Package ‘parameters’

July 21, 2024

Type Package

Title Processing of Model Parameters

Version 0.22.1

Maintainer Daniel Lüdecke <d.luedecke@uke.de>

Description Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function 'insight::supported_models()'), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).

License GPL-3

URL https:// easystats.github.io/parameters/

BugReports https://github.com/easystats/parameters/issues

Depends R (>= 3.6)

Imports bayestestR (>= 0.13.2), datawizard (>= 0.10.0), insight (>= 0.20.2), graphics, methods, stats, utils

Suggests AER, afex, aod, BayesFactor (>= 0.9.12-4.7), BayesFM, bbmle, betareg, BH, biglm, blme, boot, brglm2, brms, broom, cAIC4, car, carData, cgam, ClassDiscovery, clubSandwich, cluster, coda, coxme, cplm, dbscan, domir (>= 0.2.0), drc, DRR, effectsize (>= 0.8.6), EGAmet, emmeans (>= 1.7.0), epir, estimatr, factoextra, FactoMineR, faraway, fastICA, fixest, fpc, gam, gamlss, gee, geepack, ggeffects (>= 1.3.2), ggplot2, GLMMadaptive, glmmTMB, GPRotation, gt, haven, htr, Hmisc, ivreg, knitr, lavaan, lfe, lm.beta, lme4, lmerTest, lmmtest, logistf, logspline, lqmm, M3C, marginaleffects (>= 0.20.1), MASS, Matrix, mclogit, mclust, MCMCglmm, mediation, merDeriv, metaBMA, metafor, mfx, mgcv, mice, mmM, multcomp, MuMIn, NbClust, nFactors, nestedLogit, nlme, nnet, openxlsx, ordinal, panelr, pbkrtest, PCDimension, performance (>= 0.12.0), plm,
PMCMRplus, poorman, posterior, PROreg (>= 1.3.0), pscl, psych, pvclust, quartreg, randomForest, RcppEigen, rmarkdown, rms, rstanarm, sandwich, see (>= 0.8.1), serp, sparsePCA, survey, survival, svyline, testthat (>= 3.2.1), tidyselect, tinytable (>= 0.1.0), TMB, truncreg, vdiffr, VGAM, withr, WRS2

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

Config/testthat/edition 3

Config/testthat/parallel true

Config/Needs/website easystats/easystatstemplate

Config/rcmdcheck/ignore-inconsequential-notes true

NeedsCompilation no

Author Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>, @strengejacke),
Dominique Makowski [aut] (<https://orcid.org/0000-0001-5375-9967>, @Dom_Makowski),
Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>),
Indrajeet Patil [aut] (<https://orcid.org/0000-0003-1995-6531>, @patilindrajeets),
Søren Højsgaard [aut],
Brenton M. Wiernik [aut] (<https://orcid.org/0000-0001-9560-6336>, @bmwiernik),
Zen J. Lau [ctb],
Vincent Arel-Bundock [ctb] (<https://orcid.org/0000-0003-2042-7063>, @vincentab),
Jeffrey Girard [ctb] (<https://orcid.org/0000-0002-7359-3746>, @jeffreyimgirard),
Christina Maimone [rev],
Niels Ohlsen [rev] (@Niels_Bremen),
Douglas Ezra Morrison [ctb] (<https://orcid.org/0000-0002-7195-830X>, @demstats1),
Joseph Luchman [ctb] (<https://orcid.org/0000-0002-8886-9717>)

Repository CRAN

Date/Publication 2024-07-21 12:00:02 UTC

Contents

 bootstrap_model .. 4
 bootstrap_parameters ... 6
 ci.default ... 8
 ci_betwithin ... 11
 ci_kensward .. 13
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ci_ml1</td>
<td>14</td>
</tr>
<tr>
<td>ci_satterthwaite</td>
<td>16</td>
</tr>
<tr>
<td>cluster_analysis</td>
<td>17</td>
</tr>
<tr>
<td>cluster_centers</td>
<td>20</td>
</tr>
<tr>
<td>cluster_discrimination</td>
<td>21</td>
</tr>
<tr>
<td>cluster_meta</td>
<td>21</td>
</tr>
<tr>
<td>cluster_performance</td>
<td>23</td>
</tr>
<tr>
<td>compare_parameters</td>
<td>24</td>
</tr>
<tr>
<td>convert_efa_to_cfa</td>
<td>28</td>
</tr>
<tr>
<td>degrees_of_freedom</td>
<td>30</td>
</tr>
<tr>
<td>display_parameters_model</td>
<td>31</td>
</tr>
<tr>
<td>dominance_analysis</td>
<td>36</td>
</tr>
<tr>
<td>equivalence_test_lm</td>
<td>39</td>
</tr>
<tr>
<td>factor_analysis</td>
<td>43</td>
</tr>
<tr>
<td>fish</td>
<td>47</td>
</tr>
<tr>
<td>format.compare_parameters</td>
<td>48</td>
</tr>
<tr>
<td>format.parameters_model</td>
<td>53</td>
</tr>
<tr>
<td>format_df_adjust</td>
<td>60</td>
</tr>
<tr>
<td>format_order</td>
<td>61</td>
</tr>
<tr>
<td>format_parameters</td>
<td>61</td>
</tr>
<tr>
<td>format_p_adjust</td>
<td>62</td>
</tr>
<tr>
<td>get_scores</td>
<td>63</td>
</tr>
<tr>
<td>model_parameters</td>
<td>64</td>
</tr>
<tr>
<td>model_parameters.aov</td>
<td>70</td>
</tr>
<tr>
<td>model_parameters.befa</td>
<td>74</td>
</tr>
<tr>
<td>model_parameters.BFBayesFactor</td>
<td>75</td>
</tr>
<tr>
<td>model_parameters.cgam</td>
<td>77</td>
</tr>
<tr>
<td>model_parameters.cpglmm</td>
<td>81</td>
</tr>
<tr>
<td>model_parameters.dbscan</td>
<td>91</td>
</tr>
<tr>
<td>model_parameters.default</td>
<td>95</td>
</tr>
<tr>
<td>model_parameters.DirichletRegModel</td>
<td>101</td>
</tr>
<tr>
<td>model_parameters.glm</td>
<td>105</td>
</tr>
<tr>
<td>model_parameters.glimML</td>
<td>107</td>
</tr>
<tr>
<td>model_parameters.htest</td>
<td>114</td>
</tr>
<tr>
<td>model_parameters.MCMCglmm</td>
<td>117</td>
</tr>
<tr>
<td>model_parameters.mipo</td>
<td>124</td>
</tr>
<tr>
<td>model_parameters.PCA</td>
<td>126</td>
</tr>
<tr>
<td>model_parameters.rma</td>
<td>130</td>
</tr>
<tr>
<td>model_parameters.tlway</td>
<td>133</td>
</tr>
<tr>
<td>model_parameters.zcpglm</td>
<td>134</td>
</tr>
<tr>
<td>n_clusters</td>
<td>136</td>
</tr>
<tr>
<td>n_factors</td>
<td>140</td>
</tr>
<tr>
<td>parameters_type</td>
<td>143</td>
</tr>
<tr>
<td>pool_parameters</td>
<td>144</td>
</tr>
<tr>
<td>predict.parameters_clusters</td>
<td>146</td>
</tr>
<tr>
<td>p_calibrate</td>
<td>147</td>
</tr>
<tr>
<td>p_function</td>
<td>148</td>
</tr>
<tr>
<td>p_value</td>
<td>153</td>
</tr>
</tbody>
</table>
bootstrap_model

Description

Bootstrap a statistical model n times to return a data frame of estimates.

Usage

```r
bootstrap_model(model, iterations = 1000, ...)
```

Default S3 method:
```r
default_bootstrap_model(
  model,
  iterations = 1000,
  type = "ordinary",
  parallel = c("no", "multicore", "snow"),
  n_cpus = 1,
  verbose = FALSE,
  ...
)
```

S3 method for class 'merMod'
```r
merMod_bootstrap_model(
  model,
  iterations = 1000,
  type = "parametric",
  parallel = c("no", "multicore", "snow"),
  n_cpus = 1,
  cluster = NULL,
)
**Arguments**

- **model**
  - Statistical model.

- **iterations**
  - The number of draws to simulate/bootstrap.

- **type**
  - Character string specifying the type of bootstrap. For mixed models of class `merMod` or `glmmTMB`, may be "parametric" (default) or "semiparametric" (see `lme4::bootMer` for details). For all other models, see argument sim in `?boot::boot` (defaults to "ordinary").

- **parallel**
  - The type of parallel operation to be used (if any).

- **n_cpus**
  - Number of processes to be used in parallel operation.

- **verbose**
  - Toggle warnings and messages.

- **cluster**
  - Optional cluster when `parallel = "snow"`. See `lme4::bootMer` for details.

**Details**

By default, `boot::boot()` is used to generate bootstraps from the model data, which are then used to `update()` the model, i.e. refit the model with the bootstrapped samples. For `merMod` objects (`lme4`) or models from `glmmTMB`, the `lme4::bootMer()` function is used to obtain bootstrapped samples. `bootstrap_parameters()` summarizes the bootstrapped model estimates.

**Value**

A data frame of bootstrapped estimates.

**Using with emmeans**

The output can be passed directly to the various functions from the `emmeans` package, to obtain bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then be passed to `model_parameter()` to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

**See Also**

`bootstrap_parameters()`, `simulate_model()`, `simulate_parameters()`
Examples

```r
model <- lm(mpg ~ wt + factor(cyl), data = mtcars)
b <- bootstrap_model(model)
print(head(b))
est <- emmeans::emmeans(b, consec ~ cyl)
print(model_parameters(est))
```

### DESCRIPTION

Compute bootstrapped parameters and their related indices such as Confidence Intervals (CI) and p-values.

#### Usage

```r
bootstrap_parameters(model, ...)
```

#### Arguments

- `model`: Statistical model.
- `...`: Arguments passed to or from other methods.
- `iterations`: The number of draws to simulate/bootstrap.
- `centrality`: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" (see `map_estimate()`), "trimmed" (which is just `mean(x, trim = threshold)`), "mode" or "all".
- `ci`: Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to 0.95 (95%).
- `ci_method`: The type of index used for Credible Interval. Can be "ETI" (default, see `eti()`), "HDI" (see `hdi()`), "BCI" (see `bci()`), "SPI" (see `spi()`), or "SI" (see `si()`).
**bootstrap_parameters**

The indices to compute. Character (vector) with one or more of these options: "p-value" (or "p"), "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. bayestestR::rope() or bayestestR::p_direction()) and its results included in the summary output.

**Details**

This function first calls bootstrap_model() to generate bootstrapped coefficients. The resulting replicated for each coefficient are treated as "distribution", and is passed to bayestestR::describe_posterior() to calculate the related indices defined in the "test" argument.

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

**Value**

A data frame summarizing the bootstrapped parameters.

**Using with emmeans**

The output can be passed directly to the various functions from the emmeans package, to obtain bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then be passed to model_parameter() to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

**References**


**See Also**

bootstrap_model(), simulate_parameters(), simulate_model()

**Examples**

```r
set.seed(2)
model <- lm(Sepal.Length ~ Species * Petal.Width, data = iris)
b <- bootstrap_parameters(model)
print(b)
est <- emmeans::emmeans(b, trt.vs.ctrl ~ Species)
print(model_parameters(est))
```
ci.default  Confidence Intervals (CI)

Description

ci() attempts to return confidence intervals of model parameters.

Usage

## Default S3 method:
ci(x, ci = 0.95, dof = NULL, method = NULL, ...)

## S3 method for class 'glmmTMB'
ci(
  x,
  ci = 0.95,
  dof = NULL,
  method = "wald",
  component = "all",
  verbose = TRUE,
  ...
)

## S3 method for class 'merMod'
ci(x, ci = 0.95, dof = NULL, method = "wald", iterations = 500, ...)

Arguments

x  A statistical model.

ci  Confidence Interval (CI) level. Default to 0.95 (95%).

dof  Number of degrees of freedom to be used when calculating confidence intervals. If NULL (default), the degrees of freedom are retrieved by calling degrees_of_freedom() with approximation method defined in method. If not NULL, use this argument to override the default degrees of freedom used to compute confidence intervals.

method  Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details.

...  Additional arguments
component  Model component for which parameters should be shown. See the documentation for your object's class in `model_parameters()` or `p_value()` for further details.

verbose  Toggle warnings and messages.

iterations  The number of bootstrap replicates. Only applies to models of class `merMod` when `method=boot`.

Value

A data frame containing the CI bounds.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

- "wald":
  - Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

- "normal"
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

- "residual"
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

- "satterthwaite"
  - Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.
"kenward"

- Applies to *linear mixed models*. CIs computed using the Wald method (*Kenward-Roger SE* and a *t-distribution with Kenward-Roger df*); p-values computed using the Wald method with *Kenward-Roger SE* and *t-distribution with Kenward-Roger df*.

"ml1"

- Applies to *linear mixed models*. CIs computed using the Wald method (SE and a *t-distribution with m-l-1 approximated df*); p-values computed using the Wald method with a *t-distribution with m-l-1 approximated df*. See `ci_ml1()`.

"betwithin"

- Applies to *linear mixed models* and *generalized linear mixed models*. CIs computed using the Wald method (SE and a *t-distribution with between-within df*); p-values computed using the Wald method with a *t-distribution with between-within df*. See `ci_betwithin()`.

**Likelihood-based methods:**

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a Χ²-squared distribution to compute CIs and p-values.

"profile"

- Applies to *non-Bayesian models* of class glm, polr, merMod or glmmTMB. CIs computed by *profiling the likelihood curve for a parameter*, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a *normal-distribution* (note: this might change in a future update!)

"uniroot"

- Applies to *non-Bayesian models* of class glmmTMB. CIs computed by *profiling the likelihood curve for a parameter*, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a *normal-distribution* (note: this might change in a future update!)

**Methods for bootstrapped or Bayesian models:**

Bootstrap-based inference is based on *resampling* and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to *all models (including Bayesian models)*. For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as *equal tailed intervals* using the quantiles of the bootstrap or posterior samples; p-values are based on the *probability of direction*. See `bayestestR::eti()`.

"hdi"
• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().

Examples

library(parameters)
data(Salamanders, package = "glmmTMB")
model <- glmmTMB::glmmTMB(
  count ~ spp + mined + (1 | site),
  ziformula = ~mined,
  family = poisson(),
  data = Salamanders
)

   ci(model)
   ci(model, component = "zi")
Usage

ci_betwithin(model, ci = 0.95, ...)
dof_betwithin(model)
p_value_betwithin(model, dof = NULL, ...)

Arguments

model A mixed model.

 ci Confidence Interval (CI) level. Default to 0.95 (95%).

 ... Additional arguments

dof Degrees of Freedom.

Details

Small Sample Cluster corrected Degrees of Freedom:
Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics (see Li and Redden 2015). The Between-within denominator degrees of freedom approximation is recommended in particular for (generalized) linear mixed models with repeated measurements (longitudinal design). dof_betwithin() implements a heuristic based on the between-within approach. Note that this implementation does not return exactly the same results as shown in Li and Redden 2015, but similar.

Degrees of Freedom for Longitudinal Designs (Repeated Measures):
In particular for repeated measure designs (longitudinal data analysis), the between-within heuristic is likely to be more accurate than simply using the residual or infinite degrees of freedom, because dof_betwithin() returns different degrees of freedom for within-cluster and between-cluster effects.

Value

A data frame.

References


ci_kenward

See Also
dof_betwithin() is a small helper-function to calculate approximated degrees of freedom of model parameters, based on the "between-within" heuristic.

Examples

