Package ‘papeR’

January 3, 2019

Title A Toolbox for Writing Pretty Papers and Reports
Version 1.0-4
Date 2019-01-03
Author Benjamin Hofner, with contributions by many others (see inst/CONTRIBUTIONS)
Maintainer Benjamin Hofner <benjamin.hofner@pei.de>
Description A toolbox for writing 'knitr', 'Sweave' or other 'LaTeX'- or 'markdown'-based reports and to prettify the output of various estimated models.
Depends car, xtable
Enhances lme4, survival
Imports utils, gmodels, graphics, stats
Suggests nlme, knitr, rmarkdown, testthat (>= 0.10.0), foreign
License GPL-2
URL http://github.com/hofnerb/papeR
Copyright See inst/COPYRIGHTS.
VignetteBuilder knitr
Collate 'helpers.R' 'labels.R' 'summarize.R' 'plot.R' 'prettify.R'
 'toLatex.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2019-01-03 14:30:02 UTC

R topics documented:

 papeR-package 2
 Anova.lme ... 2
 confint.mer 3
 get_option ... 4
 labels ... 5
 latex.table.cont 9
 latex.table.fac 10
Description

A toolbox for writing knit, Sweave or other LaTeX- or markdown-based reports and to prettify the output of various estimated models.

Details

Package: papeR
Type: Package
Version: 1.0-4
Date: 2019-01-03
License: GPL-2

Version 1.0-0 is based on a completely refactored code base. Some functions from previous versions are deprecated. New functions to create summary tables exist (see `summarize`). The package now also provides a vignette and was extensively tested using `testthat`.

For news and changes see `news(package = "papeR")`.

Author(s)

Benjamin Hofner
Maintainer: Benjamin Hofner <Benjamin.Hofner@fau.de>

Anova.lme

Description

This is a wrapper to `anova.lme` from package `nlme` and is coded similar to `Anova` from `car` as it produces marginal tests by default.
Usage

```r
## S3 method for class 'lme'
Anova(mod, type = c("marginal", "sequential"), ...)
```

Arguments

- `mod` linear mixed model fitted with package `nlme`.
- `type` type of anova, either marginal (default) or sequential.
- `...` further arguments to be passed to `anova.lme`.

See Also

- `Anova` (package `car`)

Examples

```r
## Example requires package nlme to be installed and loaded
if (require("nlme")) {
  ## Load data set Orthodont
data(Orthodont, package = "nlme")

  ## Fit a model for distance with random intercept for Subject
  mod <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1 | Subject)

  Anova(mod)
}
```

Description

Compute confidence intervals for mixed models from package `lme4` (prior to version 1.0). This function is only needed for backward compatibility.

Usage

```r
## S3 method for class 'mer'
confint(object, parm, level = 0.95,
simulate = c("ifneeded", TRUE, FALSE),
B = 1000,...)
```
Arguments

object Model of class mer.
parm Parameters to be included in the confidence interval. See confint.default for details.
level the confidence level.
simulate If "ifneeded" is specified (default), simulated confidence intervals are returned if (and only if) no z-value exists in the corresponding summary and asymptotic confidence intervals will be returned otherwise. If TRUE (or "TRUE") confidence intervals will be estimated using ci from package gmodels which uses mcmcsamp internally. If FALSE (or "FALSE"), asymptotic confidence intervals will be returned and an error is given if not possible.
B number of samples to take in mcmcsamp. Per default 1000 samples are used.
... Additional arguments. Currently not used.

Value

Matrix with confidence intervals.

Author(s)

Benjamin Hofner, partially based on code from package stats. See source code for documentation.

get_option Extract printing options from table.cont and table.fac objects

Description

Helper function to extract printing options from table.cont and table.fac objects as produced by latex.table.cont and latex.table.fac.

Usage

get_option(object, name)

Arguments

object table.cont or table.fac object as produced by latex.table.cont and latex.table.fac
name name of the option, e.g. "table" and "align". See latex.table.cont and latex.table.fac for available options.

Value

Option.
labels

Author(s)

Benjamin Hofner

See Also

latex.table.cont and latex.table.fac

labels

Extract labels from and set labels for data frames

Description

Labels can be stored as an attribute "variable.label" for each variable in a data set using the assignment function. With the extractor function one can assess these labels.

Usage

```r
## S3 method for class 'data.frame'
labels(object, which = NULL, abbreviate = FALSE, ...)

## assign labels
labels(data, which = NULL) <- value

## check if data.frame is a special labeled data.frame ('ldf')
is.ldf(object)

## convert object to labeled data.frame ('ldf')
convert.labels(object)
as.ldf(object, ...)

## special plotting function for labeled data.frames ('ldf')
## S3 method for class 'ldf'
plot(x, variables = names(x),
     labels = TRUE, by = NULL, with = NULL,
     regression.line = TRUE, line.col = "red", ...)
```

