make_models = TRUE and then running randomTF again giving the resultant models to the models argument. make_models does not work with MAT.

Value

A list with components

• PCA The unconstrained ordination of the fossil data.

• preds A list of the containing the reconstructions for each environmental variable.

• MAX Proportion of the variance explained by the first axis of the unconstrained ordination. This is the maximum amount that a reconstruction of a single variable can explain.

• EX The proportion of the variance in the fossil data explained by each reconstruction.

• sim.ex The proportion of variance explained by each of the random environmental variables.

• sig The p-value of each reconstruction.

If make_models = TRUE, a list of transfer function models is returned.

autoplot.palaeosig returns a ggplot2 object
Methods (by generic)

- plot: Plot palaeoSig object
- autoplot: autoplot function for palaeoSig object

Note

If there are only a few fossil levels, obs.cor might have more power. If there are few taxa, tests on MAT reconstructions have more statistical power than those based on WA.

Author(s)

Richard Telford <richard.telford@uib.no>

References

See Also

obs.cor, WA, MAT, WAPLS, rda, cca

Examples

```r
require(rioja)
data(SWAP)
data(RLGH)
rlghr <- randomTF(spp = sqrt(SWAP$spec), env = data.frame(pH = SWAP$pH),
                  fos = sqrt(RLGH$spec), n = 99, fun = WA, col = 1)
rlghr$sig
plot(rlghr, "pH")
require("ggplot2")
autoplot(rlghr, "pH")
```

Description

Random, neighbour, environment deletion analysis for transfer function model

Calculates effect of deleting sites from training set at random, from a geographic neighbourhood, or from an environmental neighbourhood. A simple graphical technique for gauging the effect of spatial autocorrelation on the transfer function model.
Usage

rne(y, env, geodist, fun, neighbours, subsets = c(1, 0.75, 0.5, 0.25, 0.1), ...)
S3 method for class 'RNE'
plot(x, which=1, ylim, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Community data, or distance object, or distance matrix</td>
</tr>
<tr>
<td>env</td>
<td>Environmental variable</td>
</tr>
<tr>
<td>geodist</td>
<td>Matrix of geographical distances between sites</td>
</tr>
<tr>
<td>fun</td>
<td>Transfer function</td>
</tr>
<tr>
<td>neighbours</td>
<td>Neighbourhood radii</td>
</tr>
<tr>
<td>subsets</td>
<td>Proportion of sites to retain in random deletion</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed to fun or plot</td>
</tr>
<tr>
<td>x</td>
<td>RNE object to be plotted</td>
</tr>
<tr>
<td>which</td>
<td>Which column of the results to plot eg if more than one WAPLS component is calculated</td>
</tr>
<tr>
<td>ylim</td>
<td>Y-limits of the plot</td>
</tr>
</tbody>
</table>

Details

Finds the leave-one-out transfer function performance if sites are deleted at random (repeated 10 times to reduce variance in results), from a neighbourhood zone, or by deleting environmentally close sites.

Value

Returns an RNE object, list with two components

- random: Performance with random deletion.
- neighbour: Performance with deletion by neighbourhood, or environment

Author(s)

Richard Telford <Richard.Telford@bio.uib.no>

References

Examples

```r
require(fields)
require(rioja)
data(arctic.env)
data(arctic.pollen)

# using just the first 100 sites so code runs in a reasonable time, but still slow
arctic.d <- rdist.earth(arctic.env[1:100,c("Longitude","Latitude")], miles = FALSE)
arctic.rne <- rne(y = arctic.pollen[1:100,], env = arctic.env$tjul[1:100],
                   geodist = arctic.d, fun = MAT, neighbours = c(0,50,200),
                   subsets = c(1,.5,1), k = 5)
plot(arctic.rne)
```

species

Generates species response parameters for n dimensions

Description

Generates species response parameters to n environmental variables following Minchin (1987).

Usage

```r
species(nspp=30, Amax,fun,xpar,srange, alpha = 4,gamma= 4, ndim, sdistr, ocor, odistr)
```

Arguments

- `nspp` Number of species to be generated.
- `Amax` Maximum abundance of a species. Amax currently allows three options: i) a function how to generate maximum abundances (e.g. runif, rgamma) ii) a vector of length nspp iii) a single number that is used as maximum abundance for all the species.
- `fun` Function to generate species optima (e.g. rnorm, runif). The two parameters in xpar are passed to function fun. If omitted species optima are generated at regular intervals between the two values in xpar.
- `xpar` Two numbers describing a distribution e.g mu and sigma for a normal distribution, lower and upper bound for a random uniform distribution.
- `srange` Length of the ecological gradient to which individual species respond. Either one number or a matrix with nspp rows and ndim columns. If srange should be different for different environmental variables a simpler solution is to change argument elen in `make.env` accordingly. E.g. elen =c(100,50,50) when using three environmental gradients.
alpha
Shape parameter of the beta distribution. One number or a matrix with nspp rows and ndim columns.

gamma
Shape parameter of the beta distribution. One number or a matrix with nspp rows and ndim columns.

ndim
Number of environmental variables to which generated species should respond.

sdistr
Users may supply own distributions of species optima. Matrix with nspp rows and ndim columns (as well in the special case of ndim = 1).

ocor
Correlation matrix of the species optima. May be generated by code cor.mat.fun.

odistr
Distribution of the correlated optima either ‘uniform’ or ‘Gaussian’

Details
Details on the exact generation of species response functions from parameters Amax, m, r, gamma and alpha are given in Minchin (1987). Species response curves are determined by five parameters: a parameter determining the maximum abundance (Amax) and one describing the location (m) of this mode. A parameter determining to which environmental range the species respond (srange in the input r in the output) and two parameters (alpha, gamma) describing the shape of the species response function. If alpha = gamma the response curve is symmetric (alpha = gamma = 4, yields Gaussian distributions). Additionally, species optima for several environmental variables may be correlated. Currently this is only possible for gaussian or uniform distributions of species optima. Users may as well supply previously generated optima (e.g. optima similar to a real dataset).