```r
if (require("lme4")) {
 data(sleepstudy)
 model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
 dof_betwithin(model)
 p_value_betwithin(model)
}
```

---

ci_kenward

*Kenward-Roger approximation for SEs, CIs and p-values*

Description

An approximate F-test based on the Kenward-Roger (1997) approach.

Usage

```r
ci_kenward(model, ci = 0.95)
dof_kenward(model)
p_value_kenward(model, dof = NULL)
se_kenward(model)
```

Arguments

- `model`: A statistical model.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).
- `dof`: Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1), the Kenward-Roger approximation is also applicable in more complex multilevel designs, e.g. with cross-classified clusters. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.
Value

A data frame.

References


See Also
dof_kenward() and se_kenward() are small helper-functions to calculate approximated degrees of freedom and standard errors for model parameters, based on the Kenward-Roger (1997) approach. dof_satterthwaite() and dof_ml1() approximate degrees of freedom based on Satterthwaite’s method or the "m-l-1" rule.

Examples

if (require("lme4", quietly = TRUE)) {
  model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
  p_value_kenward(model)
}

Description

Approximation of degrees of freedom based on a "m-l-1" heuristic as suggested by Elff et al. (2019).

Usage

ci_ml1(model, ci = 0.95, ...)
dof_ml1(model)
p_value_ml1(model, dof = NULL, ...)

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

... Additional arguments
dof Degrees of Freedom.
Details

Small Sample Cluster corrected Degrees of Freedom:
Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics (see Li and Redden 2015). The $m-l-1$ heuristic is such an approach that uses a t-distribution with fewer degrees of freedom (dof_ml1()) to calculate p-values (p_value_ml1()) and confidence intervals (ci(method = "ml1")).

Degrees of Freedom for Longitudinal Designs (Repeated Measures):
In particular for repeated measure designs (longitudinal data analysis), the $m-l-1$ heuristic is likely to be more accurate than simply using the residual or infinite degrees of freedom, because dof_ml1() returns different degrees of freedom for within-cluster and between-cluster effects.

Limitations of the "$m-l-1$" Heuristic:
Note that the "$m-l-1$" heuristic is not applicable (or at least less accurate) for complex multi-level designs, e.g. with cross-classified clusters. In such cases, more accurate approaches like the Kenward-Roger approximation (dof_kenward()) is recommended. However, the "$m-l-1$" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value
A data frame.

References


See Also
dof_ml1() is a small helper-function to calculate approximated degrees of freedom of model parameters, based on the "$m-l-1$" heuristic.

Examples

```r
if (require("lme4")) {
 model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
 p_value_ml1(model)
}
```
ci_satterthwaite

Satterthwaite approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Satterthwaite (1946) approach.

Usage

```r
ci_satterthwaite(model, ci = 0.95, ...)

dof_satterthwaite(model)

p_value_satterthwaite(model, dof = NULL, ...)

se_satterthwaite(model)
```

Arguments

- `model` A statistical model.
- `ci` Confidence Interval (CI) level. Default to 0.95 (95%).
- `...` Additional arguments
- `dof` Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (`dof_ml1`), the Satterthwaite approximation is also applicable in more complex multilevel designs. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

See Also
dof_satterthwaite() and se_satterthwaite() are small helper-functions to calculate approximated degrees of freedom and standard errors for model parameters, based on the Satterthwaite (1946) approach.
dof_kenward() and dof_ml1() approximate degrees of freedom based on Kenward-Roger’s method or the "m-l-1" rule.

Examples
if (require("lme4", quietly = TRUE)) {
  model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
  p_value_satterthwaite(model)
}

cluster_analysis

Description
Compute hierarchical or kmeans cluster analysis and return the group assignment for each observation as vector.

Usage
cluster_analysis(
  x,
  n = NULL,
  method = "kmeans",
  include_factors = FALSE,
  standardize = TRUE,
  verbose = TRUE,
  distance_method = "euclidean",
  hclust_method = "complete",
  kmeans_method = "Hartigan-Wong",
  dbscan_eps = 15,
  iterations = 100,
  ...
)

Arguments
x A data frame (with at least two variables), or a matrix (with at least two columns).
 n Number of clusters used for supervised cluster methods. If NULL, the number of clusters to extract is determined by calling n_clusters(). Note that this argument does not apply for unsupervised clustering methods like dbscan, hdbscan, mixture, pvclust, or pamk.
**method**  
Method for computing the cluster analysis. Can be "kmeans" (default; k-means using kmeans()), "hkmeans" (hierarchical k-means using factoextra::hkmeans()), pam (K-Medoids using cluster::pam()), pamk (K-Medoids that finds out the number of clusters), "hclust" (hierarchical clustering using hclust() or pvclust::pvclust()), dbscan (DBSCAN using dbscan::dbscan()), hdbscan (Hierarchical DBSCAN using dbscan::hdbscan()), or mixture (Mixture modeling using mclust::Mclust(), which requires the user to run library(mclust) before).

**include_factors**  
Logical, if TRUE, factors are converted to numerical values in order to be included in the data for determining the number of clusters. By default, factors are removed, because most methods that determine the number of clusters need numeric input only.

**standardize**  
Standardize the dataframe before clustering (default).

**verbose**  
Toggle warnings and messages.

**distance_method**  
Distance measure to be used for methods based on distances (e.g., when method = "hclust" for hierarchical clustering. For other methods, such as "kmeans", this argument will be ignored). Must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". See dist() and pvclust::pvclust() for more information.

**hclust_method**  
Agglomeration method to be used when method = "hclust" or method = "hkmeans" (for hierarchical clustering). This should be one of "ward", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid". Default is "complete" (see hclust()).

**kmeans_method**  
Algorithm used for calculating kmeans cluster. Only applies, if method = "kmeans". May be one of "Hartigan-Wong" (default), "Lloyd" (used by SPSS), or "MacQueen". See kmeans() for details on this argument.

**dbscan_eps**  
The eps argument for DBSCAN method. See n_clusters_dbscan().

**iterations**  
The number of replications.

...  
Arguments passed to or from other methods.

**Details**

The print() and plot() methods show the (standardized) mean value for each variable within each cluster. Thus, a higher absolute value indicates that a certain variable characteristic is more pronounced within that specific cluster (as compared to other cluster groups with lower absolute mean values).

Clusters classification can be obtained via print(x, newdata = NULL, ...).

**Value**

The group classification for each observation as vector. The returned vector includes missing values, so it has the same length as nrow(x).

**Note**

There is also a plot()-method implemented in the see-package.
cluster_analysis

References


See Also

• n_clusters() to determine the number of clusters to extract.
• cluster_discrimination() to determine the accuracy of cluster group classification via linear discriminant analysis (LDA).
• performance::check_clusterstructure() to check suitability of data for clustering.
• https://www.datanovia.com/en/lessons/

Examples

```r
set.seed(33)
K-Means
rez <- cluster_analysis(iris[1:4], n = 3, method = "kmeans")
rez # Show results
predict(rez) # Get clusters
summary(rez) # Extract the centers values (can use 'plot()' on that)
if (requireNamespace("MASS", quietly = TRUE)) {
 cluster_discrimination(rez) # Perform LDA
}

Hierarchical k-means (more robust k-means)
if (require("factoextra", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], n = 3, method = "hkmeans")
 rez # Show results
 predict(rez) # Get clusters
}

Hierarchical Clustering (hclust)
rez <- cluster_analysis(iris[1:4], n = 3, method = "hclust")
rez # Show results
predict(rez) # Get clusters

K-Medoids (pam)
if (require("cluster", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], n = 3, method = "pam")
 rez # Show results
 predict(rez) # Get clusters
}

PAM with automated number of clusters
if (require("fpc", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], method = "pamk")
 rez # Show results
 predict(rez) # Get clusters
}

DBSCAN
```
if (require("dbscan", quietly = TRUE)) {
  # Note that you can assimilate more outliers (cluster 0) to neighbouring
  # clusters by setting borderPoints = TRUE.
  rez <- cluster_analysis(iris[1:4], method = "dbscan", dbscan_eps = 1.45)
  rez # Show results
  predict(rez) # Get clusters
}

# Mixture -------------------------------------------------------------
if (require("mclust", quietly = TRUE)) {
  library(mclust) # Needs the package to be loaded
  rez <- cluster_analysis(iris[1:4], method = "mixture")
  rez # Show results
  predict(rez) # Get clusters
}

---

**cluster_centers**  
*Find the cluster centers in your data*

**Description**
For each cluster, computes the mean (or other indices) of the variables. Can be used to retrieve the centers of clusters. Also returns the within Sum of Squares.

**Usage**
```
cluster_centers(data, clusters, fun = mean, ...)
```

**Arguments**
- `data`: A data.frame.
- `clusters`: A vector with clusters assignments (must be same length as rows in data).
- `fun`: What function to use, mean by default.
- `...`: Other arguments to be passed to or from other functions.

**Value**
A dataframe containing the cluster centers. Attributes include performance statistics and distance between each observation and its respective cluster centre.

**Examples**
```
k <- kmeans(iris[1:4], 3)
cluster_centers(iris[1:4], clusters = k$cluster)
cluster_centers(iris[1:4], clusters = k$cluster, fun = median)
```
cluster_discrimination

*Compute a linear discriminant analysis on classified cluster groups*

**Description**

Computes linear discriminant analysis (LDA) on classified cluster groups, and determines the goodness of classification for each cluster group. See `MASS::lda()` for details.

**Usage**

```r
cluster_discrimination(x, cluster_groups = NULL, ...)
```

**Arguments**

- `x`: A data frame
- `cluster_groups`: Group classification of the cluster analysis, which can be retrieved from the `cluster_analysis()` function.
- `...`: Other arguments to be passed to or from.

**Examples**

```r
Retrieve group classification from hierarchical cluster analysis
clustering <- cluster_analysis(iris[, 1:4], n = 3)

Goodness of group classification
cluster_discrimination(clustering)
```

---

cluster_meta

*Metaclustering*

**Description**

One of the core "issue" of statistical clustering is that, in many cases, different methods will give different results. The **metaclustering** approach proposed by easystats (that finds echoes in consensus clustering; see Monti et al., 2003) consists of treating the unique clustering solutions as a ensemble, from which we can derive a probability matrix. This matrix contains, for each pair of observations, the probability of being in the same cluster. For instance, if the 6th and the 9th row of a dataframe has been assigned to a similar cluster by 5 out of 10 clustering methods, then its probability of being grouped together is 0.5.
Usage

cluster_meta(list_of_clusters, rownames = NULL, ...)

Arguments

list_of_clusters
  A list of vectors with the clustering assignments from various methods.

rownames
  An optional vector of row.names for the matrix.

...  
  Currently not used.

Details

Metaclustering is based on the hypothesis that, as each clustering algorithm embodies a different
prism by which it sees the data, running an infinite amount of algorithms would result in the emer-
gence of the "true" clusters. As the number of algorithms and parameters is finite, the probabilistic
perspective is a useful proxy. This method is interesting where there is no obvious reasons to prefer
one over another clustering method, as well as to investigate how robust some clusters are under
different algorithms.

This metaclustering probability matrix can be transformed into a dissimilarity matrix (such as the
one produced by dist()) and submitted for instance to hierarchical clustering (hclust()). See the
example below.

Value

A matrix containing all the pairwise (between each observation) probabilities of being clustered
together by the methods.

Examples

data <- iris[1:4]
rez1 <- cluster_analysis(data, n = 2, method = "kmeans")
rez2 <- cluster_analysis(data, n = 3, method = "kmeans")
rez3 <- cluster_analysis(data, n = 6, method = "kmeans")
list_of_clusters <- list(rez1, rez2, rez3)
m <- cluster_meta(list_of_clusters)

# Visualize matrix without reordering
heatmap(m, Rowv = NA, Colv = NA, scale = "none")  # Without reordering
# Reordered heatmap
heatmap(m, scale = "none")

# Extract 3 clusters
predict(m, n = 3)

# Convert to dissimilarity
d <- as.dist(abs(m - 1))
model <- hclust(d)
cluster_performance

Description

Compute performance indices for clustering solutions.

Usage

cluster_performance(model, ...)  

## S3 method for class 'kmeans'
cluster_performance(model, ...)  

## S3 method for class 'hclust'
cluster_performance(model, data, clusters, ...)  

## S3 method for class 'dbscan'
cluster_performance(model, data, ...)  

## S3 method for class 'parameters_clusters'
cluster_performance(model, ...)  

Arguments

model  Cluster model.
...
Arguments passed to or from other methods.
data  A data.frame.
clusters  A vector with clusters assignments (must be same length as rows in data).

Examples

# kmeans
model <- kmeans(iris[1:4], 3)
cluster_performance(model)
# hclust
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)
rez <- cluster_performance(model, data, clusters)
rez

# DBSCAN
model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)
rez <- cluster_performance(model, iris[1:4])
rez

# Retrieve performance from parameters
params <- model_parameters(kmeans(iris[1:4], 3))
cluster_performance(params)

---

**compare_parameters**  
**Compare model parameters of multiple models**

**Description**

Compute and extract model parameters of multiple regression models. See `model_parameters()` for further details.

**Usage**

```r
compare_parameters(
 ...,
 ci = 0.95,
 effects = "fixed",
 component = "conditional",
 standardize = NULL,
 exponentiate = FALSE,
 ci_method = "wald",
 p_adjust = NULL,
 select = NULL,
 column_names = NULL,
 pretty_names = TRUE,
 coefficient_names = NULL,
 keep = NULL,
 drop = NULL,
 include_reference = FALSE,
 groups = NULL,
 verbose = TRUE
)
```

