Package ‘parallelMCMCcombine’

February 20, 2015

Type Package
Title Methods for combining independent subset Markov chain Monte Carlo (MCMC) posterior samples to estimate a posterior density given the full data set
Version 1.0
Date 2014-06-12
Author Alexey Miroshnikov, Erin Conlon
Maintainer Alexey Miroshnikov <amiroshn@gmail.com>
Description Recent Bayesian Markov chain Monte Carlo (MCMC) methods have been developed for big data sets that are too large to be analyzed using traditional statistical methods. These methods partition the data into non-overlapping subsets, and perform parallel independent Bayesian MCMC analyses on the data subsets, creating independent subposterior samples for each data subset. These independent subposterior samples are combined through four functions in this package, including averaging across subset samples, weighted averaging across subsets samples, and kernel smoothing across subset samples. The four functions assume the user has previously run the Bayesian analysis and has produced the independent subposterior samples outside of the package; the functions use as input the array of subposterior samples. The methods have been demonstrated to be useful for Bayesian MCMC models including Bayesian logistic regression, Bayesian Gaussian mixture models and Bayesian hierarchical Poisson-Gamma models. The methods are appropriate for Bayesian hierarchical models with hyperparameters, as long as data values in a single level of the hierarchy are not split into subsets.
Depends mvtnorm
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-06-20 08:03:26

R topics documented:

parallelMCMCcombine-package .. 2
consensusMCcov ... 3
Recent Bayesian Markov chain Monte Carlo (MCMC) methods have been developed for big data sets that are too large to be analyzed using traditional statistical methods. These methods partition the data into non-overlapping subsets, and perform parallel independent Bayesian MCMC analyses on the data subsets, creating independent subposterior samples for each data subset. These independent subposterior samples are combined through four functions in this package, including averaging across subset samples, weighted averaging across subsets samples, and kernel smoothing across subset samples. The four functions assume the user has previously run the Bayesian analysis and has produced the independent subposterior samples outside of the package; the functions use as input the array of subposterior samples. The methods have been demonstrated to be useful for Bayesian MCMC models including Bayesian logistic regression, Bayesian Gaussian mixture models and Bayesian hierarchical Poisson-Gamma models. The methods are appropriate for Bayesian hierarchical models with hyperparameters, as long as data values in a single level of the hierarchy are not split into subsets.

The package contains the following functions:
- `consensusMCindep` Consensus Monte Carlo Algorithm (for independent parameters)
- `sampleAvg` Sample Averaging Method
- `semiparamDPE` Semiparametric Method

Author(s)
Alexey Miroshnikov, Erin Conlon

Maintainer: Alexey Miroshnikov <amiroshn@gmail.com>
References

consensusMCCov

Consensus Monte Carlo Algorithm (for correlated parameters)

Description
The function uses the Consensus Monte Carlo algorithm introduced by Scott et al. (see References) to combine the independent subset posterior samples subchains into the set of samples that estimate the posterior density given the full data set. The Consensus Monte Carlo algorithm uses a weighted average of the subset posterior samples to produce the combined posterior samples, where the weights are based on the inverse variance-covariance matrix of the subset posterior samples.

Usage
consensusMCCov(subchain, shuff = FALSE)

Arguments
subchain array of subset posterior samples of the dimension ‘c(d,sampT,m)’. Here ‘d’ is the dimension of the parameter space, ‘sampT’ is the number of samples, and ‘m’ is the number of subposterior datasets.
shuff shuff: logical; if TRUE, each of the ‘m’ subsets of ‘d’ dimensional parameters in ‘subchain’ is shuffled.

Details
The array ‘subchain’ must have dimension ‘c(d,sampT,m)’. Here ‘d’ is the dimension of the parameter space, ‘sampT’ is the number of samples, and ‘m’ is the number of subposterior datasets.

Value
Returns an array of samples of dimension dim=c(d,sampT) representing an estimated (combined) full posterior density.

References
Examples

```r
# dimension of the parameter space
d <- 2

# number of subset posterior samples
sampT <- 1000

# total number of subsets
M <- 3

## simulate Gaussian subposterior samples
theta <- array(NA, c(d, sampT, M))

norm.mean <- c(1.0, 2.0)
norm.sd <- c(0.5, 1.0)

for (i in 1:d)
  for (s in 1:M)
    theta[i, , s] <- rnorm(sampT, mean = norm.mean[i] + runif(1, -0.01, 0.01), sd = norm.sd[i])

## combine samples:
full.theta <- consensusMCcov(subchain = theta, shuff = FALSE)
```

Description

The function uses the Consensus Monte Carlo algorithm introduced by Scott et al. (see References) to combine the independent subset posterior samples subchains into the set of samples that estimate the posterior density given the full data set. The Consensus Monte Carlo algorithm uses a weighted average of the subset posterior samples to produce the combined posterior samples, where the weights are based on the inverse variance-covariance matrix of the subset posterior samples. Here, the model parameters are assumed to be independent, so that the covariance between model parameters is equal to zero.

Usage

```r
consensusMCindep(subchain, shuff = FALSE)
```

Arguments

- **subchain**: array of subset posterior samples of the dimension `c(d, sampT, M)`.
- **shuff**: logical; if TRUE, each of the `M` subsets of `d` dimensional parameters in `subchain` is shuffled.

Details

The array `subchain` must have dimension `c(d, sampT, M)`. Here `d` is the dimension of the parameter space, `sampT` is the number of samples, and `M` is the number of subposterior datasets.
Sample Averaging Method

SampleAvg

Description

The function combines the independent subset posterior samples subchains into the set of samples that estimate the posterior density given the full data set, by averaging the samples across subsets. Individual model parameters are assumed to be independent.