Arguments

- `object`: a data.frame.
- `data`: a data.frame.
- `which`: either a number indicating the label to extract or a character string with the variable name for which the label should be extracted. One can also use a vector of numerics or character strings to extract multiple labels. If which is NULL (default), all labels are returned.
values a vector containing the labels (in the order of the variables). If which is given,
only the corresponding subset is labeled. Note that all other labels contain the
variable name as label afterwards.
abbreviate logical (default: FALSE). If TRUE variable labels are abbreviated such that they
remain unique. See abbreviate for details. Further arguments to abbreviate
can be specified (see below).
... further options passed to function abbreviate if argument abbreviate = TRUE.
In x[...],... can be used to specify indices for extraction. See [for details.
In plot,... can be used to specify further graphial parameters.
x a labeled data.frame with class 'labeled'.
variables character vector or numeric vector defining (continuous) variables that should
be included in the table. Per default, all numeric and factor variables of data are
used.
labels labels for the variables. If labels = TRUE (the default), labels(data, which = variables)
is used as labels. If labels = NULL variables is used as label. labels can
also be specified as character vector.
by a character or numeric value specifying a variable in the data set. This variable
can be either a grouping factor or is used as numeric y-variable (see with for
details). Per default no grouping is applied. See also ‘Details’ and ‘Examples’.
with a character or numeric value specifying a numeric variable with which to “cor-
relate” all variables specified in variables. For numeric variables a scatter-
plot is plotted, for factor variables one gets a grouped boxplot. Per default no
variable is given here. Instead of with one can also specify a numeric variable
in by with the same results. See also ‘Details’ and ‘Examples’.
regression.line a logical argument specifying if a regression line should be added to scatter plots
(which are plotted if both variables and by are numeric values).
line.col the color of the regression line.

Details

All labels are stored as attributes of the columns of the data frame, i.e., each variable has (up to)
one attribute which contains the variable label.

One can set or extract labels from data.frame objects. If no labels are specified labels(data)
returns the column names of the data frame.

Using abbreviate = TRUE, all labels are abbreviated to (at least) 4 characters such that they are
unique. Other minimal lengths can specified by setting minlength (see examples below).

Univariate plots can be easily obtained for all numeric and factor variables in a data set data by
using plot(data).

Bivariate plots can be obtained by specifying by. In case of a factor variable, grouped boxplots
or spineplots are plotted depending on the class of the variable specified in variables. In case
of a numeric variable, grouped boxplots or scatter plots are plotted depending on the class of the
variable specified in variables. Note that one cannot specify by and with at the same time (as
they are internally identical). Note that missings are excluded plot wise (also for bivariate plots).
Value

`labels(data)` returns a named vector of variable labels, where the names match the variable names and the values represent the labels.

Note

If a data set is generated by `read.spss` in package `foreign`, labels are stored in a single attribute of the data set. Assigning new labels, e.g. via `labels(data) <- labels(data)` removes this attribute and stores all labels as attributes of the variables. Alternatively one can use `data <- convert.labels(data)`.

Author(s)

Benjamin Hofner

See Also

`read.spss` in package `foreign`

Examples

`# Basic labels manipulations

```r
data <- data.frame(a = 1:10, b = 10:1, c = rep(1:2, 5))
labels(data) # only the variable names
is.ldf(data) # not yet

# now set labels
labels(data) <- c("my_a", "my_b", "my_c")
# one gets a named character vector of labels
labels(data)
# data is now a ldf:
is.ldf(data)

# Alternatively one could use as.ldf(data) or convert.labels(data); # This would keep the default labels but set the class # correctly.

# set labels for a and b only
# Note that which represents the variable names!
labels(data, which = c("a", "b")) <- c("x", "y")
labels(data)

# reset labels (to variable names):
labels(data) <- NULL
labels(data)

# set label for a only and use default for other labels:
labels(data, which = "a") <- "x"
labels(data)`
# attach label for new variable:
data2 <- data
data2$z <- as.factor(rep(2:3, each = 5))
labels(data2)  ## no real label for z, only variable name
labels(data2, which = "z") <- "new label"
labels(data2)

### Abbreviate labels

# attach long labels to data
labels(data) <- c("This is a long label", "This is another long label", "This also")
labels(data)  
labels(data, abbreviate = TRUE, minlength = 10)

### Data manipulations

## reorder dataset:
tmp <- data[, c(1, 4, 3, 2)]
labeled(tmp)
## labels are kept and order is updated

## subsetting to single variables:
labeled(tmp[, 2])  ## not working as tmp[, 2] drops to vector
## note that the label still exists but cannot be extracted
## using labeled.default()
str(tmp[, 2])
labeled(tmp[, 2, drop = FALSE])  ## prevent dropping

## one can also cbind labeled data.frame objects:
labeled(cbind(data, tmp[, 2]))
## or better:
labeled(cbind(data, tmp[, 2, drop = FALSE]))
## or rbind labeled.data.set objects:
labeled(rbind(data, tmp[, -2]))

### Plotting data sets

## plot the data auto"magically"; numerics as boxplot, factors as barplots
par(mfrow = c(2,2))
plot(data2)

## a single plot
plot(data2, variables = "a")
## grouped plot
plot(data2, variables = "a", by = "z")
## latex.table.cont

```r
make "c" a factor and plot "c" vs. "z"
data2$c <- as.factor(data2$c)
plot(data2, variables = "c", by = "z")
the same
plot(data2, variables = 3, by = 4)

plot everything against "b"
(grouped boxplots, stacked barplots or scatterplots)
plot(data2, with = "b")
```

### Description

The function produces LaTeX tables with summary statistics for continuous variables. It makes use of the booktabs package in LaTeX to obtain tables with a nice layout.

### Usage