```r
compare_models(
 ...,
 ci = 0.95,
 effects = "fixed",
 component = "conditional",
 standardize = NULL,
 exponentiate = FALSE,
 ci_method = "wald",
 p_adjust = NULL,
```
select = NULL,
column_names = NULL,
pretty_names = TRUE,
coefficient_names = NULL,
keep = NULL,
drop = NULL,
include_reference = FALSE,
groups = NULL,
verbose = TRUE
)

Arguments

... One or more regression model objects, or objects returned by \texttt{model_parameters()}. Regression models may be of different model types. Model objects may be passed comma separated, or as a list. If model objects are passed with names or the list has named elements, these names will be used as column names.

\texttt{ci} Confidence Interval (CI) level. Default to 0.95 (95%).

\texttt{effects} Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use \texttt{effects = "fixed"}.

\texttt{component} Model component for which parameters should be shown. See documentation for related model class in \texttt{model_parameters()}.

\texttt{standardize} The method used for standardizing the parameters. Can be \texttt{NULL} (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in \texttt{standardize_parameters()}. IMPORTANTLY:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as \texttt{lm.beta}) or other software packages (like SPSS). to mimic such behaviours, either use \texttt{standardize="basic"} or standardize the data with \texttt{datawizard::standardize(force=TRUE) before fitting the model.}
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., \texttt{vcov} set to a value other than \texttt{NULL}) of standardized parameters only works when \texttt{standardize="refit"}.

\texttt{exponentiate} Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use \texttt{exponentiate = TRUE} for models with log-transformed response values. NOTE: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For \texttt{compare_parameters()}, exponentiate
compare_parameters

= "nongaussian" will only exponentiate coefficients from non-Gaussian families.

**ci_method**  
Method for computing degrees of freedom for p-values and confidence intervals (CI). See documentation for related model class in `model_parameters()`.

**p_adjust**  
Character vector, if not NULL, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

**select**  
Determines which columns and which layout columns are printed. There are three options for this argument:

1. Selecting columns by name or index
   - `select` can be a character vector (or numeric index) of column names that should be printed. There are two pre-defined options for selecting columns: `select = "minimal"` prints coefficients, confidence intervals and p-values, while `select = "short"` prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
   - `select` is a string with "tokens" enclosed in braces. These tokens will be replaced by their associated columns, where the selected columns will be collapsed into one column. However, it is possible to create multiple columns as well. Following tokens are replaced by the related coefficients or statistics: `{estimate}`, `{se}`, `{ci}` (or `{ci_low}` and `{ci_high}`), `{p}` and `{stars}`. The token `{ci}` will be replaced by `{ci_low}`, `{ci_high}`. Furthermore, a | separates values into new cells/columns. If `format = "html"`, a `<br>` inserts a line break inside a cell. See 'Examples'.

3. A string indicating a pre-defined layout
   - `select` can be one of the following string values, to create one of the following pre-defined column layouts:
     - "ci": Estimates and confidence intervals, no asterisks for p-values. This is equivalent to `select = "{estimate}\{ci\}"`.
     - "se": Estimates and standard errors, no asterisks for p-values. This is equivalent to `select = "{estimate}\{se\}"`.
     - "ci_p": Estimates, confidence intervals and asterisks for p-values. This is equivalent to `select = "{estimate}\{stars\}\{ci\}"`.
     - "se_p": Estimates, standard errors and asterisks for p-values. This is equivalent to `select = "{estimate}\{stars\}\{se\}"`.
     - "ci_p2": Estimates, confidence intervals and numeric p-values, in two columns. This is equivalent to `select = "{estimate}\{ci\}\{p\}"`.
     - "se_p2": Estimate, standard errors and numeric p-values, in two columns. This is equivalent to `select = "{estimate}\{se\}\{p\}"`.

For `model_parameters()`, glue-like syntax is still experimental in the case of more complex models (like mixed models) and may not return expected results.

**column_names**  
Character vector with strings that should be used as column headers. Must be of same length as number of models in ....

**pretty_names**  
Can be TRUE, which will return "pretty" (i.e. more human readable) parameter names. Or "labels", in which case value and variable labels will be used as
parameters names. The latter only works for "labelled" data, i.e. if the data used to fit the model had "label" and "labels" attributes. See also section Global Options to Customize Messages when Printing.

**coefficient_names**

Character vector with strings that should be used as column headers for the coefficient column. Must be of same length as number of models in . . ., or length 1. If length 1, this name will be used for all coefficient columns. If NULL, the name for the coefficient column will detected automatically (as in model_parameters()).

**keep**

Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

**drop**

See keep.

**include_reference**

Logical, if TRUE, the reference level of factors will be added to the parameters table. This is only relevant for models with categorical predictors. The coefficient for the reference level is always 0 (except when exponentiate = TRUE, then the coefficient will be 1), so this is just for completeness.

**groups**

Named list, can be used to group parameters in the printed output. List elements may either be character vectors that match the name of those parameters that belong to one group, or list elements can be row numbers of those parameter rows that should belong to one group. The names of the list elements will be used as group names, which will be inserted as "header row". A possible use case might be to emphasize focal predictors and control variables, see ’Examples’. Parameters will be re-ordered according to the order used in groups, while all non-matching parameters will be added to the end.

**verbose**

Toggle warnings and messages.

**Details**

This function is in an early stage and does not yet cope with more complex models, and probably does not yet properly render all model components. It should also be noted that when including models with interaction terms, not only do the values of the parameters change, but so does their meaning (from main effects, to simple slopes), thereby making such comparisons hard. Therefore,
you should not use this function to compare models with interaction terms with models without interaction terms.

Value

A data frame of indices related to the model’s parameters.

Examples

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
compare_parameters(lm1, lm2)

# custom style
compare_parameters(lm1, lm2, select = "{estimate}\{stars\} ({se})")

# custom style, in HTML
result <- compare_parameters(lm1, lm2, select = "{estimate}<br>({se})|{p}")
print_html(result)

data(mtcars)
m1 <- lm(mpg ~ wt, data = mtcars)
m2 <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
compare_parameters(m1, m2)

# exponentiate coefficients, but not for lm
compare_parameters(m1, m2, exponentiate = "nongaussian")

# change column names
compare_parameters("linear model" = m1, "logistic reg." = m2)
compare_parameters(m1, m2, column_names = c("linear model", "logistic reg."))

# or as list
compare_parameters(list(m1, m2))
compare_parameters(list("linear model" = m1, "logistic reg." = m2))

---

convert_efa_to_cfa  Conversion between EFA results and CFA structure

Description

Enables a conversion between Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) lavaan-ready structure.
Usage

convert_efa_to_cfa(model, ...)

## S3 method for class 'fa'
convert_efa_to_cfa(
  model,
  threshold = "max",
  names = NULL,
  max_per_dimension = NULL,
  ...
)

efa_to_cfa(model, ...)

Arguments

model An EFA model (e.g., a psych::fa object).

... Arguments passed to or from other methods.

threshold A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).

names Vector containing dimension names.

max_per_dimension Maximum number of variables to keep per dimension.

Value

Converted index.

Examples

library(parameters)
data(attitude)
efa <- psych::fa(attitude, nfactors = 3)

model1 <- efa_to_cfa(efa)
model2 <- efa_to_cfa(efa, threshold = 0.3)
model3 <- efa_to_cfa(efa, max_per_dimension = 2)

suppressWarnings(anova(
  lavaan::cfa(model1, data = attitude),
  lavaan::cfa(model2, data = attitude),
  lavaan::cfa(model3, data = attitude)
))
# degrees_of_freedoom

**Degrees of Freedom (DoF)**

**Description**

Estimate or extract degrees of freedom of models parameters.

**Usage**

```r
degrees_of_freedoom(model, ...)
Default S3 method:
degrees_of_freedoom(model, method = "analytical", ...)
dof(model, ...)
```

**Arguments**

- `model` A statistical model.
- `...` Currently not used.
- `method` Can be "analytical" (default, DoFs are estimated based on the model type), "residual" in which case they are directly taken from the model if available (for Bayesian models, the goal (looking for help to make it happen) would be to refit the model as a frequentist one before extracting the DoFs), "ml1" (see `dof_ml1()`), "betwithin" (see `dof_betwithin()`), "satterthwaite" (see `dof_satterthwaite()`), "kenward" (see `dof_kenward()`), or "any", which tries to extract DoF by any of those methods, whichever succeeds. See 'Details'.

**Details**

Methods for calculating degrees of freedom:

- "analytical" for models of class `lmerMod`, Kenward-Roger approximated degrees of freedoms are calculated, for other models, n-k (number of observations minus number of parameters).
- "residual" tries to extract residual degrees of freedom, and returns Inf if residual degrees of freedom could not be extracted.
- "any" first tries to extract residual degrees of freedom, and if these are not available, extracts analytical degrees of freedom.
- "nokr" same as "analytical", but does not Kenward-Roger approximation for models of class `lmerMod`. Instead, always uses n-k to calculate df for any model.
- "normal" returns Inf.
- "wald" returns residual df for models with t-statistic, and Inf for all other models.
- "kenward" calls `dof_kenward()`.
- "satterthwaite" calls `dof_satterthwaite()`.
For models with z-statistic, the returned degrees of freedom for model parameters is \( \text{Inf} \) (unless method = "ml1" or method = "betwithin"), because there is only one distribution for the related test statistic.

Note

In many cases, degrees_of_freedom() returns the same as df.residuals(), or \( n-k \) (number of observations minus number of parameters). However, degrees_of_freedom() refers to the model’s parameters degrees of freedom of the distribution for the related test statistic. Thus, for models with z-statistic, results from degrees_of_freedom() and df.residuals() differ. Furthermore, for other approximation methods like "kenward" or "satterthwaite", each model parameter can have a different degree of freedom.

Examples

```r
model <- lm(Sepal.Length ~ Petal.Length * Species, data = iris)
dof(model)

model <- glm(vs ~ mpg * cyl, data = mtcars, family = "binomial")
dof(model)

if (require("lme4", quietly = TRUE)) {
 model <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
dof(model)
}

if (require("rstanarm", quietly = TRUE)) {
 model <- stan_glm(
 Sepal.Length ~ Petal.Length * Species,
 data = iris,
 chains = 2,
 refresh = 0
)
dof(model)
}
```

display.parameters_model

Print tables in different output formats

Description

Prints tables (i.e. data frame) in different output formats. print_md() is an alias for display(format = "markdown"), print_html() is an alias for display(format = "html"). print_table() is for specific use cases only, and currently only works for compare_parameters() objects.
### display.parameters_model

```
S3 method for class 'parameters_model'
display(
 object,
 format = "markdown",
 pretty_names = TRUE,
 split_components = TRUE,
 select = NULL,
 caption = NULL,
 subtitle = NULL,
 footer = NULL,
 align = NULL,
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 footer_digits = 3,
 ci_brackets = c("\(\), \(\)"),
 show_sigma = FALSE,
 show_formula = FALSE,
 zap_small = FALSE,
 font_size = "100%",
 line_padding = 4,
 column_labels = NULL,
 include_reference = FALSE,
 verbose = TRUE,
 ...
)
```

```
S3 method for class 'parameters_sem'
display(
 object,
 format = "markdown",
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 ci_brackets = c("\(\), \(\)"),
 ...
)
```

```
S3 method for class 'parameters_efa_summary'
display(object, format = "markdown", digits = 3, ...)
```

```
S3 method for class 'parameters_efa'
display(
 object,
 format = "markdown",
 digits = 2,
 sort = FALSE,
 ...
)
```
```r
display parameters model

threshold = NULL,
labels = NULL,
...
)

S3 method for class 'equivalence_test_lm'
display(object, format = "markdown", digits = 2, ...)

print_table(x, digits = 2, p_digits = 3, theme = "default", ...)

Arguments

object 	An object returned by \code{model_parameters()}, \code{simulate_parameters()}, \code{equivalence_test()} or \code{principal_components()}.

format 	String, indicating the output format. Can be "markdown" or "html".

pretty_names 	Can be \code{TRUE}, which will return "pretty" (i.e. more human readable) parameter names. Or "labels", in which case value and variable labels will be used as parameters names. The latter only works for "labelled" data, i.e. if the data used to fit the model had "label" and "labels" attributes. See also section \code{Global Options to Customize Messages when Printing}.

split_components 	Logical, if \code{TRUE} (default). For models with multiple components (zero-inflation, smooth terms, ...), each component is printed in a separate table. If \code{FALSE}, model parameters are printed in a single table and a Component column is added to the output.

select 	Determines which columns and and which layout columns are printed. There are three options for this argument:

1. Selecting columns by name or index
 \code{select} can be a character vector (or numeric index) of column names that should be printed. There are two pre-defined options for selecting columns: \code{select = "minimal"} prints coefficients, confidence intervals and p-values, while \code{select = "short"} prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
 \code{select} is a string with "tokens" enclosed in braces. These tokens will be replaced by their associated columns, where the selected columns will be collapsed into one column. However, it is possible to create multiple columns as well. Following tokens are replaced by the related coefficients or statistics: \{estimate\}, \{se\}, \{ci\} (or \{ci_low\} and \{ci_high\}), \{p\} and \{stars\}. The token \{ci\} will be replaced by \{ci_low\}, \{ci_high\}. Furthermore, a | separates values into new cells/columns. If \code{format = "html"}, a \texttt{
} inserts a line break inside a cell. See 'Examples'.

3. A string indicating a pre-defined layout
 \code{select} can be one of the following string values, to create one of the following pre-defined column layouts:
 - "ci": Estimates and confidence intervals, no asterisks for p-values. This is equivalent to \code{select = "\{estimate\} \{ci\}"}.```
• "se": Estimates and standard errors, no asterisks for p-values. This is equivalent to select = "{estimate}\{\{se\}\}".
• "ci_p": Estimates, confidence intervals and asterisks for p-values. This is equivalent to select = "{estimate}\{stars\}\{\{ci\}\}".
• "se_p": Estimates, standard errors and asterisks for p-values. This is equivalent to select = "{estimate}\{stars\}\{\{se\}\}".
• "ci_p2": Estimates, confidence intervals and numeric p-values, in two columns. This is equivalent to select = "{estimate}\{\{ci\}\}|{p}".
• "se_p2": Estimate, standard errors and numeric p-values, in two columns. This is equivalent to select = "{estimate}\{\{se\}\}|{p}".

For `model_parameters()`, glue-like syntax is still experimental in the case of more complex models (like mixed models) and may not return expected results.

caption
Table caption as string. If NULL, depending on the model, either a default caption or no table caption is printed. Use caption = "" to suppress the table caption.

subtitle
Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is printed, unless it is stored as attributes (table_title, or its alias table_caption, and table_subtitle). If x is a list of data frames, caption may be a list of table captions, one for each table.

footer
Can either be FALSE or an empty string (i.e. "") to suppress the footer, NULL to print the default footer, or a string. The latter will combine the string value with the default footer.

align
Only applies to HTML tables. May be one of "left", "right" or "center".

digits, ci_digits, p_digits
Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "signif4" to have scientific notation with 4 decimal places, or digits = "scientific4" for 4 significant figures (see also `signif()`).

footer_digits
Number of decimal places for values in the footer summary.

ci_brackets
Logical, if TRUE (default), CI-values are encompassed in square brackets (else in parentheses).

show_sigma
Logical, if TRUE, adds information about the residual standard deviation.

show_formula
Logical, if TRUE, adds the model formula to the output.

zap_small
Logical, if TRUE, small values are rounded after digits decimal places. If FALSE, values with more decimal places than digits are printed in scientific notation.

font_size
For HTML tables, the font size.

line_padding
For HTML tables, the distance (in pixel) between lines.

column_labels
Labels of columns for HTML tables. If NULL, automatic column names are generated. See 'Examples'.

include_reference
Logical, if TRUE, the reference level of factors will be added to the parameters table. This is only relevant for models with categorical predictors. The coefficient for the reference level is always 0 (except when exponentiate = TRUE, then the coefficient will be 1), so this is just for completeness.
display.parameters_model

verbose
Arguments passed to or from other methods.

sort
Sort the loadings.

threshold
A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).

labels
A character vector containing labels to be added to the loadings data. Usually, the question related to the item.

x
An object returned by `model_parameters()`.

theme
String, indicating the table theme. Can be one of "default", "grid", "striped", "bootstrap" or "darklines".

Details
display() is useful when the table-output from functions, which is usually printed as formatted text-table to console, should be formatted for pretty table-rendering in markdown documents, or if knitted from rmarkdown to PDF or Word files. See vignette for examples.

print_table() is a special function for compare_parameters() objects, which prints the output as a formatted HTML table. It is still somewhat experimental, thus, only a fixed layout-style is available at the moment (columns for estimates, confidence intervals and p-values). However, it is possible to include other model components, like zero-inflation, or random effects in the table. See 'Examples'. An alternative is to set engine = "tt" in print_html() to use the tinytable package for creating HTML tables.

Value
If format = "markdown", the return value will be a character vector in markdown-table format. If format = "html", an object of class gt_tbl. For print_table(), an object of class tinytable is returned.

