
Package ‘parallelMap’
May 17, 2019

Title Unified Interface to Parallelization Back-Ends

Version 1.4

Maintainer Bernd Bischl <bernd_bischl@gmx.net>

Description Unified parallelization framework for multiple
back-end, designed for internal package and interactive usage. The
main operation is parallel mapping over lists. Supports 'local',
'multicore', 'mpi' and 'BatchJobs' mode. Allows tagging of the
parallel operation with a level name that can be later selected by the
user to switch on parallel execution for exactly this operation.

License BSD_2_clause + file LICENSE

URL https://github.com/berndbischl/parallelMap

BugReports https://github.com/berndbischl/parallelMap/issues

Depends R (>= 3.0.0)

Imports BBmisc (>= 1.8), checkmate (>= 1.8.0), parallel, stats, utils

Suggests BatchJobs (>= 1.8), batchtools (>= 0.9.6), data.table, Rmpi,
testthat

ByteCompile yes

Encoding UTF-8

LazyData yes

RoxygenNote 6.1.1

NeedsCompilation no

Author Bernd Bischl [cre, aut],
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>)

Repository CRAN

Date/Publication 2019-05-17 10:50:29 UTC

1

https://github.com/berndbischl/parallelMap
https://github.com/berndbischl/parallelMap/issues

2 parallelExport

R topics documented:
parallelExport . 2
parallelGetOptions . 3
parallelGetRegisteredLevels . 3
parallelLapply . 4
parallelLibrary . 5
parallelMap . 5
parallelRegisterLevels . 7
parallelSource . 7
parallelStart . 8
parallelStop . 10

Index 12

parallelExport Export R objects for parallelization.

Description

Makes sure that the objects are exported to slave process so that they can be used in a job function
which is later run with parallelMap.

Usage

parallelExport(..., objnames, master = TRUE, level = NA_character_,
show.info = NA)

Arguments

... [character]
Names of objects to export.

objnames [character(1)]
Names of objects to export. Alternative way to pass arguments.

master [logical(1)]
Really export to package environment on master for local and multicore mode?
If you do not do this your objects might not get exported for the mapping func-
tion call. Only disable when you are really sure. Default is TRUE.

level [character(1)]
If a (non-missing) level is specified in parallelStart, the function only exports
if the level specified here matches. See parallelMap. Useful if this function is
used in a package. Default is NA.

show.info [logical(1)]
Verbose output on console? Can be used to override setting from options /
parallelStart. Default is NA which means no overriding.

parallelGetOptions 3

Value

Nothing.

parallelGetOptions Retrieve the configured package options.

Description

Returned are current and default settings, both as lists. The return value has slots elements settings
and defaults, which are both lists of the same structure, named by option names.

A printer exists to display this object.

For details on the configuration procedure please read parallelStart and https://github.com/
berndbischl/parallelMap.

Usage

parallelGetOptions()

Value

ParallelMapOptions . See above.

parallelGetRegisteredLevels

Get registered parallelization levels for all currently loaded packages.

Description

With flatten = FALSE, a structured S3 object is returned. The S3 object only has one slot,
which is called levels. This contains a named list. Each name refers to package from the call
to parallelRegisterLevels, while the entries are character vectors of the form “package.level”.
With flatten = TRUE, a simple character vector is returned that contains all concatenated entries
of levels from above.

Usage

parallelGetRegisteredLevels(flatten = FALSE)

Arguments

flatten [logical(1)]
Flatten to character vector or not? See description. Default is FALSE.

Value

codeRegisteredLevels | character . See above.

https://github.com/berndbischl/parallelMap
https://github.com/berndbischl/parallelMap

4 parallelLapply

parallelLapply Parallel versions of apply-family functions.

Description

parallelLapply: A parallel lapply version.
parallelSapply: A parallel sapply version.
All functions are simple wrappers for parallelMap.