```r
latex.table.cont(..., caption = NULL, label = NULL,
 table = c("tabular", "longtable"), align = NULL,
 floating = FALSE, center = TRUE)
```

#### Arguments

- `...`: arguments for `summarize`. See there for details.
- `caption`: (optional) character string. Caption of LaTeX table. Note that captions are supported for all tables (see also details below).
- `label`: (optional) character string. Label of LaTeX table specified as `\label{"label"}`.
- `table`: character string. LaTeX table format, currently either "tabular" (default) or "longtable".
- `align`: character string. LaTeX alignment of table rows, per default "llr...r", where "r" is repeated `ncol - 1` times.
- `floating`: logical (default: FALSE). Determines whether the table is a floating object (i.e. use a table environment or not). Note that a `longtable` cannot be a floating object but captions can be used.
- `center`: logical (default: TRUE). Determines if table should be centered.

### Details

This function is deprecated and only available for backward compatibility. Use `summarize` for more flexibility.

The output requires `\usepackage{booktabs}` in the LaTeX file.

Captions can be added to both, `longtables` and `tabulars`. In the latter case, captions are also supported if the table is no floating object. In this case, the LaTeX package `capt-of` is required.
Value

The output is printed with LaTeX style syntax highlighting to be used e.g. in Sweave chunks with `results=tex`.

Author(s)

Benjamin Hofner

See Also

`latex.table.fac` and `get_option`

Examples

```r
Example requires package nlme to be installed and loaded
if (require("nlme")) {
 ## Use dataset Orthodont
data(Orthodont, package = "nlme")

 ## Get summary for continuous variables
 latex.table.cont(Orthodont)

 ## Change statistics to display
 latex.table.cont(Orthodont, quantiles = FALSE)
 latex.table.cont(Orthodont, count = FALSE, quantiles = FALSE)
 latex.table.cont(Orthodont, mean_sd = FALSE)

 ## Show column 'Missing' even if no missings are present
 latex.table.cont(Orthodont, show.NAs = TRUE)

 ## Change variables to display
 latex.table.cont(Orthodont, variables = "age")

 ## What happens in the display if we introduce some missing values:
 set.seed(1987)
 Orthodont$age[sample(nrow(Orthodont), 20)] <- NA
 latex.table.cont(Orthodont)
}
```

---

**Description**

The function produces LaTeX tables with summary statistics for factor variables. It makes use of the booktabs package in LaTeX to obtain tables with a nice layout.
Usage

latex.table.fac(..., caption = NULL, label = NULL,
  table = c("tabular", "longtable"), align = NULL,
  floating = FALSE, center = TRUE)

Arguments

... arguments for summarize. See there for details.
caption (optional) character string. Caption of LaTeX table. Note that captions are
  supported for all tables (see also details below).
label (optional) character string. Label of LaTeX table specified as \label{"label"}.
table character string. LaTeX table format, currently either "tabular" (default) or
  "longtable".
align character string. LaTeX alignment of table rows, per default "lllr\ldots r", where
  "r" is repeated ncol - 2 times.
floating logical (default: FALSE). Determines whether the table is a floating object (i.e.
  use a table environment or not). Note that a longtable cannot be a floating
  object but captions can be used.
center logical (default: TRUE). Determines if table should be centered.

Details

This function is deprecated and only available for backward compatibility. Use summarize for more
  flexibility.

The output requires \usepackage{booktabs} in the LaTeX file.

Captions can be added to both, longtables and tabulars. In the latter case, captions are also
  supported if the table is no floating object. In this case, the LaTeX package capt-of is required.

Value

The output is printed with LaTeX style syntax highlighting to be used e.g. in Sweave chunks with
  results=tex.

Author(s)

Benjamin Hofner

See Also

latex.table.cont and get_option
Examples

```r
Example requires package nlme to be installed and loaded
if (require("nlme")) {
 ## Use dataset Orthodont
data(Orthodont, package = "nlme")

 ## Get summary for continuous variables
 latex.table.fac(Orthodont)

 ## Reorder data for table:
 latex.table.fac(Orthodont, variables = c("Sex", "Subject"))

 ## What happens in the display if we introduce some missing values:
 set.seed(1997)
 Orthodont$Sex[sample(nrow(Orthodont), 20)] <- NA
 latex.table.fac(Orthodont)
 latex.table.fac(Orthodont, variables = "Sex")

 ## do not show statistics on missing values
 latex.table.fac(Orthodont, variables = "Sex", show.NAs = FALSE)
}
```

prettify

Make Pretty Summary and Anova Tables

Description

Improve summary tables by replacing variable names with labels and separating variable names and value labels of factor variables. Additionally, confidence intervals are added to summaries per default and p-values are formatted for pretty printing.

Usage

```r
generic function called by all prettify.summary.xxx functions
S3 method for class 'data.frame'
prettify(object, labels = NULL, sep = ": ", extra.column = FALSE,
 smallest.pval = 0.001, digits = NULL, scientific = FALSE,
 signif.stars =getOption("show.signif.stars"), ...)