See Also

`print.parameters_model()` and `print.compare_parameters()`

Examples

```r
model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)
display(mp)
```

```r
data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
lm3 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)
out <- compare_parameters(lm1, lm2, lm3)
```
```r
print_html(
  out,
  select = "{coef}{stars}|({ci})",
  column_labels = c("Estimate", "95% CI")
)

# line break, unicode minus-sign
print_html(
  out,
  select = "{estimate}{stars}<br>({ci_low} \u2212 {ci_high})",
  column_labels = c("Est. (95% CI)")
)

data(iris)
data(Salamanders, package = "glmmTMB")
m1 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)
m2 <- lme4::lmer(
  Sepal.Length ~ Petal.Length + Petal.Width + (1 | Species),
  data = iris
)
m3 <- glmmTMB::glmmTMB(
  count ~ spp + mined + (1 | site),
  ziformula = ~mined,
  family = poisson(),
  data = Salamanders
)
out <- compare_parameters(m1, m2, m3, effects = "all", component = "all")
print_table(out)
```

dominance_analysis

Dominance Analysis

Description

Computes Dominance Analysis Statistics and Designations

Usage

```r
dominance_analysis(  
  model,
  sets = NULL,
  all = NULL,
  conditional = TRUE,
  complete = TRUE,
  quote_args = NULL,
)```


```r
contrasts = model$contrasts,
...
```

### Arguments

**model**
A model object supported by `performance::r2()`. See 'Details'.

**sets**
A (named) list of formula objects with no left hand side/response. If the list has names, the name provided each element will be used as the label for the set. Unnamed list elements will be provided a set number name based on its position among the sets as entered.

Predictors in each formula are bound together as a set in the dominance analysis and dominance statistics and designations are computed for the predictors together. Predictors in `sets` must be present in the model submitted to the `model` argument and cannot be in the `all` argument.

**all**
A formula with no left hand side/response.

Predictors in the formula are included in each subset in the dominance analysis and the R2 value associated with them is subtracted from the overall value. Predictors in `all` must be present in the model submitted to the `model` argument and cannot be in the `sets` argument.

**conditional**
Logical. If `FALSE` then conditional dominance matrix is not computed.

If conditional dominance is not desired as an importance criterion, avoiding computing the conditional dominance matrix can save computation time.

**complete**
Logical. If `FALSE` then complete dominance matrix is not computed.

If complete dominance is not desired as an importance criterion, avoiding computing complete dominance designations can save computation time.

**quote_args**
A character vector of arguments in the model submitted to `model` to `quote()` prior to submitting to the dominance analysis. This is necessary for data masked arguments (e.g., `weights`) to prevent them from being evaluated before being applied to the model and causing an error.

**contrasts**
A named list of `contrasts` used by the model object. This list is required in order for the correct mapping of parameters to predictors in the output when the model creates indicator codes for factor variables using `insight::get_modelmatrix()`.

By default, the contrast element from the model object submitted is used. If the model object does not have a contrast element the user can supply this named list.

... Not used at current.

### Details

Computes two decompositions of the model's R2 and returns a matrix of designations from which predictor relative importance determinations can be obtained.

Note in the output that the "constant" subset is associated with a component of the model that does not directly contribute to the R2 such as an intercept. The "all" subset is apportioned a component of the fit statistic but is not considered a part of the dominance analysis and therefore does not receive a rank, conditional dominance statistics, or complete dominance designations.
The input model is parsed using `insight::find_predictors()`, does not yet support interactions, transformations, or offsets applied in the R formula, and will fail with an error if any such terms are detected.

The model submitted must accept an formula object as a `formula` argument. In addition, the model object must accept the data on which the model is estimated as a data argument. Formulas submitted using object references (i.e., `lm(mtcars$mpg ~ mtcars$vs)`) and functions that accept data as a non-data argument (e.g., `survey::svyglm()` uses design) will fail with an error.

Models that return `TRUE` for the `insight::model_info()` function’s values "is_bayesian", "is_mixed", "is_gam", "is_multivariate", "is_zero_inflated", or "is_hurdle" are not supported at current.

When `performance::r2()` returns multiple values, only the first is used by default.

Value

Object of class "parameters_da".

An object of class "parameters_da" is a list of data.frames composed of the following elements:

General A data.frame which associates dominance statistics with model parameters. The variables in this data.frame include:

- **Parameter** Parameter names.
- **General_Dominance** Vector of general dominance statistics. The R2 ascribed to variables in the all argument are also reported here though they are not general dominance statistics.
- **Percent** Vector of general dominance statistics normalized to sum to 1.
- **Ranks** Vector of ranks applied to the general dominance statistics.
- **Subset** Names of the subset to which the parameter belongs in the dominance analysis. Each other data.frame returned will refer to these subset names.

Conditional A data.frame of conditional dominance statistics. Each observation represents a subset and each variable represents an the average increment to R2 with a specific number of subsets in the model. NULL if conditional argument is FALSE.

Complete A data.frame of complete dominance designations. The subsets in the observations are compared to the subsets referenced in each variable. Whether the subset in each variable dominates the subset in each observation is represented in the logical value. NULL if complete argument is FALSE.

Author(s)

Joseph Luchman

References

See Also
domir::domin()

Examples
data(mtcars)

# Dominance Analysis with Logit Regression
model <- glm(vs ~ cyl + carb + mpg, data = mtcars, family = binomial())

performance::r2(model)
dominance_analysis(model)

# Dominance Analysis with Weighted Logit Regression
model_wt <- glm(vs ~ cyl + carb + mpg, 
    data = mtcars, 
    weights = wt, family = quasibinomial() 
)

dominance_analysis(model_wt, quote_args = "weights")

equivalence_test.lm  Equivalence test

Description

Compute the (conditional) equivalence test for frequentist models.

Usage

## S3 method for class 'lm'
equivalence_test(
  x, 
  range = "default", 
  ci = 0.95, 
  rule = "classic", 
  verbose = TRUE, 
  ...
)

## S3 method for class 'merMod'
equivalence_test(
  x, 
  range = "default", 
  ci = 0.95, 
  rule = "classic", 
  effects = c("fixed", "random"),
Arguments

x A statistical model.
range The range of practical equivalence of an effect. May be "default", to automatically define this range based on properties of the model’s data.
ci Confidence Interval (CI) level. Default to 0.95 (95%).
rule Character, indicating the rules when testing for practical equivalence. Can be "bayes", "classic" or "cet". See 'Details'.
verbose Toggle warnings and messages.
... Arguments passed to or from other methods.
effects Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".
test Hypothesis test for computing contrasts or pairwise comparisons. See ?ggeffects::test_predictions for details.

Details

In classical null hypothesis significance testing (NHST) within a frequentist framework, it is not possible to accept the null hypothesis, H0 - unlike in Bayesian statistics, where such probability statements are possible. "... one can only reject the null hypothesis if the test statistics falls into the critical region(s), or fail to reject this hypothesis. In the latter case, all we can say is that no significant effect was observed, but one cannot conclude that the null hypothesis is true." (Pernet 2017). One way to address this issues without Bayesian methods is Equivalence Testing, as implemented in equivalence_test(). While you either can reject the null hypothesis or claim an inconclusive result in NHST, the equivalence test - according to Pernet - adds a third category, "accept". Roughly speaking, the idea behind equivalence testing in a frequentist framework is to check whether an estimate and its uncertainty (i.e. confidence interval) falls within a region of "practical equivalence". Depending on the rule for this test (see below), statistical significance does not necessarily indicate whether the null hypothesis can be rejected or not, i.e. the classical interpretation of the p-value may differ from the results returned from the equivalence test.
Calculation of equivalence testing:

- **"bayes"** - Bayesian rule (Kruschke 2018)
  This rule follows the "HDI+ROPE decision rule" (Kruschke, 2014, 2018) used for the Bayesian counterpart(). This means, if the confidence intervals are completely outside the ROPE, the "null hypothesis" for this parameter is "rejected". If the ROPE completely covers the CI, the null hypothesis is accepted. Else, it’s undecided whether to accept or reject the null hypothesis. Desirable results are low proportions inside the ROPE (the closer to zero the better).

- **"classic"** - The TOST rule (Lakens 2017)
  This rule follows the "TOST rule", i.e. a two one-sided test procedure (Lakens 2017). Following this rule...
  - practical equivalence is assumed (i.e. H0 "accepted") when the narrow confidence intervals are completely inside the ROPE, no matter if the effect is statistically significant or not;
  - practical equivalence (i.e. H0) is rejected, when the coefficient is statistically significant, both when the narrow confidence intervals (i.e. $1-2\times\alpha$) include or exclude the the ROPE boundaries, but the narrow confidence intervals are not fully covered by the ROPE;
  - else the decision whether to accept or reject practical equivalence is undecided (i.e. when effects are not statistically significant and the narrow confidence intervals overlaps the ROPE).

- **"cet"** - Conditional Equivalence Testing (Campbell/Gustafson 2018)
  The Conditional Equivalence Testing as described by Campbell and Gustafson 2018. According to this rule, practical equivalence is rejected when the coefficient is statistically significant. When the effect is not significant and the narrow confidence intervals are completely inside the ROPE, we accept (i.e. assume) practical equivalence, else it is undecided.

Levels of Confidence Intervals used for Equivalence Testing:
For rule = "classic", "narrow" confidence intervals are used for equivalence testing. "Narrow" means, the the intervals is not $1 - \alpha$, but $1 - 2 \times \alpha$. Thus, if ci = .95, alpha is assumed to be 0.05 and internally a ci-level of 0.90 is used. rule = "cet" uses both regular and narrow confidence intervals, while rule = "bayes" only uses the regular intervals.

p-Values:
The equivalence p-value is the area of the (cumulative) confidence distribution that is outside of the region of equivalence. It can be interpreted as p-value for rejecting the alternative hypothesis and accepting the "null hypothesis" (i.e. assuming practical equivalence). That is, a high p-value means we reject the assumption of practical equivalence and accept the alternative hypothesis.

Second Generation p-Value (SGPV):
Second generation p-values (SGPV) were proposed as a statistic that represents the proportion of data-supported hypotheses that are also null hypotheses (Blume et al. 2018, Lakens and Delacre 2020). It represents the proportion of the confidence interval range (assuming a normally distributed, equal-tailed interval) that is inside the ROPE.

ROPE range:
Some attention is required for finding suitable values for the ROPE limits (argument range). See 'Details' in bayestestR::rope_range() for further information.
equivalence_test.lm

Value

A data frame.

Note

There is also a `plot()`-method implemented in the `see-package`.

References


See Also

For more details, see `bayestestR::equivalence_test()`. Further readings can be found in the references.

Examples

```r
data(qol_cancer)
model <- lm(QoL ~ time + age + education, data = qol_cancer)

default rule
equivalence_test(model)

conditional equivalence test
equivalence_test(model, rule = "cet")

plot method
if (require("see", quietly = TRUE)) {
 result <- equivalence_test(model)
 plot(result)
}
```
factor_analysis

Principal Component Analysis (PCA) and Factor Analysis (FA)

Description

The functions principal_components() and factor_analysis() can be used to perform a principal component analysis (PCA) or a factor analysis (FA). They return the loadings as a data frame, and various methods and functions are available to access / display other information (see the Details section).

Usage

factor_analysis(
    x,
    n = "auto",
    rotation = "none",
    sort = FALSE,
    threshold = NULL,
    standardize = TRUE,
    cor = NULL,
    ...
)

principal_components(
    x,
    n = "auto",
    rotation = "none",
    sparse = FALSE,
    sort = FALSE,
    threshold = NULL,
    standardize = TRUE,
    ...
)

rotated_data(pca_results, verbose = TRUE)

## S3 method for class 'parameters_efa'
predict(
    object,
    newdata = NULL,
    names = NULL,
    keep_na = TRUE,
    verbose = TRUE,
    ...
)

## S3 method for class 'parameters_efa'
print(x, digits = 2, sort = FALSE, threshold = NULL, labels = NULL, ...)

## S3 method for class 'parameters_efa'
sort(x, ...)

closest_component(pca_results)

Arguments

- **x**: A data frame or a statistical model.
- **n**: Number of components to extract. If n="all", then n is set as the number of variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number of components is selected through n_factors() resp. n_components(). Else, if n is a number, n components are extracted. If n exceeds number of variables in the data, it is automatically set to the maximum number (i.e. ncol(x)). In reduce_parameters(), can also be "max", in which case it will select all the components that are maximally pseudo-loaded (i.e., correlated) by at least one variable.
- **rotation**: If not "none", the PCA / FA will be computed using the psych package. Possible options include "varimax", "quartimax", "promax", "oblimin", "simplimax", or "cluster" (and more). See psych::fa() for details.
- **sort**: Sort the loadings.
- **threshold**: A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).
- **standardize**: A logical value indicating whether the variables should be standardized (centered and scaled) to have unit variance before the analysis (in general, such scaling is advisable).
- **cor**: An optional correlation matrix that can be used (note that the data must still be passed as the first argument). If NULL, will compute it by running cor() on the passed data.
- **...**: Arguments passed to or from other methods.
- **sparse**: Whether to compute sparse PCA (SPCA, using sparsepca::spca()). SPCA attempts to find sparse loadings (with few nonzero values), which improves interpretability and avoids overfitting. Can be TRUE or "robust" (see sparsepca::robspca()).
- **pca_results**: The output of the principal_components() function.
- **verbose**: Toggle warnings.
- **object**: An object of class parameters_pca or parameters_efa
- **newdata**: An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
- **names**: Optional character vector to name columns of the returned data frame.
- **keep_na**: Logical, if TRUE, predictions also return observations with missing values from the original data, hence the number of rows of predicted data and original data is equal.
factor_analysis

digits  Argument for print(), indicates the number of digits (rounding) to be used.
lables  Argument for print(), character vector of same length as columns in x. If provided, adds an additional column with the labels.

Details

Methods and Utilities:

- n_components() and n_factors() automatically estimates the optimal number of dimensions to retain.
- performance::check_factorstructure() checks the suitability of the data for factor analysis using the sphericity (see performance::check_sphericity_bartlett()) and the KMO (see performance::check_kmo()) measure.
- performance::check_itemscale() computes various measures of internal consistencies applied to the (sub)scales (i.e., components) extracted from the PCA.
- Running summary() returns information related to each component/factor, such as the explained variance and the Eigenvalues.
- Running get_scores() computes scores for each subscale.
- Running closest_component() will return a numeric vector with the assigned component index for each column from the original data frame.
- Running rotated_data() will return the rotated data, including missing values, so it matches the original data frame.
- Running plot() visually displays the loadings (that requires the see-package to work).

Complexity:

Complexity represents the number of latent components needed to account for the observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would only load on one factor, a solution with evenly distributed items has a complexity greater than 1 (Hofman, 1978; Pettersson and Turkheimer, 2010).

Uniqueness:

Uniqueness represents the variance that is ‘unique’ to the variable and not shared with other variables. It is equal to 1 - communality (variance that is shared with other variables). A uniqueness of 0.20 suggests that 20% or that variable’s variance is not shared with other variables in the overall factor model. The greater ‘uniqueness’ the lower the relevance of the variable in the factor model.

MSA:

MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974) for each item. It indicates whether there is enough data for each factor give reliable results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and Fidell, 2013).

PCA or FA?:

There is a simplified rule of thumb that may help do decide whether to run a factor analysis or a principal component analysis:

- Run factor analysis if you assume or wish to test a theoretical model of latent factors causing observed variables.
• Run principal component analysis If you want to simply reduce your correlated observed variables to a smaller set of important independent composite variables.  

(Source: CrossValidated)

**Computing Item Scores:**
Use `get_scores()` to compute scores for the "subscales" represented by the extracted principal components. `get_scores()` takes the results from `principal_components()` and extracts the variables for each component found by the PCA. Then, for each of these "subscales", raw means are calculated (which equals adding up the single items and dividing by the number of items). This results in a sum score for each component from the PCA, which is on the same scale as the original, single items that were used to compute the PCA. One can also use `predict()` to back-predict scores for each component, to which one can provide `newdata` or a vector of names for the components.

**Explained Variance and Eigenvalues:**
Use `summary()` to get the Eigenvalues and the explained variance for each extracted component. The eigenvectors and eigenvalues represent the "core" of a PCA: The eigenvectors (the principal components) determine the directions of the new feature space, and the eigenvalues determine their magnitude. In other words, the eigenvalues explain the variance of the data along the new feature axes.

**Value**
A data frame of loadings.

**References**

**Examples**
```r
library(parameters)