Usage

parallelLapply(xs, fun, ..., impute.error = NULL,
level = NA_character_)

parallelSapply(xs, fun, ..., simplify = TRUE, use.names = TRUE,
impute.error = NULL, level = NA_character_)

Arguments

xs [vector | list]
fun is applied to the elements of this argument.

fun [function]
Function to map over xs.

... [any]
Further arguments passed to fun.

impute.error [NULL | function(x)]
See parallelMap.

level [character(1)]
See parallelMap.

simplify [logical(1)]
See sapply. Default is TRUE.

use.names [logical(1)]
See sapply. Default is TRUE.

Value

For parallelLapply an unamed list, for parallelSapply it depends on the return value of fun
and the settings of simplify and use.names.

parallelLibrary 5

parallelLibrary Load packages for parallelization.

Description

Makes sure that the packages are loaded in slave process so that they can be used in a job function
which is later run with parallelMap.

For all modes, the packages are also (potentially) loaded on the master.

Usage

parallelLibrary(..., packages, master = TRUE, level = NA_character_,
show.info = NA)

Arguments

... [character]
Names of packages to load.

packages [character(1)]
Names of packages to load. Alternative way to pass arguments.

master [logical(1)]
Load packages also on master for any mode? Default is TRUE.

level [character(1)]
If a (non-missing) level is specified in parallelStart, the function only loads
the packages if the level specified here matches. See parallelMap. Useful if
this function is used in a package. Default is NA.

show.info [logical(1)]
Verbose output on console? Can be used to override setting from options /
parallelStart. Default is NA which means no overriding.

Value

Nothing.

parallelMap Maps a function over lists or vectors in parallel.

Description

Uses the parallelization mode and the other options specified in parallelStart.

Libraries and source file can be initialized on slaves with parallelLibrary and parallelSource.

Large objects can be separately exported via parallelExport, they can be simply used under their
exported name in slave body code.

Regarding error handling, see the argument impute.error.

6 parallelMap

Usage

parallelMap(fun, ..., more.args = list(), simplify = FALSE,
use.names = FALSE, impute.error = NULL, level = NA_character_,
show.info = NA)

Arguments

fun [function]
Function to map over

... [any]
Arguments to vectorize over (list or vector).

more.args [list]
A list of other arguments passed to fun. Default is empty list.

simplify [logical(1)]
Should the result be simplified? See sapply. Default is FALSE.

use.names [logical(1)]
Should result be named by first vector if that is of class character? Default is
FALSE.

impute.error [NULL | function(x)]
This argument can be used for improved error handling. NULL means that, if
an exception is generated on one of the slaves, it is also thrown on the master.
Usually all slave jobs will have to terminate until this exception on the master
can be thrown. If you pass a constant value or a function, all jobs are guaranteed
to return a result object, without generating an exception on the master for slave
errors. In case of an error, this is a simpleError object containing the error
message. If you passed a constant object, the error-objects will be substituted
with this object. If you passed a function, it will be used to operate on these
error-objects (it will ONLY be applied to the error results). For example, using
identity would keep and return the simpleError-object, or function(x) 99
would impute a constant value (which could be achieved more easily by simply
passing 99). Default is NULL.

level [character(1)]
If a (non-missing) level is specified in parallelStart, this call is only paral-
lelized if the level specified here matches. Useful if this function is used in a
package. Default is NA.

show.info [logical(1)]
Verbose output on console? Can be used to override setting from options /
parallelStart. Default is NA which means no overriding.

Value

Result.

Examples

parallelStart()
parallelMap(identity, 1:2)

parallelRegisterLevels 7

parallelStop()

parallelRegisterLevels

Register a parallelization level

Description

Package developers should call this function in their packages’ .onLoad. This enables the user to
query available levels and bind parallelization to specific levels. This is especially helpful for nested
calls to parallelMap, e.g. where the inner call should be parallelized instead of the outer one.