S3 method for class 'summary.lm'
prettify(object, labels = NULL, sep = ": ", extra.column = FALSE,
 confint = TRUE, level = 0.95,
 smallest.pval = 0.001, digits = NULL, scientific = FALSE,
 signif.stars =getOption("show.signif.stars"), ...)

S3 method for class 'summary.glm'
prettify(object, labels = NULL, sep = ": ", extra.column = FALSE,
 confint = TRUE, level = 0.95, OR = TRUE,
 smallest.pval = 0.001, digits = NULL, scientific = FALSE,
```
signif.stars = getOption("show.signif.stars"), ...)

## S3 method for class 'summary.coxph'
prettify(object, labels = NULL, sep = ": ", extra.column = FALSE,
         confint = TRUE, level = 0.95, HR = TRUE,
         smallest.pval = 0.001, digits = NULL, scientific = FALSE,
         signif.stars = getOption("show.signif.stars"),
         env = parent.frame(), ...)

## S3 method for class 'summary.lme'
prettify(object, labels = NULL, sep = ": ", extra.column = FALSE,
         confint = TRUE, level = 0.95,
         smallest.pval = 0.001, digits = NULL, scientific = FALSE,
         signif.stars = getOption("show.signif.stars"),
         simulate = c("ifneeded", TRUE, FALSE), B = 1000, ...)

## method for mixed models fitted with lme (vers. < 1.0)
## S3 method for class 'summary.mer'
prettify(object, labels = NULL, sep = " ", extra.column = FALSE,
         confint = TRUE, level = 0.95,
         smallest.pval = 0.001, digits = NULL, scientific = FALSE,
         signif.stars = getOption("show.signif.stars"),
         method = c("profile", "Wald", "boot"), B = 1000, env = parent.frame(), ...)

## method for mixed models fitted with lme (vers. >= 1.0)
## S3 method for class 'summary.merMod'
prettify(object, labels = NULL, sep = " ", extra.column = FALSE,
         confint = TRUE, level = 0.95,
         smallest.pval = 0.001, digits = NULL, scientific = FALSE,
         signif.stars = getOption("show.signif.stars"),
         simulate = c("ifneeded", TRUE, FALSE), B = 1000, env = parent.frame(), ...)

## S3 method for class 'anova'
prettify(object, labels,
         smallest.pval = 0.001, digits = NULL, scientific = FALSE,
         signif.stars = getOption("show.signif.stars"), ...)

## helper function for pretty p-values
prettifyPValue(object, smallest.pval = 0.001, digits = NULL,
               scientific = FALSE,
               signif.stars = getOption("show.signif.stars"), ...)

### Arguments

**object**

object of class `data.frame` resulting (most likely) from a call to `summary` or directly the output from `summary`, `anova` or `Anova` (the latter from package `car`).

**labels**

specify labels here. For the format see `labels`.

**sep**

separator between variable label and value label of a factor variable (default: ": ").
extra.column  logical: provide an extra column for the value labels of factors (default: FALSE).

confint    logical value indicating if confidence intervals could be added or the confidence intervals themself.

Using confint = TRUE is experimental only and special care needs to be taken that the data set used for fitting is neither changed nor deleted. See ‘Details’ and ‘Examples’.

level      confidence level; Per default 0.95% confidence intervals are returned

OR         logical. Should odds ratios be added? Only applicable if a logistic regression model was fitted (i.e., with family = “binomial”).

HR         logical. Should hazard ratios be added?

smallest.pval determines the smallest p-value to be printed exactly. Smaller values are given as “< smallest.pval”. This argument is passed to the eps argument of format.pval. See there for details.

digits     number of significant digits. The default, NULL, uses getOption(“digits”) for formatting p-values and leaves all other columns unchanged. If digits are specified, all columns use this number of significant digits (columnwise). See also argument digits in format.

scientific specifies if numbers should be printed in scientific format. For details and possible values see format.

signif.stars logical (default = TRUE). Should significance stars be added? Per default system options are used. See getOption(“show.signif.stars”).

simulate   should the asymptotic or simulated confidence intervals be used? See confint.mer for details.

B          number of samples to take in mcmcsamp. See confint.mer for details.

method     Determines the method for computing confidence intervals; One of “profile” (default), “Wald”, “boot”. For details see confint.merMod in package lme4.

...        further options. Currently not applicable.

env        specify environment in which the model was fitted. Needed to find the correct data for refitting the model in order to obtain confidence intervals.

Details

Specialized functions that prettify summary tables of various models exist. For the data.frame method, extra.column and sep can only be used if labels are specified as variable names need to be known in order to split variable name and factor level. For summary objects, variable names can be extracted from the objects.

To compute confidence intervals, the model is refitted internally extracting the call and environment from the model summary. All functions then use confint on the refitted model. For mer models special confint functions are defined in this package (for backward compatibility). For details see there. Note that is it highly important not to modify or delete the data in the fitting environment if one wants to obtain correct confidence intervals. See examples for what might happen. We try our best to find changes of the data and to warn the user (but without any warranty).

Alternatively, one can directly specify the confidence intervals using e.g. confint = confint(model), where model is the fitted model. This does not rely on refitting of the model and should always work.
as expected. In this case, arguments level, simulate and B are ignored. Note that in this case it is advised to also specify the labels by hand!

`prettifyPValue` is a helper function used within the `prettify` functions but can also be used directly on a data.frame object. The function tries to (cleverly) “guess” the column of p-values (based on the column names) and formats them nicely. Additionally, significance stars are added if requested.

**Value**

data.frame with prettier variable labels. For summary functions additionally confidence intervals (if requested), odds ratio (for logistic regression models, if requested), p-values formatted for pretty printing and significance stars (if requested) are attached.

**Author(s)**

Benjamin Hofner

**See Also**

`summary`, `summary.lm`, `summary.glm`, `summary.lme`, `summary.merMod` (or `summary.mer-class` in lme4 < 1.0) and `summary.coxph` for summary functions.

`anova` and `Anova` for ANOVA functions.

`confint` and `ci` for confidence intervals. Special functions are implemented for mixed models: `confint.mer`.

**Examples**