Principal Component Analysis (PCA) -------------------
principal_components(mtcars[, 1:7], n = "all", threshold = 0.2)

Automated number of components
principal_components(mtcars[, 1:4], n = "auto")

labels can be useful if variable names are not self-explanatory
print(
}
principal_components(mtcars[, 1:4], n = "auto"),
labels = c(
 "Miles/(US) gallon",
 "Number of cylinders",
 "Displacement (cu.in.)",
 "Gross horsepower"
)
)

Sparse PCA
principal_components(mtcars[, 1:7], n = 4, sparse = TRUE)
principal_components(mtcars[, 1:7], n = 4, sparse = "robust")

Rotated PCA
principal_components(mtcars[, 1:7],
 n = 2, rotation = "oblimin",
 threshold = "max", sort = TRUE
)
principal_components(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)

pca <- principal_components(mtcars[, 1:5], n = 2, rotation = "varimax")
pca # Print loadings
summary(pca) # Print information about the factors
predict(pca, names = c("Component1", "Component2")) # Back-predict scores

which variables from the original data belong to which extracted component?
closest_component(pca)

Factor Analysis (FA) ------------------------
factor_analysis(mtcars[, 1:7], n = "all", threshold = 0.2)
factor_analysis(mtcars[, 1:7], n = 2, rotation = "oblimin", threshold = "max", sort = TRUE)
factor_analysis(mtcars[, 1:7], n = 2, threshold = 2, sort = TRUE)

efa <- factor_analysis(mtcars[, 1:5], n = 2)
summary(efa)
predict(efa, verbose = FALSE)

Automated number of components
factor_analysis(mtcars[, 1:4], n = "auto")

fish Sample data set

Description

A sample data set, used in tests and some examples.
format.compare_parameters

Print comparisons of model parameters

Description

A print()-method for objects from compare_parameters().

Usage

S3 method for class 'compare_parameters'
format(
 x,
 split_components = TRUE,
 select = NULL,
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 ci_width = NULL,
 ci_brackets = NULL,
 zap_small = FALSE,
 format = NULL,
 groups = NULL,
 engine = NULL,
 ...
)

S3 method for class 'compare_parameters'
print(
 x,
 split_components = TRUE,
 caption = NULL,
 subtitle = NULL,
 footer = NULL,
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 zap_small = FALSE,
 groups = NULL,
 column_width = NULL,
 ci_brackets = c("",""),
 select = NULL,
 ...
)

S3 method for class 'compare_parameters'
print_html(
 x,
 split_components = TRUE,
 caption = NULL,
 subtitle = NULL,
 footer = NULL,
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 zap_small = FALSE,
 groups = NULL,
 column_width = NULL,
 ci_brackets = c("",""),
 select = NULL,
 ...
format.compare_parameters

x,
caption = NULL,
subtitle = NULL,
footer = NULL,
digits = 2,
ci_digits = digits,
p_digits = 3,
zap_small = FALSE,
groups = NULL,
select = NULL,
ci_brackets = c("\(\), \(\)"),
font_size = "100%",
line_padding = 4,
column_labels = NULL,
engine = "gt",
...
)

S3 method for class 'compare_parameters'
print_md(
 x,
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 caption = NULL,
 subtitle = NULL,
 footer = NULL,
 select = NULL,
split_components = TRUE,
 ci_brackets = c("\(\), \(\)"),
zap_small = FALSE,
groups = NULL,
 engine = "tt",
...
)

Arguments

x An object returned by compare_parameters().

split_components
Logical, if TRUE (default). For models with multiple components (zero-inflation, smooth terms, ...), each component is printed in a separate table. If FALSE, model parameters are printed in a single table and a Component column is added to the output.

select Determines which columns and and which layout columns are printed. There are three options for this argument:

1. Selecting columns by name or index
 select can be a character vector (or numeric index) of column names that
should be printed. There are two pre-defined options for selecting columns:
select = "minimal" prints coefficients, confidence intervals and p-values,
while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
select is a string with "tokens" enclosed in braces. These tokens will
be replaced by their associated columns, where the selected columns will
be collapsed into one column. However, it is possible to create multiple
columns as well. Following tokens are replaced by the related coefficients
or statistics: {estimate}, {se}, {ci} (or {ci_low} and {ci_high}), {p} and {stars}. The token {ci} will be replaced by {ci_low}, {ci_high}. Furthermore, a | separates values into new cells/columns. If format = "html", a
 inserts a line break inside a cell. See 'Examples'.

3. A string indicating a pre-defined layout
select can be one of the following string values, to create one of the fol-
lowing pre-defined column layouts:
• "ci": Estimates and confidence intervals, no asterisks for p-values. This is equivalent to select = "{estimate} {{ci}}".
• "se": Estimates and standard errors, no asterisks for p-values. This is equivalent to select = "{estimate} {{se}}".
• "ci_p": Estimates, confidence intervals and asterisks for p-values. This is equivalent to select = "{estimate}{stars} {{ci}}".
• "se_p": Estimates, standard errors and asterisks for p-values. This is equivalent to select = "{estimate}{stars} {{se}}".
• "ci_p2": Estimates, confidence intervals and numeric p-values, in two columns. This is equivalent to select = "{estimate} {{ci}}{{p}}".
• "se_p2": Estimate, standard errors and numeric p-values, in two columns. This is equivalent to select = "{estimate} {{se}}{{p}}".

For model_parameters(), glue-like syntax is still experimental in the case of
more complex models (like mixed models) and may not return expected results.

digits, ci_digits, p_digits
Number of digits for rounding or significant figures. May also be "signif" to
return significant figures or "scientific" to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4" to
have scientific notation with 4 decimal places, or digits = "signif5" for 5
significant figures (see also signif()).

ci_width Minimum width of the returned string for confidence intervals. If not NULL and
width is larger than the string's length, leading whitespaces are added to the
string. If width="auto", width will be set to the length of the longest string.

ci_brackets Logical, if TRUE (default), CI-values are encompassed in square brackets (else
in parentheses).

zap_small Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

format String, indicating the output format. Can be "markdown" or "html".
named list, can be used to group parameters in the printed output. List elements may either be character vectors that match the name of those parameters that belong to one group, or list elements can be row numbers of those parameter rows that should belong to one group. The names of the list elements will be used as group names, which will be inserted as "header row". A possible use case might be to emphasize focal predictors and control variables, see 'Examples'. Parameters will be re-ordered according to the order used in \texttt{groups}, while all non-matching parameters will be added to the end.

engine

Character string, naming the package or engine to be used for printing into HTML or markdown format. Currently supported "gt" (or "default") to use the \texttt{gt} package to print to HTML and the default easystats engine to create markdown tables. If engine = "tt", the \texttt{tinytable} package is used for printing to HTML or markdown. Not all print() methods support the "tt" engine yet. If a specific print() method has no engine argument, \texttt{insight::export_table()} is used, which uses \texttt{gt} for HTML printing.

... Arguments passed to or from other methods.

caption

Table caption as string. If NULL, depending on the model, either a default caption or no table caption is printed. Use caption = "" to suppress the table caption.

subtitle

Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is printed, unless it is stored as attributes (table_title, or its alias table_caption, and table_subtitle). If \texttt{x} is a list of data frames, caption may be a list of table captions, one for each table.

footer

Can either be FALSE or an empty string (i.e. "") to suppress the footer, NULL to print the default footer, or a string. The latter will combine the string value with the default footer.

column_width

Width of table columns. Can be either NULL, a named numeric vector, or "fixed". If NULL, the width for each table column is adjusted to the minimum required width. If a named numeric vector, value names are matched against column names, and for each match, the specified width is used. If "fixed", and table is split into multiple components, columns across all table components are adjusted to have the same width.

font_size

For HTML tables, the font size.

line_padding

For HTML tables, the distance (in pixel) between lines.

column_labels

Labels of columns for HTML tables. If NULL, automatic column names are generated. See 'Examples'.

Value

Invisibly returns the original input object.

Global Options to Customize Messages and Tables when Printing

The verbose argument can be used to display or silence messages and warnings for the different functions in the \texttt{parameters} package. However, some messages providing additional information can be displayed or suppressed using \texttt{options()}:
• `parameters_summary`: `options(parameters_summary = TRUE)` will override the summary argument in `model_parameters()` and always show the model summary for non-mixed models.

• `parameters_mixed_summary`: `options(parameters_mixed_summary = TRUE)` will override the summary argument in `model_parameters()` for mixed models, and will then always show the model summary.

• `parameters_cimethod`: `options(parameters_cimethod = TRUE)` will show the additional information about the approximation method used to calculate confidence intervals and p-values. Set to `FALSE` to hide this message when printing `model_parameters()` objects.

• `parameters_exponentiate`: `options(parameters_exponentiate = TRUE)` will show the additional information on how to interpret coefficients of models with log-transformed response variables or with log-/logit-links when the `exponentiate` argument in `model_parameters()` is not `TRUE`. Set this option to `FALSE` to hide this message when printing `model_parameters()` objects.

There are further options that can be used to modify the default behaviour for printed outputs:

• `parameters_labels`: `options(parameters_labels = TRUE)` will use variable and value labels for pretty names, if data is labelled. If no labels available, default pretty names are used.

• `parameters_interaction`: `options(parameters_interaction = <character>)` will replace the interaction mark (by default, `*`) with the related character.

• `parameters_select`: `options(parameters_select = <value>)` will set the default for the `select` argument. See argument’s documentation for available options.

• `easystats_html_engine`: `options(easystats_html_engine = "gt")` will set the default HTML engine for tables to `gt`, i.e. the `gt` package is used to create HTML tables. If set to `tt`, the `tinytable` package is used.

Examples

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)

custom style
result <- compare_parameters(lm1, lm2, select = "{estimate}{stars} \{se\}"
print(result)

custom style, in HTML
result <- compare_parameters(lm1, lm2, select = "{estimate}\(\text{br}\\{se}\)|\{p\}"
print_html(result)
format.parameters_model

Print model parameters

Description

A print()-method for objects from \texttt{model.parameters()}.

Usage

```r
## S3 method for class 'parameters_model'
format(
  x,
  pretty_names = TRUE,
  split_components = TRUE,
  select = NULL,
  digits = 2,
  ci_digits = digits,
  p_digits = 3,
  ci_width = NULL,
  ci_brackets = NULL,
  zap_small = FALSE,
  format = NULL,
  groups = NULL,
  include_reference = FALSE,
  ...
)
```

```r
## S3 method for class 'parameters_model'
print(
  x,
  pretty_names = TRUE,
  split_components = TRUE,
  select = NULL,
  caption = NULL,
  footer = NULL,
  digits = 2,
  ci_digits = digits,
  p_digits = 3,
  footer_digits = 3,
  show_sigma = FALSE,
  show_formula = FALSE,
  zap_small = FALSE,
  groups = NULL,
  column_width = NULL,
  ci_brackets = c("[", "]"),
  include_reference = FALSE,
  ```
S3 method for class 'parameters_model'
summary(object, ...)

S3 method for class 'parameters_model'
print_html(
x,
 pretty_names = TRUE,
 split_components = TRUE,
 select = NULL,
 caption = NULL,
 subtitle = NULL,
 footer = NULL,
 align = NULL,
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 footer_digits = 3,
 ci_brackets = c("(", ")"),
 show_sigma = FALSE,
 show_formula = FALSE,
 zap_small = FALSE,
 groups = NULL,
 font_size = "100%",
 line_padding = 4,
 column_labels = NULL,
 include_reference = FALSE,
 verbose = TRUE,
 ...
)

S3 method for class 'parameters_model'
print_md(
x,
 pretty_names = TRUE,
 split_components = TRUE,
 select = NULL,
 caption = NULL,
 subtitle = NULL,
 footer = NULL,
 align = NULL,
 digits = 2,
 ci_digits = digits,
 p_digits = 3,
 footer_digits = 3,
 ci_brackets = c("("", ")"),
Arguments

x, object
An object returned by model_parameters().

pretty_names
Can be TRUE, which will return "pretty" (i.e. more human readable) parameter names. Or "labels", in which case value and variable labels will be used as parameters names. The latter only works for "labelled" data, i.e. if the data used to fit the model had "label" and "labels" attributes. See also section Global Options to Customize Messages when Printing.

split_components
Logical, if TRUE (default), For models with multiple components (zero-inflation, smooth terms, ...), each component is printed in a separate table. If FALSE, model parameters are printed in a single table and a Component column is added to the output.

select
Determines which columns and which layout columns are printed. There are three options for this argument:

1. Selecting columns by name or index
 select can be a character vector (or numeric index) of column names that should be printed. There are two pre-defined options for selecting columns:
 select = "minimal" prints coefficients, confidence intervals and p-values, while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
 select is a string with "tokens" enclosed in braces. These tokens will be replaced by their associated columns, where the selected columns will be collapsed into one column. However, it is possible to create multiple columns as well. Following tokens are replaced by the related coefficients or statistics: {estimate}, {se}, {ci} (or {ci_low} and {ci_high}), {p} and {stars}. The token {ci} will be replaced by {ci_low}, {ci_high}. Furthermore, a | separates values into new cells/columns. If format = "html", a
 inserts a line break inside a cell. See 'Examples'.

3. A string indicating a pre-defined layout
 select can be one of the following string values, to create one of the following pre-defined column layouts:
 • "ci": Estimates and confidence intervals, no asterisks for p-values. This is equivalent to select = "{estimate} {{ci}}".
 • "se": Estimates and standard errors, no asterisks for p-values. This is equivalent to select = "{estimate} {{se}}".
 • "ci_p": Estimates, confidence intervals and asterisks for p-values. This is equivalent to select = "{estimate}{stars} {{ci}}".
• "se_p": Estimates, standard errors and asterisks for p-values. This is equivalent to select = "{estimate}{stars}{se}".
• "ci_p2": Estimates, confidence intervals and numeric p-values, in two columns. This is equivalent to select = "{estimate}{ci}{p}".
• "se_p2": Estimate, standard errors and numeric p-values, in two columns. This is equivalent to select = "{estimate}{se}{p}".

For `model_parameters()`, glue-like syntax is still experimental in the case of more complex models (like mixed models) and may not return expected results.

digits, ci_digits, p_digits

Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also `signif()`).

ci_width

Minimum width of the returned string for confidence intervals. If not NULL and width is larger than the string’s length, leading whitespaces are added to the string. If width="auto", width will be set to the length of the longest string.

ci_brackets

Logical, if TRUE (default), CI-values are encompassed in square brackets (else in parentheses).

zap_small

Logical, if TRUE, small values are rounded after digits decimal places. If FALSE, values with more decimal places than digits are printed in scientific notation.

format

String, indicating the output format. Can be "markdown" or "html".

groups

Named list, can be used to group parameters in the printed output. List elements may either be character vectors that match the name of those parameters that belong to one group, or list elements can be row numbers of those parameter rows that should belong to one group. The names of the list elements will be used as group names, which will be inserted as 'header row'. A possible use case might be to emphasize focal predictors and control variables, see 'Examples'. Parameters will be re-ordered according to the order used in groups, while all non-matching parameters will be added to the end.

include_reference

Logical, if TRUE, the reference level of factors will be added to the parameters table. This is only relevant for models with categorical predictors. The coefficient for the reference level is always 0 (except when exponentiate = TRUE, then the coefficient will be 1), so this is just for completeness.