To avoid name clashes, we encourage developers to always specify the argument package. This will
prefix the specified levels with the string containing the package name, e.g. parallelRegisterLevels(package="foo", levels="dummy")
will register the level “foo.dummy” and users can start parallelization for this level with parallelStart(<backend>, level = "parallelMap.dummy").
If you do not provide package, the level names will be associated with category “custom” and can
there be later referred to with “custom.dummy”.

Usage

parallelRegisterLevels(package = "custom", levels)

Arguments

package [character(1)]
Name of your package. Default is “custom” (we are not in a package).

levels [character(1)]
Available levels that are used in the parallelMap operations of your package or
code. If package is not missing, all levels will be prefixed with “[package].”.

Value

Nothing.

parallelSource Source R files for parallelization.

Description

Makes sure that the files are sourced in slave process so that they can be used in a job function
which is later run with parallelMap.

For all modes, the files are also (potentially) loaded on the master.

Usage

parallelSource(..., files, master = TRUE, level = NA_character_,
show.info = NA)

8 parallelStart

Arguments

... [character]
File paths to sources.

files [character]
File paths to sources. Alternative way to pass arguments.

master [logical(1)]
Source files also on master for any mode? Default is TRUE.

level [character(1)]
If a (non-missing) level is specified in parallelStart, the function only sources
the files if the level specified here matches. See parallelMap. Useful if this
function is used in a package. Default is NA.

show.info [logical(1)]
Verbose output on console? Can be used to override setting from options /
parallelStart. Default is NA which means no overriding.

Value

Nothing.

parallelStart Parallelization setup for parallelMap.

Description

Defines the underlying parallelization mode for parallelMap. Also allows to set a “level” of par-
allelization. Only calls to parallelMap with a matching level are parallelized. The defaults of all
settings are taken from your options, which you can also define in your R profile. For an introduc-
tory tutorial and information on the options configuration, please go to the project’s github page at
https://github.com/berndbischl/parallelMap.

Usage

parallelStart(mode, cpus, socket.hosts, bj.resources = list(),
bt.resources = list(), logging, storagedir, level,
load.balancing = FALSE, show.info, suppress.local.errors = FALSE,
...)

parallelStartLocal(show.info, suppress.local.errors = FALSE, ...)

parallelStartMulticore(cpus, logging, storagedir, level,
load.balancing = FALSE, show.info, ...)

parallelStartSocket(cpus, socket.hosts, logging, storagedir, level,
load.balancing = FALSE, show.info, ...)

https://github.com/berndbischl/parallelMap

parallelStart 9

parallelStartMPI(cpus, logging, storagedir, level,
load.balancing = FALSE, show.info, ...)

parallelStartBatchJobs(bj.resources = list(), logging, storagedir, level,
show.info, ...)

parallelStartBatchtools(bt.resources = list(), logging, storagedir,
level, show.info, ...)

Arguments

mode [character(1)]
Which parallel mode should be used: “local”, “multicore”, “socket”, “mpi”,
“BatchJobs”. Default is the option parallelMap.default.mode or, if not set,
“local” without parallel execution.

cpus [integer(1)]
Number of used cpus. For local and BatchJobs mode this argument is ignored.
For socket mode, this is the number of processes spawned on localhost, if you
want processes on multiple machines use socket.hosts. Default is the option
parallelMap.default.cpus or, if not set, detectCores for multicore mode,
max(1, mpi.universe.size - 1) for mpi mode and 1 for socket mode.

socket.hosts [character]
Only used in socket mode, otherwise ignored. Names of hosts where parallel
processes are spawned. Default is the option parallelMap.default.socket.hosts,
if this option exists.

bj.resources [list]
Resources like walltime for submitting jobs on HPC clusters via BatchJobs. See
submitJobs. Defaults are taken from your BatchJobs config file.

bt.resources [list]
Analog to bj.resources. See submitJobs.