```r
Example requires package nlme to be installed and loaded
if (require("nlme")) {
 ## Load data set Orthodont
data(Orthodont, package = "nlme")

 # Linear model
 linmod <- lm(distance ~ age + Sex, data = Orthodont)
 prettify(summary(linmod))

 # Extract anova (sequential tests)
anova(linmod)
 ## now prettify it
 prettify(anova(linmod))

 # Random effects model (nlme)
 # (fit a more suitable model with random effects)
```
## With package nlme:

```r
require("nlme")
Fit a model for distance with random intercept for Subject
mod <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1 | Subject)
summary(mod)
Extract fixed effects table, add confidence interval and make it pretty
prettify(summary(mod))
Extract fixed effects table only and make it pretty
prettify(summary(mod), confint = FALSE)
```

## Random effects model (lme4)

```r
set.seed(130913)
With package lme4:
if (require("lme4") && require("car")) {
 ## Fit a model for distance with random intercept for Subject
 mod4 <- lmer(distance ~ age + Sex + (1|Subject), data = Orthodont)
 summary(mod4)
 ## Extract fixed effects table and make it pretty
 prettify(summary(mod4))

 ## Extract and prettify anova (sequential tests)
 prettify(anova(mod4))

 ## Better: extract Anova (partial instead of sequential tests)
 library("car")
 Anova(mod4)
 ## now prettify it
 prettify(Anova(mod4))
}
```

## Cox model

```r
survival models
if (require("survival")) {
 ## Load data set ovarian
 data(ovarian, package = "survival")

 ## fit a Cox model
 mod5 <- coxph(Surv(futime, fustat) ~ age, data=ovarian)
 summary(mod5)
 ## Make pretty summary
 prettify(summary(mod5))

 ## Make pretty summary
 prettify(anova(mod5))
}
```
summarize

 Produce Summary Tables for Data Sets

Description

The function produces summary tables for factors and continuous variables. The obtained tables can be used directly in R, with LaTeX and HTML (by using the xtable function) or Markdown (e.g. by using the function kable).

Usage

summarize(data, type = c("numeric", "factor"), variables = names(data), variable.labels = labels, labels = NULL,
Arguments

data data set to be used.
type print summary table for either numeric or factor variables.
variables character vector defining variables that should be included in the table. Per default, all numeric or factor variables of data are used, depending on type.
variable.labels labels for the variables. If variable.labels = NULL (default) variables is used as label. If variable.labels = TRUE, labels(data, which = variables) is used as labels. Instead of variable.labels one can also use labels.
group character specifying a grouping factor. Per default no grouping is applied.
test logical or character string. If a group is given, this argument determines whether a test for group differences is computed. For details see summarize_numeric and summarize_factor.
colnames a vector of character strings of appropriate length. The vector supplies alternative column names for the resulting table. If NULL default names are used.
digits number of digits to round to. For defaults see summarize_numeric and summarize_factor.
digits.pval number of significant digits used for p-values.
smallest.pval determines the smallest p-value to be printed exactly. Smaller values are given as "<smallest.pval". This argument is passed to the eps argument of format.pval. See there for details.
sep logical. Determines whether separators (lines) should be added after each variable. For defaults see summarize_numeric and summarize_factor.
sanitize logical (default: TRUE) or a sanitizing function used to clean the input in order to be useable in LaTeX environments. Per default toLatex.character is used.
drop logical (default: TRUE). Determines whether variables, which contain only missing values are dropped from the table.
show.NAs logical. Determines if NAs are displayed. Per default, show.NAs is TRUE if there are any missing in the variables to be displayed (and FALSE if not). For details see summarize_numeric and summarize_factor.
...
... additional arguments for summarize_numeric and summarize_factor. See there for details.

Value

A special data.frame with additional class summary containing the computed statistics is returned from function summarize. Additional attributes required for the xtable.summary or print.xtable.summary function are contained as attributes. These are extracted using the function get_option.
summarize_factor

Author(s)
Benjamin Hofner

See Also
For details see summarize_numeric and summarize_factor.
Conversion to LaTeX tables can be done using xtable.summary and print.xtable.summary.

Examples