... Arguments passed to or from other methods.

caption

Table caption as string. If NULL, depending on the model, either a default caption or no table caption is printed. Use caption = "" to suppress the table caption.

footer

Can either be FALSE or an empty string (i.e. "") to suppress the footer, NULL to print the default footer, or a string. The latter will combine the string value with the default footer.

footer_digits

Number of decimal places for values in the footer summary.

show_sigma

Logical, if TRUE, adds information about the residual standard deviation.
show_formula Logical, if TRUE, adds the model formula to the output.
column_width Width of table columns. Can be either NULL, a named numeric vector, or "fixed". If NULL, the width for each table column is adjusted to the minimum required width. If a named numeric vector, value names are matched against column names, and for each match, the specified width is used. If "fixed", and table is split into multiple components, columns across all table components are adjusted to have the same width.
subtitle Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is printed, unless it is stored as attributes (table_title, or its alias table_caption, and table_subtitle). If x is a list of data frames, caption may be a list of table captions, one for each table.
align Only applies to HTML tables. May be one of "left", "right" or "center".
font_size For HTML tables, the font size.
line_padding For HTML tables, the distance (in pixel) between lines.
column_labels Labels of columns for HTML tables. If NULL, automatic column names are generated. See 'Examples'.
verbose Toggle messages and warnings.

Details

summary() is a convenient shortcut for print(object, select = "minimal", show_sigma = TRUE, show_formula = TRUE).

Value

Invisibly returns the original input object.

Global Options to Customize Messages and Tables when Printing

The verbose argument can be used to display or silence messages and warnings for the different functions in the parameters package. However, some messages providing additional information can be displayed or suppressed using options():

- parameters_summary: options(parameters_summary = TRUE) will override the summary argument in model_parameters() and always show the model summary for non-mixed models.
- parameters_mixed_summary: options(parameters_mixed_summary = TRUE) will override the summary argument in model_parameters() for mixed models, and will then always show the model summary.
- parameters_cimethod: options(parameters_cimethod = TRUE) will show the additional information about the approximation method used to calculate confidence intervals and p-values. Set to FALSE to hide this message when printing model_parameters() objects.
- parameters_exponentiate: options(parameters_exponentiate = TRUE) will show the additional information on how to interpret coefficients of models with log-transformed response variables or with log-/logit-links when the exponentiate argument in model_parameters() is not TRUE. Set this option to FALSE to hide this message when printing model_parameters() objects.
There are further options that can be used to modify the default behaviour for printed outputs:

- **parameters_labels**: options(parameters_labels = TRUE) will use variable and value labels for pretty names, if data is labelled. If no labels available, default pretty names are used.
- **parameters_interaction**: options(parameters_interaction = <character>) will replace the interaction mark (by default, *) with the related character.
- **parameters_select**: options(parameters_select = <value>) will set the default for the select argument. See argument’s documentation for available options.
- **easystats_html_engine**: options(easystats_html_engine = "gt") will set the default HTML engine for tables to gt, i.e. the gt package is used to create HTML tables. If set to tt, the tinytable package is used.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between a * b a : b, and a / b, suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on a or b being factors of covariates, included as main effects or not, etc.). Their interpretation depends on the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may use print(..., show_formula=TRUE) to add the model-specification to the output of the print() method for model_parameters().

Labeling the Degrees of Freedom

Throughout the parameters package, we decided to label the residual degrees of freedom df_error. The reason for this is that these degrees of freedom not always refer to the residuals. For certain models, they refer to the estimate error - in a linear model these are the same, but in - for instance - any mixed effects model, this isn’t strictly true. Hence, we think that df_error is the most generic label for these degrees of freedom.

See Also

See also display().

Examples

```r
library(parameters)
model <- glmmTMB::glmmTMB(
  count ~ spp + mined + (1 | site),
  ziformula = ~mined,
  family = poisson(),
  data = Salamanders
)
mp <- model_parameters(model)
print(mp, pretty_names = FALSE)
```
print(mp, split_components = FALSE)

print(mp, select = c("Parameter", "Coefficient", "SE"))

print(mp, select = "minimal")

group parameters ------

data(iris)
model <- lm(Sepal.Width ~ Sepal.Length + Species + Petal.Length, data = iris)

don't select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\(\(Intercept\))")
groups <- list("Focal Predictors" = c("Speciesversicolor", "Speciesvirginica"),
 "Controls" = c("Sepal.Length", "Petal.Length"))
print(mp, groups = groups)

or use row indices
print(mp, groups = list("Focal Predictors" = c(1, 4),
 "Controls" = c(2, 3)))

only show coefficients, CI and p,
put non-matched parameters to the end

data(mtcars)
mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$gear <- as.factor(mtcars$gear)
model <- lm(mpg ~ hp + gear * vs + cyl + drat, data = mtcars)

don't select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\(\(Intercept\))")
print(mp, groups = list("Engine" = c("cyl6", "cyl8", "vs", "hp"),
 "Interactions" = c("gear4:vs", "gear5:vs")))

custom column layouts ------

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)

custom style
result <- compare_parameters(lm1, lm2, select = "{estimate}{stars} ({se})")
print(result)

custom style, in HTML
result <- compare_parameters(lm1, lm2, select = "{estimate}
({se})|{p}\)
print_html(result)

format_df_adjust
Format the name of the degrees-of-freedom adjustment methods

Description

Format the name of the degrees-of-freedom adjustment methods.

Usage

```r
format_df_adjust(
  method,  
  approx_string = "-approximated",  
  dof_string = " degrees of freedom"  
)
```

Arguments

- `method`
 Name of the method.
- `approx_string`, `dof_string`
 Suffix added to the name of the method in the returned string.

Value

A formatted string.

Examples

```r
library(parameters)

format_df_adjust("kenward")
format_df_adjust("kenward", approx_string = ",", dof_string = " DoF")
```
format_order
Order (first, second, ...) formatting

Description
Format order.

Usage
```r
format_order(order, textual = TRUE, ...)
```

Arguments
- `order` value or vector of orders.
- `textual` Return number as words. If FALSE, will run `insight::format_value()`.
- `...` Arguments to be passed to `insight::format_value()` if textual is FALSE.

Value
A formatted string.

Examples
```r
format_order(2)
format_order(8)
format_order(25, textual = FALSE)
```

format_parameters
Parameter names formatting

Description
This function formats the names of model parameters (coefficients) to make them more human-readable.

Usage
```r
format_parameters(model, ...)
```

Default S3 method:
```r
format_parameters(model, brackets = c("[", "]"), ...)
```

Arguments
- `model` A statistical model.
- `...` Currently not used.
- `brackets` A character vector of length two, indicating the opening and closing brackets.
Value

A (names) character vector with formatted parameter names. The value names refer to the original names of the coefficients.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between \(a \times b\) and \(a : b\), and \(a / b\), suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on \(a\) or \(b\) being factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may use print(..., show_formula=TRUE) to add the model-specification to the output of the print() method for model_parameters().

Examples

```r
model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
format_parameters(model)
```
```r
model <- lm(Sepal.Length ~ Petal.Length + (Species / Sepal.Width), data = iris)
format_parameters(model)
```
```r
model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
format_parameters(model)
```
```r
model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
format_parameters(model)
```

format_p_adjust

Format the name of the p-value adjustment methods

Description

Format the name of the p-value adjustment methods.

Usage

`format_p_adjust(method)`

Arguments

- `method` Name of the method.
Value

A string with the full surname(s) of the author(s), including year of publication, for the adjustment-method.

Examples

library(parameters)

format_p_adjust("holm")
format_p_adjust("bonferroni")

get_scores
Get Scores from Principal Component Analysis (PCA)

Description

get_scores() takes n_items amount of items that load the most (either by loading cutoff or number) on a component, and then computes their average.

Usage

get_scores(x, n_items = NULL)

Arguments

x An object returned by principal_components().
n_items Number of required (i.e. non-missing) items to build the sum score. If NULL, the value is chosen to match half of the number of columns in a data frame.

Details

get_scores() takes the results from principal_components() and extracts the variables for each component found by the PCA. Then, for each of these "subscales", row means are calculated (which equals adding up the single items and dividing by the number of items). This results in a sum score for each component from the PCA, which is on the same scale as the original, single items that were used to compute the PCA.

Value

A data frame with subscales, which are average sum scores for all items from each component.
Examples

```r
if (require("psych")) {
  pca <- principal_components(mtcars[, 1:7], n = 2, rotation = "varimax")

  # PCA extracted two components
  pca

  # assignment of items to each component
  closest_component(pca)

  # now we want to have sum scores for each component
  get_scores(pca)

  # compare to manually computed sum score for 2nd component, which
  # consists of items "hp" and "qsec"
  (mtcars$hp + mtcars$qsec) / 2
}
```

model_parameters

Model Parameters

Description

Compute and extract model parameters. The available options and arguments depend on the modeling **package** and model class. Follow one of these links to read the model-specific documentation:

- **Default method**: `lm`, `glm`, `stats`, `censReg`, `MASS`, `survey`, ...
- **Additive models**: `bamlss`, `gamlss`, `mgcv`, `scam`, `VGAM`, `Gam`, `gamm`, ...
- **ANOVA**: `afex`, `aov`, `anova`, ...
- **Bayesian**: `BayesFactor`, `blavaan`, `brms`, `MCMCglmm`, `posterior`, `rstanarm`, `bayesQR`, `bcplm`, `BGGM`, `blmrm`, `blrm`, `mcmc.list`, `MCMCglmm`, ...
- **Clustering**: `hclust`, `kmeans`, `mclust`, `pam`, ...
- **Correlations, t-tests, etc.**: `lmtest`, `htest`, `pairwise.htest`, ...
- **Meta-Analysis**: `metaBMA`, `metafor`, `metaplus`, ...
- **Mixed models**: `cplm`, `glmmTMB`, `lme4`, `lmerTest`, `nlme`, `ordinal`, `robustlmm`, `spaMM`, `mixed`, `MixMod`, ...
- **Multinomial, ordinal and cumulative link**: `brglm2`, `DirichletReg`, `nnet`, `ordinal`, `m1m`, ...
- **Multiple imputation**: `mice`
- **PCA, FA, CFA, SEM**: `FactoMineR`, `lavaan`, `psych`, `sem`, ...
- **Zero-inflated and hurdle**: `cplm`, `mhurdle`, `pscl`, ...
- **Other models**: `aod`, `bbmle`, `betareg`, `emmeans`, `epiR`, `ggeffects`, `glmx`, `ivfixed`, `ivprobit`, `JRM`, `lmodel2`, `logitsf`, `marginaleffects`, `margins`, `maxLik`, `mediation`, `mfx`, `multcomp`, `mvord`, `plm`, `PMCMRplus`, `quantreg`, `selection`, `systemfit`, `tidymodels`, `varEST`, `WRS2`, `bfsl`, `deltaMethod`, `fitdistr`, `mjoint`, `mle`, `model.avg`, ...
model_parameters

Usage

```r
model_parameters(model, ...) parameters(model, ...)
```

Arguments

- `model`: Statistical Model.
- `...`: Arguments passed to or from other methods. Non-documented arguments are `digits`, `p_digits`, `ci_digits` and `footer_digits` to set the number of digits for the output. If `s_value = TRUE`, the p-value will be replaced by the S-value in the output (cf. Rafi and Greenland 2020). `pd` adds an additional column with the `probability of direction` (see `bayestestR::p_direction()` for details). `groups` can be used to group coefficients. It will be passed to the print-method, or can directly be used in `print()`, see documentation in `print.parameters_model()`. Furthermore, see 'Examples' in `model_parameters.default()`. For developers, whose interest mainly is to get a "tidy" data frame of model summaries, it is recommended to set `pretty_names = FALSE` to speed up computation of the summary table.

Value

A data frame of indices related to the model’s parameters.

Standardization of model coefficients

Standardization is based on `standardize_parameters()`. In case of `standardize = "refit"`, the data used to fit the model will be standardized and the model is completely refitted. In such cases, standard errors and confidence intervals refer to the standardized coefficient. The default, `standardize = "refit"`, never standardizes categorical predictors (i.e., factors), which may be a different behaviour compared to other R packages or other software packages (like SPSS). To mimic behaviour of SPSS or packages such as `lm.beta`, use `standardize = "basic"`.

Standardization Methods

- `refit`: This method is based on a complete model re-fit with a standardized version of the data. Hence, this method is equal to standardizing the variables before fitting the model. It is the "purest" and the most accurate (Neter et al., 1989), but it is also the most computationally costly and long (especially for heavy models such as Bayesian models). This method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The robust (default to `FALSE`) argument enables a robust standardization of data, i.e., based on the median and MAD instead of the mean and SD. See `datawizard::standardize()` for more details. **Note** that `standardize_parameters(method = "refit")` may not return the same results as fitting a model on data that has been standardized with `standardize()`. `standardize_parameters()` used the data used by the model fitting function, which might not be same data if there are missing values. see the `remove_na` argument in `standardize()`.
• **posthoc**: Post-hoc standardization of the parameters, aiming at emulating the results obtained by "refit" without refitting the model. The coefficients are divided by the standard deviation (or MAD if `robust`) of the outcome (which becomes their expression 'unit'). Then, the coefficients related to numeric variables are additionally multiplied by the standard deviation (or MAD if `robust`) of the related terms, so that they correspond to changes of 1 SD of the predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y"). This does not apply to binary variables or factors, so the coefficients are still related to changes in levels. This method is not accurate and tends to give aberrant results when interactions are specified.

• **basic**: This method is similar to method = "posthoc", but treats all variables as continuous: it also scales the coefficient by the standard deviation of model’s matrix’ parameter of factors levels (transformed to integers) or binary predictors. Although being inappropriate for these cases, this method is the one implemented by default in other software packages, such as `lm.beta::lm.beta()`.

• **smart** (Standardization of Model’s parameters with Adjustment, Reconnaissance and Transformation - experimental): Similar to method = "posthoc" in that it does not involve model refitting. The difference is that the SD (or MAD if `robust`) of the response is computed on the relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and C is entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance of the response at the intercept only. As a result, the coefficients for effects of factors are similar to a Glass’ delta.

• **pseudo** (for 2-level (G)LMMs only): In this (post-hoc) method, the response and the predictor are standardized based on the level of prediction (levels are detected with `performance::check_heterogeneity_bias()`; Predictors are standardized based on their SD at level of prediction (see also `datawizard::demean()`; The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model, where sqrt(random-intercept-variance) is used for level 2 predictors, and sqrt(residual-variance) is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-group variable is found to have access between-group variance.

See also **package vignette**.

Labeling the Degrees of Freedom

Throughout the parameters package, we decided to label the residual degrees of freedom `df_error`. The reason for this is that these degrees of freedom not always refer to the residuals. For certain models, they refer to the estimate error - in a linear model these are the same, but in - for instance - any mixed effects model, this isn’t strictly true. Hence, we think that `df_error` is the most generic label for these degrees of freedom.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then
comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":
- Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"
- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"
- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"
- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"
- Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"
- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See ci_ml1().

"betwithin"
- Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See ci_betwithin().
Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ^2-squared distribution to compute CIs and p-values.