logging [logical(1)]
Should slave output be logged to files via sink under the storagedir? Files
are named "<iteration_number>.log" and put into unique subdirectories named
“parallelMap_log_<nr>” for each subsequent parallelMap operation. Previ-
ous logging directories are removed on parallelStart if logging is enabled.
Logging is not supported for local mode, because you will see all output on the
master and can also run stuff like traceback in case of errors. Default is the
option parallelMap.default.logging or, if not set, FALSE.

storagedir [character(1)]
Existing directory where log files and intermediate objects for BatchJobs mode
are stored. Note that all nodes must have write access to exactly this path. De-
fault is the current working directory.

level [character(1)]
You can set this so only calls to parallelMap that have exactly the same level
are parallelized. Default is the option parallelMap.default.level or, if not
set, NA which means all calls to parallelMap are are potentially parallelized.

10 parallelStop

load.balancing [logical(1)]
Enables load balancing for multicore, socket and mpi. Set this to TRUE if you
have heterogeneous runtimes. Default is FALSE

show.info [logical(1)]
Verbose output on console for all further package calls? Default is the option
parallelMap.default.show.info or, if not set, TRUE.

suppress.local.errors

[logical(1)]
Should reporting of error messages during function evaluations in local mode be
suppressed? Default ist FALSE, i.e. every error message is shown.

... [any]
Optional parameters, for socket mode passed to makePSOCKcluster, for mpi
mode passed to makeCluster and for multicore passed to mcmapply (mc.preschedule
(overwriting load.balancing), mc.set.seed, mc.silent and mc.cleanup are
supported for multicore).

Details

Currently the following modes are supported, which internally dispatch the mapping operation to
functions from different parallelization packages:

local No parallelization with mapply.

multicore Multicore execution on a single machine with mclapply.

mpi Snow MPI cluster on one or multiple machines with makeCluster and clusterMap.

BatchJobs Parallelization on batch queuing HPC clusters, e.g., Torque, SLURM, etc., with batchMap.

For BatchJobs mode you need to define a storage directory through the argument storagedir or
the option parallelMap.default.storagedir.

Value

Nothing.

parallelStop Stops parallelization.

Description

Sets mode to “local”, i.e., parallelization is turned off and all necessary stuff is cleaned up.

For socket and mpi mode stopCluster is called.

For BatchJobs mode the subdirectory of the storagedir containing the exported objects is re-
moved.

After a subsequent call of parallelStart, no exported objects are present on the slaves and no
libraries are loaded, i.e., you have clean R sessions on the slaves.

parallelStop 11

Usage

parallelStop()

Value

Nothing.

Index

.onLoad, 7

batchMap, 10

clusterMap, 10

detectCores, 9

lapply, 4

makeCluster, 10
makePSOCKcluster, 10
mapply, 10
mclapply, 10
mcmapply, 10
mpi.universe.size, 9

parallelExport, 2, 5
parallelGetOptions, 3
parallelGetRegisteredLevels, 3
parallelLapply, 4
parallelLibrary, 5, 5
parallelMap, 2, 4, 5, 5, 7–9
parallelRegisterLevels, 3, 7
parallelSapply (parallelLapply), 4
parallelSource, 5, 7
parallelStart, 2, 3, 5, 6, 8, 8, 10
parallelStartBatchJobs (parallelStart),

8
parallelStartBatchtools

(parallelStart), 8
parallelStartLocal (parallelStart), 8
parallelStartMPI (parallelStart), 8
parallelStartMulticore (parallelStart),

8
parallelStartSocket (parallelStart), 8
parallelStop, 10

sapply, 4, 6
simpleError, 6
sink, 9

stopCluster, 10
submitJobs, 9

traceback, 9

12

	parallelExport
	parallelGetOptions
	parallelGetRegisteredLevels
	parallelLapply
	parallelLibrary
	parallelMap
	parallelRegisterLevels
	parallelSource
	parallelStart
	parallelStop
	Index