```r
if (require("nlme")) {
 ## Use dataset Orthodont
data(Orthodont, package = "nlme")

 ## Get summary for continuous variables
 (tab1 <- summarize(Orthodont, type = "numeric"))

 ## Change statistics to display
 summarize(Orthodont, quantiles = FALSE, type = "numeric")
 summarize(Orthodont, quantiles = FALSE, count = FALSE, type = "numeric")
 summarize(Orthodont, mean_sd = FALSE, type = "numeric")

 ## Get summary for categorical variables
 (tab2 <- summarize(Orthodont, type = "fac"))

 ## use fraction instead of percentage
 summarize(Orthodont, percent = FALSE, type = "fac")

 ## Using the tables with Markdown
 if (require("knitr")) {
 kable(tab1)
 kable(tab2)
 }

 ## Using the tables with LaTeX
 if (require("xtable")) {
 xtable(tab1)
 ## grouped table
 xtable(summarize(Orthodont, group = "Sex"))
 xtable(tab2)
 }
}
```

summarize_factor Produce Summary Tables for Data Sets
**Description**

The function produces summary tables for factor variables. The obtained tables can be used directly in R, with LaTeX and HTML (by using the \texttt{xtable} function) or Markdown (e.g. by using the function \texttt{kable}).

**Usage**

\begin{verbatim}
summarize_factor(data,
  variables = names(data), variable.labels = labels, labels = NULL,
  group = NULL, test = !is.null(group), colnames = NULL,
  digits = 3, digits.pval = 3, smallest.pval = 0.001,
  sep = TRUE, sanitize = TRUE, drop = TRUE, 
  show.NAs = any(is.na(data[, variables]),
  ## additional specific arguments
  percent = TRUE, cumulative = FALSE,
  na.lab = "<Missing>", ...)
\end{verbatim}

**Arguments**

- **data**
  - data set to be used.

- **variables**
  - variables that should be included in the table. For details see \texttt{summarize}.

- **variable.labels**
  - labels for the variables. For details see \texttt{summarize}.

- **group**
  - character specifying a grouping factor. For details see \texttt{summarize}.

- **test**
  - logical or character specifying test for group differences. For details see \texttt{summarize}.

- **colnames**
  - a vector of character strings of appropriate length. For details see \texttt{summarize}.

- **digits**
  - number of digits to round to (only used for fractions). Per default all values are rounded to three digits.

- **digits.pval**
  - number of significant digits used for p-values.

- **smallest.pval**
  - determines the smallest p-value to be printed exactly. For details see \texttt{summarize}.

- **sep**
  - logical (default: TRUE). Determines whether separators (lines) should be added after each variable.

- **sanitize**
  - logical (default: TRUE) or a sanitizing function. For details see \texttt{summarize}.

- **drop**
  - logical (default: TRUE). Determines whether variables, which contain only missing values are dropped from the table.

- **show.NAs**
  - logical. Determines if NAs are displayed as a separate category for each factor variable with missings. If TRUE, an additional statistic which includes the missings is displayed (see Examples). Per default, show.NAs is TRUE if there are any missings in the variables to be displayed (and FALSE if not).

- **percent**
  - logical. Should the fractions be given as percent values? Otherwise, fractions are given as decimal numbers.

- **cumulative**
  - logical. Should cumulative fractions be displayed?

- **na.lab**
  - label for missing values (default: "<Missing>").

- **...**
  - additional arguments. Currently not used.
Produce Summary Tables for Data Sets

The function produces summary tables for continuous variables. The obtained tables can be used directly in R, with LaTeX and HTML (by using the `xtable` function) or Markdown (e.g. by using the function `kable`).
summarize_numeric

Usage

summarize_numeric(data,
variables = names(data), variable.labels = labels, labels = NULL,
group = NULL, test = !is.null(group), colnames = NULL,
digits = 2, digits.pval = 3, smallest.pval = 0.001,
sep = !is.null(group), sanitize = TRUE,
drop = TRUE, show.NAs = any(is.na(data[, variables]),
## additional specific arguments
count = TRUE, mean_sd = TRUE, quantiles = TRUE,
incl_outliers = TRUE, ...)

Arguments

data data set to be used.
variables variables that should be included in the table. For details see summarize.
variable.labels, labels labels for the variables. For details see summarize.
group character specifying a grouping factor. For details see summarize.
test logical or character specifying test for group differences. For details see summarize.
colnames a vector of character strings of appropriate length. For details see summarize.
digits number of digits to round to. Per default all values are rounded to two digits.
digits.pval number of significant digits used for p-values.
smallest.pval determines the smallest p-value to be printed exactly. For details see summarize.
sep logical (default: TRUE if grouping specified, FALSE otherwise). Determines whether separators (lines) should be added after each variable.
sanitize logical (default: TRUE) or a sanitizing function. For details see summarize.
drop logical (default: TRUE). Determines whether variables, which contain only missing values are dropped from the table.
show.NAs logical. Determines if the number of missings (NAs) is displayed as a separate column. Per default, show.NAs is TRUE if there are any missings in the variables to be displayed (and FALSE if not).
count (logical) indicator if number of complete cases ("n") should be included in the table (default: TRUE).
mean_sd (logical) indicator if mean and standard deviation should be included in the table (default: TRUE).
quantiles (logical) indicator if quantiles (including min and max) should be included in the table (default: TRUE).
incl_outliers Per default we use fivenum to compute the quantiles (if quantiles = TRUE). If extreme values should be excluded from min/max in the table, boxplot(, plot = FALSE)$stats is used instead.

... additional arguments. Currently not used.
Value

A special data.frame with additional class summary containing the computed statistics is returned from function `summarize`. Additional attributes required for the `xtable.summary` or `print.xtable.summary` function are contained as attributes. These are extracted using the function `get_option`.

Author(s)

Benjamin Hofner

See Also

For details see `link{summarize}` and `link{summarize_factor}`.

Conversion to LaTeX tables can be done using `xtable.summary` and `print.xtable.summary`. `get_option`.

Examples