"profile"

- Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"unirout"

- Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter's sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

- Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().
"boot"

- Applies to non-Bayesian models of class `merMod`. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (`bayestestR::p_direction()`), which is converted into a p-value using `bayestestR::pd_to_p()`.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between `a * b` and `a / b`, suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on `a` or `b` being factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as `modelbased`, `emmeans`, `ggeffects`, or `marginaleffects`. To raise awareness for this issue, you may use `print(...,show_formula=TRUE)` to add the model-specification to the output of the `print()` method for `model_parameters()`.

Global Options to Customize Messages and Tables when Printing

The `verbose` argument can be used to display or silence messages and warnings for the different functions in the `parameters` package. However, some messages providing additional information can be displayed or suppressed using `options()`:

- `parameters_summary`: `options(parameters_summary = TRUE)` will override the summary argument in `model_parameters()` and always show the model summary for non-mixed models.
- `parameters_mixed_summary`: `options(parameters_mixed_summary = TRUE)` will override the summary argument in `model_parameters()` for mixed models, and will then always show the model summary.
- `parameters_cimethod`: `options(parameters_cimethod = TRUE)` will show the additional information about the approximation method used to calculate confidence intervals and p-values. Set to `FALSE` to hide this message when printing `model_parameters()` objects.
- `parameters_exponentiate`: `options(parameters_exponentiate = TRUE)` will show the additional information on how to interpret coefficients of models with log-transformed response variables or with log-/logit-link when the exponentiate argument in `model_parameters()` is not `TRUE`. Set this option to `FALSE` to hide this message when printing `model_parameters()` objects.

There are further options that can be used to modify the default behaviour for printed outputs:

- `parameters_labels`: `options(parameters_labels = TRUE)` will use variable and value labels for pretty names, if data is labelled. If no labels available, default pretty names are used.
- `parameters_interaction`: `options(parameters_interaction = <character>)` will replace the interaction mark (by default, *) with the related character.
model_parameters.aov

• parameters_select: options(parameters_select = <value>) will set the default for the select argument. See argument’s documentation for available options.

• easystats_html_engine: options(easystats_html_engine = "gt") will set the default HTML engine for tables to gt, i.e. the gt package is used to create HTML tables. If set to tt, the tinytable package is used.

Note

The print() method has several arguments to tweak the output. There is also a plot()-method implemented in the see-package, and a dedicated method for use inside markdown files, print_md().

For developers, if speed performance is an issue, you can use the (undocumented) pretty_names argument, e.g. model_parameters(..., pretty_names = FALSE). This will skip the formatting of the coefficient names and make model_parameters() faster.

References

• Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical science: replace confidence and significance by compatibility and surprise. BMC Medical Research Methodology (2020) 20:244.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

model_parameters.aov Parameters from ANOVAs

Description

Parameters from ANOVAs

Usage

S3 method for class 'aov'
model_parameters(
 model,
 type = NULL,
 df_error = NULL,
 ci = NULL,
 alternative = NULL,
 test = NULL,
 power = FALSE,
 es_type = NULL,
)
Arguments

model Object of class `aov`, `anova`, `aovlist`, `Gam`, `manova`, `Anova.mlm`, `afex_aov` or `maov`.

type Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables using `car::Anova()` will be returned. (Ignored for `afex_aov`.)

df_error Denominator degrees of freedom (or degrees of freedom of the error estimate, i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from mixed models. See 'Examples'. (Ignored for `afex_aov`.)

ci Confidence Interval (CI) level for effect sizes specified in `es_type`. The default, `NULL`, will compute no confidence intervals. `ci` should be a scalar between 0 and 1.

alternative A character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See section One-Sided CIs in the effectsize_CIs vignette.

test String, indicating the type of test for `Anova.mlm` to be returned. If "multivariate" (or `NULL`), returns the summary of the multivariate test (that is also given by the `print`-method). If `test = "univariate"`, returns the summary of the univariate test.

power Logical, if `TRUE`, adds a column with power for each parameter.

es_type The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.

keep Character containing a regular expression pattern that describes the parameters that should be included (for `keep`) or excluded (for `drop`) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop
See keep.

table_wide
Logical that decides whether the ANOVA table should be in wide format, i.e. should the numerator and denominator degrees of freedom be in the same row. Default: FALSE.

verbose
Toggle warnings and messages.

... Arguments passed to effectsize::effectsize(). For example, to calculate partial effect sizes types, use partial = TRUE. For objects of class htest or BFBayesFactor, adjust = TRUE can be used to return bias-corrected effect sizes, which is advisable for small samples and large tables. See also ?effectsize::eta_squared for arguments partial and generalized; ?effectsize::phi for adjust; and ?effectsize::oddratio for log.

Details
- For an object of class htest, data is extracted via insight::get_data(), and passed to the relevant function according to:
 - A t-test depending on type: "cohens_d" (default), "hedges_g", or one of "p_superiority", "u1", "u2", "u3", "overlap".
 * For a Paired t-test: depending on type: "rm_rm", "rm_av", "rm_b", "rm_d", "rm_z".
 - A Chi-squared tests of independence or Fisher’s Exact Test, depending on type: "cramers_v" (default), "tschuprows_t", "phi", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", "riskratio", "arr", or "nnt".
 - A Chi-squared tests of goodness-of-fit, depending on type: "fei" (default) "cohens_w", "pearsons_c"
 - A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
 - A McNemar test returns Cohen’s g.
 - A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or one of "p_superiority", "vda", "u2", "u3", "overlap".
 - A Kruskal-Wallis test depending on type: "epsilon" (default) or "eta".
 - A Friedman test returns Kendall’s W. (Where applicable, ci and alternative are taken from the htest if not otherwise provided.)
- For an object of class BFBayesFactor, using bayestestR::describe_posterior(),
- A **t-test** depending on type: "cohens_d" (default) or one of "p_superiority", "u1", "u2", "u3", "overlap".
- A **correlation test** returns r.
- A **contingency table test**, depending on type: "cramers_v" (default), "phi", "tschuprows_t", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio", "arr", or "nnt".
- A **proportion test** returns p.

- Objects of class `anova`, `aov`, `aovlist` or `afex_aov`, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
- Other objects are passed to `parameters::standardize_parameters()`.

For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.

Value

A data frame of indices related to the model’s parameters.

Note

For ANOVA-tables from mixed models (i.e. `anova(lmer())`), only partial or adjusted effect sizes can be computed. Note that type 3 ANOVAs with interactions involved only give sensible and informative results when covariates are mean-centred and factors are coded with orthogonal contrasts (such as those produced by `contr.sum`, `contr.poly`, or `contr.helmert`, but **not** by the default `contr.treatment`).

Examples

```r
df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")

model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(model)

model_parameters(model, es_type = c("omega", "eta"), ci = 0.9)

model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)
model_parameters(model,
  es_type = c("omega", "eta", "epsilon"),
  alternative = "greater"
)

model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)

df <- iris
df$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")
```
mm <- lme4::lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
model <- anova(mm)

simple parameters table
model_parameters(model)

parameters table including effect sizes
model_parameters(
 model,
 es_type = "eta",
 ci = 0.9,
 df_error = dof_satterthwaite(mm)[2:3]
)

model_parameters.befa Parameters from Bayesian Exploratory Factor Analysis

Description

Format Bayesian Exploratory Factor Analysis objects from the BayesFM package.

Usage

```r
## S3 method for class 'befa'
model_parameters(
  model,
  sort = FALSE,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = NULL,
  verbose = TRUE,
  ...
)
```

Arguments

- **model**: Bayesian EFA created by the BayesFM::befa.
- **sort**: Sort the loadings.
- **centrality**: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" (see `map_estimate()`), "trimmed" (which is just `mean(x, trim = threshold)"), "mode" or "all".
- **dispersion**: Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively). Dispersion is not available for "MAP" or "mode" centrality indices.
Value
A data frame of loadings.

Examples
library(parameters)

if (require("BayesFM")) {
 efa <- BayesFM::befa(mtcars, iter = 1000)
 results <- model_parameters(efa, sort = TRUE, verbose = FALSE)
 results
 efa_to_cfa(results, verbose = FALSE)
}

Description
Parameters from BFBayesFactor objects from \{BayesFactor\} package.

Usage
```r
## S3 method for class 'BFBayesFactor'
model_parameters(
  model,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = "pd",
  rope_range = "default",
  ...)
```

Value
- `ci`: Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to 0.95 (95%).
- `ci_method`: The type of index used for Credible Interval. Can be "ETI" (default, see `eti()`), "HDI" (see `hdi()`), "BCI" (see `bci()`), "SPI" (see `spi()`), or "SI" (see `si()`).
- `test`: The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding `bayestestR` function is called (e.g. `rope()` or `p_direction()`) and its results included in the summary output.
- `verbose`: Toggle warnings.
- `...`: Arguments passed to or from other methods.
rope_ci = 0.95,
priors = TRUE,
es_type = NULL,
include_proportions = FALSE,
verbose = TRUE,
...)

Arguments

model Object of class BFBayesFactor.
centrality The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" (see map_estimate()), "trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".
dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively). Dispersion is not available for "MAP" or "mode" centrality indices.
ci Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to 0.95 (95%).
ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()), "HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).
test The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or p_direction()) and its results included in the summary output.
rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1, 0.1)) or "default". If "default", the bounds are set to x ± 0.1*SD(response).
rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.
priors Add the prior used for each parameter.
es_type The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.
include_proportions Logical that decides whether to include posterior cell proportions/counts for Bayesian contingency table analysis (from BayesFactor::contingencyTableBF()). Defaults to FALSE, as this information is often redundant.
verbose Toggle off warnings.

Details

The meaning of the extracted parameters:

- For BayesFactor::ttestBF(): Difference is the raw difference between the means.
• For `BayesFactor::correlationBF()`: rho is the linear correlation estimate (equivalent to Pearson’s r).
• For `BayesFactor::lmBF()`/`BayesFactor::generalTestBF()`/`BayesFactor::regressionBF()`/`BayesFactor::anovaBF()`: in addition to parameters of the fixed and random effects, there are: mu is the (mean-centered) intercept; sig2 is the model’s sigma; g / g_* are the g parameters; See the Bayes Factors for ANOVAs paper (doi:10.1016/j.jmp.2012.08.001).

Value

A data frame of indices related to the model’s parameters.

Examples

```r
# Bayesian t-test
model <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
model_parameters(model)
model_parameters(model, es_type = "cohens_d", ci = 0.9)

# Bayesian contingency table analysis
data(raceDolls)
bf <- BayesFactor::contingencyTableBF(
  raceDolls,
  sampleType = "indepMulti",
  fixedMargin = "cols"
)
model_parameters(bf,
  centrality = "mean",
  dispersion = TRUE,
  verbose = FALSE,
  es_type = "cramers_v"
)
```

Description

Extract and compute indices and measures to describe parameters of generalized additive models (GAM(M)s).

Usage

```r
## S3 method for class 'cgam'
model_parameters(
  model,
  ci = 0.95,
)```
ci_method = "residual",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

## S3 method for class 'gamm'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  verbose = TRUE,
  ...
)

## S3 method for class 'Gam'
model_parameters(
  model,
  es_type = NULL,
  df_error = NULL,
  type = NULL,
  table_wide = FALSE,
  verbose = TRUE,
  ...
)

## S3 method for class 'scam'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "residual",
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
Arguments

model
A gam/gamm model.

ci
Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unироut", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

bootstrap
Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

standardize
The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters(). Importantly:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate
Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust
Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

keep
Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

**drop**
See keep.

**verbose**
Toggle warnings and messages.

**...**
Arguments passed to or from other methods. For instance, when `bootstrap = TRUE`, arguments like `type` or `parallel` are passed down to `bootstrap_model()`.

**es_type**
The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.

**df_error**
Denominator degrees of freedom (or degrees of freedom of the error estimate, i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from mixed models. See 'Examples'. (Ignored for `afex_aov`).

**type**
Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables using `car::Anova()` will be returned. (Ignored for `afex_aov`).

**table_wide**
Logical that decides whether the ANOVA table should be in wide format, i.e. should the numerator and denominator degrees of freedom be in the same row. Default: FALSE.

### Details

The reporting of degrees of freedom for the spline terms slightly differs from the output of `summary(model)`, for example in the case of `mgcv::gam()`. The estimated degrees of freedom, column `edf` in the summary-output, is named `df` in the returned data frame, while the column `df_error` in the returned data frame refers to the residual degrees of freedom that are returned by `df.residual()`. Hence, the values in the the column `df_error` differ from the column `Ref.df` from the summary, which is intentional, as these reference degrees of freedom “is not very interpretable” (web).

### Value

A data frame of indices related to the model’s parameters.

### See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.
Examples

```r
library(parameters)
if (require("mgcv")) {
 dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
 model <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
 model_parameters(model)
}
```

**Parameters from Mixed Models**

Description

Parameters from (linear) mixed models.

Usage

```r
S3 method for class 'cpglmm'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 effects = "all",
 group_level = FALSE,
 exponentiate = FALSE,
 p_adjust = NULL,
 include_sigma = FALSE,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...)
```

```r
S3 method for class 'glmmTMB'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "wald",
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 ...)
```
model_parameters.cpglmm

> model_parameters.cpglmm

```r
effects = "all",
component = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary =getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
```

## S3 method for class 'merMod'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary =getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
vcov = NULL,
vcov_args = NULL,
```