Usage

sampleAvg(subchain, shuff = FALSE)

Arguments

subchain array of subset posterior samples of the dimension ‘c(d, sampT, M).’ Here ‘d’ is the dimension of the parameter space, ‘sampT’ is the number of samples, and ‘M’ is the number of subposterior datasets.
shuff shuff: logical; if TRUE, each of the ‘M’ subsets of ‘d’ dimensional parameters in ‘subchain’ is shuffled.
Details

The array ‘subchain’ must have dimension ‘c(d,sampT,M)’. Here ‘d’ is the dimension of the parameter space, ‘sampT’ is the number of samples, and ‘M’ is the number of subposterior datasets.

Value

Returns an array of samples of dimension dim=c(d,sampT) representing an estimated (combined) full posterior density.

Examples

d <- 2 # dimension of the parameter space
sampT <- 1000 # number of subset posterior samples
M <- 3 # total number of subsets

simulate Gaussian subposterior samples
theta <- array(NA,c(d,sampT,M))
norm.mean <- c(1.0, 2.0)
norm.sd <- c(0.5, 1.0)

for (i in 1:d)
 for (s in 1:M)
 theta[i,s] <- rnorm(sampT, mean=norm.mean[i]+runif(1,-0.01,0.01), sd=norm.sd[i])

combine samples:
full.theta <- sampleAvg(subchain=theta, shuff=FALSE)

semiparamDPE Semiparametric Consensus Method

Description

The function uses the Semiparametric Density Product Estimator method introduced by Neiswanger et al. (see References) to combine the independent subset posterior samples subchains into the set of samples that estimate the posterior density given the full data set. The semiparametric density product estimator method uses kernel smoothing techniques to estimate each subset posterior density; the subposterior densities are then multiplied together to approximate the posterior density based on the full data set.

Usage

semiparamDPE(subchain, bandw = rep(1.0, dim(subchain)[1]), anneal = TRUE, shuff = FALSE)
Arguments

subchain
array of subset posterior samples of the dimension \(c(d, sampedT, M)\). Here \(d\) is the dimension of the parameter space, \(sampedT\) is the number of samples, and \(M\) is the number of subposterior datasets.

bandw
bandwidth vector of the length \(d=\text{dim(subchain)}[1]\). It is a vector of tuning parameters used in kernel density approximation employed by the semiparametric method. When ‘anneal=TRUE’ then one of the choices for ‘bandw’ could be the vector consisting of standard deviations for each of the ‘d’ parameters. When ‘anneal=FALSE’ then one of the choices for ‘bandw’ could be the diagonal of the optimal bandwidth matrix obtained via Silverman’s rule of thumb; see Examples. By default ‘bandw=rep(1.0, d)’.

anneal
logical; if TRUE, the bandwidth ‘bandw’ (instead of being fixed) is annealed as ‘bandw+i^(-1/(4+d))’; here ‘i’ is the index corresponding to a sample; see References.

shuff
logical; if TRUE, each of the ‘M’ subsets of ‘d’ dimensional parameters in ‘subchain’ is shuffled.

Value

Returns an array of samples of dimension \(\text{dim}=c(d, sampedT)\) representing an estimated (combined) full posterior density.

References

Examples

d <- 2 # dimension of the parameter space
sampedT <- 300 # number of subset posterior samples
M <- 3 # total number of subsets

simulate Gaussian subposterior samples
theta <- array(NA, c(d, sampedT, M))

norm.mean <- c(1.0, 2.0)
norm.sd <- c(0.5, 1.0)

for (i in 1:d)
 for (s in 1:M)
 theta[i, s] <- rnorm(sampedT, mean=norm.mean[i]+runif(1,-0.01,0.01), sd=norm.sd[i])

estimate (mean) standard deviations for each parameter across the subsets
norm.var.est <- rep(0, d)
for(i in 1:d)
 for(s in 1:M)
 norm.var.est[i] <- norm.var.est[i] + var(theta[i,,s])

norm.sd.est <- sqrt(norm.var.est/M)

Compute the diagonal of the optimal bandwidth
matrix according to Silverman's rule
h_opt1 = (4/(d+2))^(1/(4+d)) * (sampT^(-1/(4+d))) * norm.sd.est

Combine samples. The bandwidth matrix is fixed:
full.theta1 <- semiparamDPE(subchain = theta, bandw = h_opt1 * 2, anneal = FALSE)

Compute the diagonal of the optimal bandwidth
matrix for the method that uses annealing
h_opt2 = (4/(d+2))^(1/(4+d)) * norm.sd.est

Combine samples. The bandwidth matrix will be annealed:
full.theta2 <- semiparamDPE(subchain = theta, bandw = h_opt2 * 2, anneal = TRUE)
Index

*Topic combine
 consensusMCcov, 3
 consensusMCindep, 4
 parallelMCMCcombine-package, 2
 sampleAvg, 5
 semiparamDPE, 6

*Topic consensus
 consensusMCcov, 3
 consensusMCindep, 4
 parallelMCMCcombine-package, 2
 sampleAvg, 5
 semiparamDPE, 6

*Topic parallel
 consensusMCcov, 3
 consensusMCindep, 4
 parallelMCMCcombine-package, 2
 sampleAvg, 5

*Topic posterior
 consensusMCcov, 3
 consensusMCindep, 4
 parallelMCMCcombine-package, 2
 sampleAvg, 5
 semiparamDPE, 6

*Topic subposterior
 consensusMCcov, 3
 consensusMCindep, 4
 parallelMCMCcombine-package, 2
 sampleAvg, 5
 semiparamDPE, 6

consensusMCcov, 2, 3
consensusMCindep, 2, 4
parallelMCMCcombine-package, 2
sampleAvg, 2, 5
semiparamDPE, 2, 6