```r
if (require("nlme")) {
 ## Use dataset Orthodont
 data(Orthodont, package = "nlme")

 ## Get summary for continuous variables
 summarize(Orthodont, type = "numeric")

 ## Change statistics to display
 summarize(Orthodont, quantiles = FALSE, type = "numeric")
 summarize(Orthodont, quantiles = FALSE, count = FALSE, type = "numeric")
 summarize(Orthodont, mean_sd = FALSE, type = "numeric")

 ## for more examples see ?summarize
}
```

citecommand = "\citep", file = NULL,
append = FALSE, ...)

Arguments

object either an object of class character which should be cleaned for printing in LaTeX
environments or an object of class sessionInfo.

pkgs character vector (optional). Specify specific packages here to show information
on these (instead of all attached packages). See package in sessionInfo.

locale logical (default = FALSE). Show information on locale.

base.pkgs logical (default = FALSE). Show information on base packages.

other.pkgs logical (default = TRUE). Show information on currently attached packages. If
pkgs is specified, information on these packages is given instead of all attached
packages.

namespace.pkgs logical (default = FALSE). Show information on packages whose namespaces
are currently loaded but not attached.

citations logical (default = TRUE). Should citations for all packages be added? BibTeX
is used for storing the citations.

citecommand Specify LaTeX-command for citation here. Curly brackets are added internally.
Note that \ needs to be escaped, i.e., one needs to write \ instead.

file Specify path to BibTeX file where citations should be saved. If file = NULL
is specified, the BibTeX entries are attached to the output as attribute "BibTeX".
See examples for details.

append logical (default = FALSE). Should citations be added to an existing BibTeX file
(if existing) or should old BibTeX files be overwritten?

... additional arguments. Currently not used.

Value

A character string with special markup is returned: The output is printed with LaTeX style syntax
highlighting to be used e.g. in Sweave chunks with results=tex.

Author(s)

Benjamin Hofner, based on code from package xtable, bibtex and package utils. See source code
for documentation.

See Also

toLatex. For details on toLatex.sessionInfo see also sessionInfo.

Examples

txt <- "Price: <= 500$ & additional goodies"
toLatex(txt)

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
## xtable.summary

Create And Print Tables With Markup

### Description

The function produces objects which can be printed to LaTeX and HTML code.

### Usage

```r
S3 method for class 'summary'
xtable(x, caption = NULL, label = NULL, align = NULL,
 digits = NULL, display = NULL, ...)

S3 method for class 'xtable.summary'
print(x, rules = NULL, header = NULL,
 caption.placement = getOption("xtable.caption.placement", "top"),
 hline.after = getOption("xtable.hline.after", NULL),
 include.rownames = FALSE,
 add.to.row = getOption("xtable.add.to.row", NULL),
 booktabs = getOption("xtable.booktabs", TRUE),
 sanitize.text.function = get_options(x, "sanitize"),
```
Arguments

- **x**: object of class "summary", which is produced by the function `summarize` or an object of class "xtable.summary" produced by xtable.
- **caption**: character vector specifying the table's caption; see `xtable` for details.
- **label**: character string specifying the LaTeX label or HTML anchor; see `xtable` for details.
- **align**: character string specifying the alignment of table columns; see `xtable` for details.
- **digits**: numeric vector specifying the number of digits to display in each column; see `xtable` for details.
- **display**: character string specifying the column types; see `xtable` for details.
- **rules**: character string specifying the rules to be used. Per default the rules are defined by `summarize` and subsequently extracted from x via `get_option(x, "rules")`.
- **header**: character string specifying the table header to be used. Per default the header is defined by `summarize` and subsequently extracted from x via `get_option(x, "header")`.
- **caption.placement**: can be either "bottom" or "top" (default). Note that the standard default of `print.xtable` is "bottom".
- **hline.after**: vector indicating the rows after which a horizontal line is printed. Here, the default is to not draw hlines (i.e. `hline.after = NULL`) and horizontal lines are added via `add.to.row` (see there for details). Note that the standard default of `print.xtable` is `c(-1,0,nrow(x))`.
- **add.to.row**: list of row numbers (pos) and text (command) to be added to the specified rows. Per default, top and bottom rules are added to the table and a rule specified in rules is added below the heading. If `sep = TRUE` in `summarize` additional separators (as specified in rules) are added after each variable.
- **include.rownames**: logical. Always set to FALSE.
- **booktabs**: logical. If `TRUE` (default), the `toprule`, `midrule` and `bottomrule` tags from the LaTeX package "booktabs" are used rather than `hline` for the horizontal line tags. Note that the standard default of `print.xtable` is `FALSE`.
- **sanitize.text.function**: All non-numeric entries (except row and column names) are sanitised in an attempt to remove characters which have special meaning for the output format. Per default the function `tolatex` is used to sanitize the text. For more options see `print.xtable`.