Value
List with ndim elements. Each list contains the species response parameters to one environmental gradient.

Author(s)
Mathias Trachsel and Richard J. Telford

References

Examples
spec.par <- species(nspp = 30, Amax = runif, srange = 200, fun = runif, xpar = c(-50, 150),
 ndim = 5, alpha = 4, gamma = 4)

spec.par <- species(nspp = 30, ndim = 3, Amax = runif, xpar = c(-50, 150),
 srange = 200, alpha = 4, gamma = 4)

example where srange, alpha and gamma are different for each species and environmental gradient.
spec.par <- species(nspp = 30, ndim = 3, Amax = runif, xpar = c(-50, 150),
 srange = matrix(ncol = 3, runif(90, 100, 200)),
 alpha = matrix(ncol = 3, runif(90, 1, 5)),
 gamma = matrix(ncol = 3, runif(90, 1, 5)))

example where species optima are correlated
correlations <- list(c(1, 2, 0.5), c(1, 3, 0.3), c(2, 3, 0.1))
spec.cor.mat <- cor.mat.fun(3, correlations)
spec.par <- species(nspp = 30, ndim = 3, Amax = runif, xpar = c(50, 50), srange = 200,
alpha = 4, gamma = 4, ocor = spec.cor.mat, odistr = 'Gaussian')

example for species response curves (users should alter alpha and gamma)
spec.par <- species(nspp = 1, Amax = 200, srange = 200, fun = runif, xpar = c(50, 50),
ndim = 1, alpha = 3, gamma = 1)
env <- -50:150
response <- palaeosig::make.abundances(env = -50:150, param = spec.par[[1]]$spp)
plot(env, response, type='l')

STOR

Storsandsvatnet

Description

Storsandsvatnet is a lake in western Norway. From the sediments a core was obtained, and 11 samples was submitted for radiocarbon dating. The data contain the depths of the slides dated and the younger and older calibrated ages for each slide.

Usage

STOR

Format

A data.frame with 11 observations on the following 4 variables.

- **depthup**: The upper border of the dated slide
- **depthdo**: The lower border of the dated slide
- **cageup**: The younger calibrated age of the dated slide
- **cagedo**: The older calibrated age of the dated slide

Details

The calibrated ages is obtained by calibration of the radiocarbon dates. The borders represent mean calibrated age +/- 1 SD of calibrated age.

Source

The data are unpublished and provided by H. John B. Birks <john.birks@bio.uib.no> and Sylvia M. Peglar

References

Examples

data(STOR)
Index

Topic attribute
- Hill.N2.core, 11

Topic datagen
- abundances, 3
- cor.mat.fun, 9
- make.env, 13
- make.set, 14
- species, 26

Topic datasets
- arctic.pollen, 7
- Atlantic, 7
- STOR, 28

Topic hplot
- jointsig, 12
- obs.cor, 17
- randomTF, 22

Topic htest
- jointsig, 12
- obs.cor, 17
- randomTF, 22

Topic manip
- anamorph, 6

Topic multivariate
- jointsig, 12
- multi.mat, 16
- obs.cor, 17
- randomTF, 22
- rne, 24

Topic package
- palaeoSig-package, 2

abundance	3
agelme	4
anamorph	6
arctic.env (arctic.pollen)	7
arctic.pollen	7
Atlantic	7
autoplot.obs.cor (obs.cor), 17	
autoplot.palaeoSig (randomTF), 22	
caspase, 17, 22	
caterpillar, 8	
cca, 17, 19, 22, 24	
centipede_plot, 8	
cor.mat.fun, 9, 14, 15, 27	
coverage_plot, 10	
ggplot, 8, 10	
Hill.N2, 11	
Hill.N2.core, 11	
identify.obs.cor (obs.cor), 17	
jointsig, 12	
make.env, 3, 4, 9, 13, 15, 26	
make.set, 14	
MAT, 23, 24	
multi.mat, 16	
obs.cor, 2, 13, 17, 24	
palaeoSig (palaeoSig-package), 2	
palaeoSig-package, 2	
plot.fittedAgelme, 20	
plot.js (jointsig), 12	
plot.obs.cor (obs.cor), 17	
plot.palaeoSig (randomTF), 22	
plot.RNE (rne), 24	
predict.agelme, 20	
randomTF, 2, 13, 19, 22	
rda, 3, 17, 19, 22, 24	
rioja, 3	
rne, 2, 24	
species, 3, 4, 9, 15, 26	
STOR, 28	
WA, 8, 19, 24	
WAPLS, 22, 24	