```r
table = summarize(x) xtable.summary(mathNstyleNnegative = getOption("xtable.mathNstyleNnegative", TRUE), mathNstyleNexponents = getOption("xtable.mathNstyleNexponents", TRUE), tabularNenvironment = getOption("xtable.tabularNenvironment", "tabular"), floating = getOption("xtable.floating", FALSE), latex.environments = getOption("xtable.latex.environments", c("center")), ...
```
math.style.negative
  logical. If TRUE (default) the negative sign is wrapped in dollar signs for LaTeX tables. Note that the standard default of `print.xtable` is FALSE.

math.style.exponents
  logical. If TRUE (default) scientific numer are set as exponents. See `print.xtable` for details. Note that the standard default of `print.xtable` is FALSE.

tabular.environment
  character string. Per default "tabular" is used. For long tables that span over more than one page, one can use "longtable". For more options see `print.xtable`.

floating
  logical. Determine if the table is printed in a floating environment. Note that the standard default of `print.xtable` is TRUE. See there for details.

latex.environments
  character string. Per default "center" is used. In contrast to the default behavior of `print.xtable`, tables are also centered if no floating environment is used. For details and more options see `print.xtable`.

... additional arguments passed to `xtable` or `print.xtable`. See there for details.

Details

We use the standard `xtable` function but add a special class that allows different defaults in the `print.xtable` function.

In general, all options of `print.xtable` can be used as well as global options set via `options()`. E.g. `options(xtable.booktabs = FALSE)` will set the argument `booktabs` per default to FALSE for all calls to `print.xtable`.

Value

After printing, a table with LaTeX markup is returned.

Author(s)

Benjamin Hofner

See Also

For details see `xtable` and `print.xtable`.

`summarize`, `get_option`

Examples

```r
if (require("nlme")) {
 ## Use dataset Orthodont
data(Orthodont, package = "nlme")

 ## Get summary for continuous variables
 (tabl <- summarize(Orthodont, type = "numeric"))

 ## Get summary for categorical variables
```
(tab2 <- summarize(Orthodont, type = "fac"))

## Using the tables with LaTeX
if (require("xtable")) {
  xtable(tab1)
  ## grouped table
  xtable(summarize(Orthodont, group = "Sex"))
  xtable(tab2)
}
}
Index

*Topic IO
  get_option, 4
  latex.table.cont, 9
  latex.table.fac, 10
  summarize, 17
  summarize_factor, 19
  summarize_numeric, 21
  toLatex, 23
  xtable.summary, 25

*Topic methods
  Anova.lme, 2
  labels, 5
  prettify, 12

*Topic models
  Anova.lme, 2
  prettify, 12

*Topic package
  paperMpackage, 2

*Topic print
  get_option, 4
  latex.table.cont, 9
  latex.table.fac, 10
  summarize, 17
  summarize_factor, 19
  summarize_numeric, 21
  toLatex, 23
  xtable.summary, 25

*Topic univar
  latex.table.cont, 9
  latex.table.fac, 10
  summarize, 17
  summarize_factor, 19
  summarize_numeric, 21
  toLatex, 23
  xtable.summary, 25

[, 6

abbreviate, 6
Anova, 2, 3, 13, 15
anova, 13, 15

Anova.lme, 2
anova.lme, 2, 3
as.ldf (labels), 5
ci, 4, 15
confint, 14, 15
confint.default, 4
confint.mer, 3, 14, 15
convert.labels (labels), 5
data.frame, 6
fivenum, 22
format, 14
format.pval, 14, 18
get_option, 4, 10, 11, 18, 19, 21, 23, 27
is.ldf (labels), 5
kable, 17, 20, 21
labels, 5, 13
labels<=- (labels), 5
latex.table.cont, 4, 5, 9, 11
latex.table.fac, 4, 5, 10, 10
mcmcsamp, 4, 14
papeR (papeR-package), 2
papeR-package, 2
plot (labels), 5
prettify, 12
prettifyPValue (prettify), 12
print.table.cont (latex.table.cont), 9
print.table.fac (latex.table.fac), 10
print.xtable, 26, 27
print.xtable (xtable.summary), 25
print.xtable.summary, 18, 19, 21, 23
read.spss, 7
sessionInfo, 24
summarise (summarize), 17
summarize, 2, 9, 11, 17, 20, 22, 26, 27
summarize_factor, 18, 19, 19
summarize_numeric, 18, 19, 21
summary, 13–15
summary.coxph, 15
summary.glm, 15
summary.lm, 15
summary.lme, 15
toLatex, 23, 24, 26
toLatex.character, 18
xtable, 17, 20, 21, 26, 27
xtable (xtable.summary), 25
xtable.summary, 18, 19, 21, 23, 25