S3 method for class 'mixed'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "wald",
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 effects = "all",
```
component = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
...

## S3 method for class 'MixMod'
model_parameters(
    model,
    ci = 0.95,
    ci_method = "wald",
    ci_random = NULL,
    bootstrap = FALSE,
    iterations = 1000,
    standardize = NULL,
    effects = "all",
    component = "all",
group_level = FALSE,
exponentiate = FALSE,
p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
...

## S3 method for class 'lme'
model_parameters(
    model,
    ci = 0.95,
    ci_method = NULL,
    ci_random = NULL,
    bootstrap = FALSE,
    iterations = 1000,
    standardize = NULL,
    effects = "all",
group_level = FALSE,
exponentiate = FALSE,
model_parameters.cpglmm

p_adjust = NULL,
wb_component = TRUE,
summary = getOption("parameters_mixed_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
include_sigma = FALSE,
vcov = NULL,
vcov_args = NULL,
...
)

## S3 method for class 'clmm2'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "scale"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'clmm'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
  group_level = FALSE,
  exponentiate = FALSE,
  p_adjust = NULL,
  include_sigma = FALSE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
Arguments

- **model**: A mixed model.
- **ci**: Confidence Interval (CI) level. Default to \(0.95\) (95%).
- **ci_method**: Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirho", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section *Confidence intervals and approximation of degrees of freedom* in `model_parameters()` for further details. When `ci_method=NULL`, in most cases "wald" is used then.
- **ci_random**: Logical, if TRUE, includes the confidence intervals for random effects parameters. Only applies if `effects` is not "fixed" and if `ci` is not NULL. Set `ci_random=FALSE` if computation of the model summary is too much time consuming. By default, `ci_random=FALSE`, which uses a heuristic to guess if computation of confidence intervals for random effects is fast enough or not. For models with larger sample size and/or more complex random effects structures, confidence intervals will not be computed by default, for simpler models or fewer observations, confidence intervals will be included. Set explicitly to TRUE or FALSE to enforce or omit calculation of confidence intervals.
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- **iterations**: The number of draws to simulate/bootstrap.
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`.

**Importantly:**
- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). to mimic such behaviours, either use `standardize="basic"` or standardize the data with `datawizard::standardize(force=TRUE)` before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., `vcov` set to a value other than NULL) of standardized parameters only works when `standardize="refit"`.
- **effects**: Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use `effects = "fixed"`.
- **group_level**: Logical, for multilevel models (i.e. models with random effects) and when `effects = "all"` or `effects = "random"`, include the parameters for each group level from random effects. If `group_level = FALSE` (the default), only information on SD and COR are shown.
- **exponentiate**: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally...
speaking, for models with log or logit links. It is also recommended to use `exponentiate = TRUE` for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.

### Parameters

- **p_adjust**: Character vector, if not `NULL`, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for `emmeans` objects.

- **include_sigma**: Logical, if `TRUE`, includes the residual standard deviation. For mixed models, this is defined as the sum of the distribution-specific variance and the variance for the additive overdispersion term (see `insight::get_variance()` for details). Defaults to `FALSE` for mixed models due to the longer computation time.

- **keep**: Character containing a regular expression pattern that describes the parameters that should be included (for `keep`) or excluded (for `drop`) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If `keep` is a character vector, every parameter name in the "Parameter" column that matches the regular expression in `keep` will be selected from the returned data frame (and vice versa, all parameter names matching `drop` will be excluded). Furthermore, if `keep` has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If `keep` is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

- **drop**: See `keep`.

- **verbose**: Toggle warnings and messages.

- **...**: Arguments passed to or from other methods. For instance, when `bootstrap = TRUE`, arguments like `type` or `parallel` are passed down to `bootstrap_model()`.

- **component**: Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. `component` may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

- **wb_component**: Logical, if `TRUE` and models contains within- and between-effects (see `datawizard::demean()`), the Component column will indicate which variables belong to the within-effects, between-effects, and cross-level interactions. By default, the Component column indicates, which parameters belong to the conditional or zero-inflation component of the model.
summary
Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

vcov
Variance-covariance matrix used to compute uncertainty estimates (e.g., for ro-
bust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be
used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., \texttt{stats::vcov()})
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2",
    "HC3", "HC4", "HC4m", "HC5". See \texttt{sandwich::vcovHC}.
    See \texttt{clubSandwich::vcovCR}.
  - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb".
    See \texttt{sandwich::vcovBS}.
  - Other \texttt{sandwich} package functions: "vcovHAC", "vcovPC", "vcovCL",
    "vcovPL".

vcov_args
List of arguments to be passed to the function identified by the \texttt{vcov} argument.
This function is typically supplied by the \texttt{sandwich} or \texttt{clubSandwich} packages.
Please refer to their documentation (e.g., \texttt{sandwich::vcovHAC}) to see the list
of available arguments.

Value
A data frame of indices related to the model's parameters.

Confidence intervals for random effects variances
For models of class \texttt{merMod} and \texttt{glmmTMB}, confidence intervals for random effect variances can be
calculated.

- For models of from package \texttt{lme4}, when \texttt{ci_method} is either "profile" or "boot", and
effects is either "random" or "all", profiled resp. bootstrapped confidence intervals are
computed for the random effects.
- For all other options of \texttt{ci_method}, and only when the \texttt{merDeriv} package is installed, con-
fidence intervals for random effects are based on normal-distribution approximation, using
the delta-method to transform standard errors for constructing the intervals around the log-
thransformed SD parameters. These are then back-transformed, so that random effect var-
iances, standard errors and confidence intervals are shown on the original scale. Due to the
transformation, the intervals are asymmetrical, however, they are within the correct bounds
(i.e. no negative interval for the SD, and the interval for the correlations is within the range
from -1 to +1).
- For models of class \texttt{glmmTMB}, confidence intervals for random effect variances always use a
Wald t-distribution approximation.
**Singular fits (random effects variances near zero)**

If a model is "singular", this means that some dimensions of the variance-covariance matrix have been estimated as exactly zero. This often occurs for mixed models with complex random effects structures.

There is no gold-standard about how to deal with singularity and which random-effects specification to choose. One way is to fully go Bayesian (with informative priors). Other proposals are listed in the documentation of `performance::check_singularity()`. However, since version 1.1.9, the `glmmTMB` package allows to use priors in a frequentist framework, too. One recommendation is to use a Gamma prior (`Chung et al. 2013`). The mean may vary from 1 to very large values (like $1e8$), and the shape parameter should be set to a value of 2.5. You can then `update()` your model with the specified prior. In `glmmTMB`, the code would look like this:

```r
"model" is an object of class gmmmTMB
prior <- data.frame(
 prior = "gamma(1, 2.5)", # mean can be 1, but even 1e8
 class = "ranef" # for random effects
)
model_with_priors <- update(model, priors = prior)
```

Large values for the mean parameter of the Gamma prior have no large impact on the random effects variances in terms of a "bias". Thus, if 1 doesn’t fix the singular fit, you can safely try larger values.

**Dispersion parameters in `glmmTMB`**

For some models from package `glmmTMB`, both the dispersion parameter and the residual variance from the random effects parameters are shown. Usually, these are the same but presented on different scales, e.g.

```r
model <- glmmTMB(Sepal.Width ~ Petal.Length + (1|Species), data = iris)
exp(fixef(model)$disp) # 0.09902987
sigma(model)^2 # 0.09902987
```

For models where the dispersion parameter and the residual variance are the same, only the residual variance is shown in the output.

**Confidence intervals and approximation of degrees of freedom**

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

**Classical methods:**

Classical inference is generally based on the **Wald method.** The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

```r
"model" is an object of class gmmmTMB
```
• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and a t-distribution with Kenward-Roger df.

"m11"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See ci_m11().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ-squared distribution to compute CIs and p-values.

"profile"
• Applies to non-Bayesian models of class \texttt{glm}, \texttt{polr}, \texttt{merMod} or \texttt{glmmTMB}. CIs computed by \textit{profiling the likelihood curve for a parameter}, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"unirout"

• Applies to non-Bayesian models of class \texttt{glmmTMB}. CIs computed by \textit{profiling the likelihood curve for a parameter}, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on \textbf{resampling} and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = \texttt{TRUE}. CIs computed as \textit{equal tailed intervals} using the quantiles of the bootstrap or posterior samples; p-values are based on the \textit{probability of direction}. See \texttt{bayestestR::eti()}. 

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = \texttt{TRUE}. CIs computed as \textit{highest density intervals} for the bootstrap or posterior samples; p-values are based on the \textit{probability of direction}. See \texttt{bayestestR::hdi()}. 

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = \texttt{TRUE}. CIs computed as \textit{bias corrected and accelerated intervals} for the bootstrap or posterior samples; p-values are based on the \textit{probability of direction}. See \texttt{bayestestR::bci()}. 

"si"

• Applies to Bayesian models with proper priors. CIs computed as \textit{support intervals} comparing the posterior samples against the prior samples; p-values are based on the \textit{probability of direction}. See \texttt{bayestestR::si()}. 

"boot"

• Applies to non-Bayesian models of class \texttt{merMod}. CIs computed using \textit{parametric bootstrapping} (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (\texttt{bayestestR::p_direction()}), which is converted into a p-value using \texttt{bayestestR::pd_to_p()}. 

\begin{itemize}
  \item \textit{model	extunderscore parameters.cpglmm}
\end{itemize}
Note

If the calculation of random effects parameters takes too long, you may use `effects = "fixed"`. There is also a `plot()`-method implemented in the `see-package`.

References


See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

Examples

```r
library(parameters)
data(mtcars)
model <- lme4::lmer(mpg ~ wt + (1 | gear), data = mtcars)
model_parameters(model)

data(Salamanders, package = "glmmTMB")
model <- glmmTMB::glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = ~mined,
 family = poisson(),
 data = Salamanders
)
model_parameters(model, effects = "all")

model <- lme4::lmer(mpg ~ wt + (1 | gear), data = mtcars)
model_parameters(model, bootstrap = TRUE, iterations = 50, verbose = FALSE)
```

Description

Format cluster models obtained for example by `kmeans()`.
Usage

```r
S3 method for class 'dbscan'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'hclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'pvclust'
model_parameters(model, data = NULL, clusters = NULL, ci = 0.95, ...)

S3 method for class 'kmeans'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'hkmeans'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'Mclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'pam'
model_parameters(model, data = NULL, clusters = NULL, ...)
```

Arguments

- `model`: Cluster model.
- `data`: A data.frame.
- `clusters`: A vector with clusters assignments (must be same length as rows in data).
- `...`: Arguments passed to or from other methods.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).

Examples

```r
DBSCAN ---------------------------
if (require("dbscan", quietly = TRUE)) {
 model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)
 rez <- model_parameters(model, iris[1:4])
 rez

 # Get clusters
 predict(rez)

 # Clusters centers in long form
 attributes(rez)$means

 # Between and Total Sum of Squares
 attributes(rez)$Sum_Squares_Total
 attributes(rez)$Sum_Squares_Between
```
# HDBSCAN
model <- dbscan::hdbscan(iris[1:4], minPts = 10)
model_parameters(model, iris[1:4])
}

# Hierarchical clustering (hclust) ---------------------------
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)
rez <- model_parameters(model, data, clusters)
rez

# Get clusters
predict(rez)

# Clusters centers in long form
attributes(rez)$means

# Between and Total Sum of Squares
attributes(rez)$Total_Sum_Squares
attributes(rez)$Between_Sum_Squares

# pvclust (finds "significant" clusters) ---------------------------
if (require("pvclust", quietly = TRUE)) {
data <- iris[1:4]
# NOTE: pvclust works on transposed data
model <- pvclust::pvclust(datawizard::data_transpose(data, verbose = FALSE),
  method.dist = "euclidean",
  nboot = 50,
  quiet = TRUE)
rez <- model_parameters(model, data, ci = 0.90)
rez

# Get clusters
predict(rez)

# Clusters centers in long form
attributes(rez)$means

# Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between
}

# K-means -------------------------------
model <- kmeans(iris[1:4], centers = 3)
rez <- model_parameters(model)
rez

# Get clusters
predict(rez)

# Clusters centers in long form
attributes(rez)$means

# Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between

if (require("factoextra", quietly = TRUE)) {
  data <- iris[,1:4]
  model <- factoextra::hkmeans(data, k = 3)
  rez <- model_parameters(model)
  rez

  # Get clusters
  predict(rez)

  # Clusters centers in long form
  attributes(rez)$means

  # Between and Total Sum of Squares
  attributes(rez)$Sum_Squares_Total
  attributes(rez)$Sum_Squares_Between
}

if (require("mclust", quietly = TRUE)) {
  model <- mclust::Mclust(iris[,1:4], verbose = FALSE)
  model_parameters(model)
}

if (require("cluster", quietly = TRUE)) {
  model <- cluster::pam(iris[,1:4], k = 3)
  model_parameters(model)
}

if (require("fpc", quietly = TRUE)) {
  model <- fpc::pamk(iris[,1:4], criterion = "ch")
  model_parameters(model)
}
Parameters from (General) Linear Models

Description

Extract and compute indices and measures to describe parameters of (general) linear models (GLMs).

Usage

```r
Default S3 method:
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary =getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 vcov = NULL,
 vcov_args = NULL,
 ...
)

S3 method for class 'glm'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary =getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 vcov = NULL,
 vcov_args = NULL,
 ...
)
```
## S3 method for class 'censReg'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary =getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  vcov = NULL,
  vcov_args = NULL,
  ...
)

## S3 method for class 'ridgelm'
model_parameters(model, verbose = TRUE, ...)

**Arguments**

- `model` Model object.
- `ci` Confidence Interval (CI) level. Default to 0.95 (95%).
- `ci_method` Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section *Confidence intervals and approximation of degrees of freedom* in `model_parameters()` for further details. When `ci_method=NULL`, in most cases "wald" is used then.
- `bootstrap` Should estimates be based on bootstrapped model? If `TRUE`, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- `iterations` The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- `standardize` The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`.

**Importantly:**
- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). To mimic such behaviours, either use `standardize="basic"` or standardize the data with `datawizard::standardize(force=TRUE)` before fitting the model.
• For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
• Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

summary Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

vcov Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.
• A covariance matrix
• A function which returns a covariance matrix (e.g., stats::vcov())
• A string which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.


– Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.

– Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

... Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value

A data frame of indices related to the model’s parameters.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The ci_method argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.
**Methods for mixed models:**

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"

- Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with \(m-l-1\) approximated df); p-values computed using the Wald method with a t-distribution with \(m-l-1\) approximated df. See `ci_ml1()`.

"betwithin"

- Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See `ci_betwithin()`.

**Likelihood-based methods:**

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a \(\chi^2\)-squared distribution to compute CIs and p-values.

"profile"

- Applies to non-Bayesian models of class `glm`, `polr`, `merMod` or `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

- Applies to non-Bayesian models of class `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

**Methods for bootstrapped or Bayesian models:**
Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

- Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

- Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
model <- lm(mpg ~ wt + cyl, data = mtcars)
model_parameters(model)
# bootstrapped parameters
model_parameters(model, bootstrap = TRUE)

# standardized parameters
model_parameters(model, standardize = "refit")

# robust, heteroskedasticity-consistent standard errors
model_parameters(model, vcov = "HC3")

model_parameters(model,
    vcov = "vcovCL",
    vcov_args = list(cluster = mtcars$cyl)
)

# different p-value style in output
model_parameters(model, p_digits = 5)
model_parameters(model, digits = 3, ci_digits = 4, p_digits = "scientific")

# logistic regression model
model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
model_parameters(model)

# show odds ratio / exponentiated coefficients
model_parameters(model, exponentiate = TRUE)

# bias-corrected logistic regression with penalized maximum likelihood
model <- glm(
    vs ~ wt + cyl,
    data = mtcars,
    family = "binomial",
    method = "brglmFit"
)
model_parameters(model)
model_parameters.DirichletRegModel  

```r

bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "precision"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
```

```r
S3 method for class 'bifeAPEs'
model_parameters(model, ...)
```

```r
S3 method for class 'bracl'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
```

```r
S3 method for class 'mlm'
model_parameters(
 model,
 ci = 0.95,
 vcov = NULL,
 vcov_args = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
```
## S3 method for class 'clm2'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "scale"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

### Arguments

- **model**: A model with multinomial or categorical response value.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- **component**: Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. `component` may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`. **Importantly**:  
  - The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). To mimic such behaviours, either use `standardize="basic"` or standardize the data with `datawizard::standardize(force=TRUE) before fitting the model.`
  - For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
  - Robust estimation (i.e., `vcov` set to a value other than NULL) of standardized parameters only works when `standardize="refit"`.
- **exponentiate**: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use...
exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

**p_adjust**
Character vector, if not NULL, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for `emmeans` objects.

**keep**
Character containing a regular expression pattern that describes the parameters that should be included (for `keep`) or excluded (for `drop`) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If `keep` is a character vector, every parameter name in the "Parameter" column that matches the regular expression in `keep` will be selected from the returned data frame (and vice versa, all parameter names matching `drop` will be excluded). Furthermore, if `keep` has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If `keep` is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

**drop**
See `keep`.

**verbose**
Toggle warnings and messages.

**...**
Arguments passed to or from other methods. For instance, when `bootstrap = TRUE`, arguments like `type` or `parallel` are passed down to `bootstrap_model()`.

**summary**
Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

**vcov**
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `?sandwich::vcovHC`.

model_parameters.glht

Parameters from Hypothesis Testing

Description

Parameters from Hypothesis Testing.

Details

Multinomial or cumulative link models, i.e. models where the response value (dependent variable) is categorical and has more than two levels, usually return coefficients for each response level. Hence, the output from `model_parameters()` will split the coefficient tables by the different levels of the model’s response.

Value

A data frame of indices related to the model’s parameters.

See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

Examples

data("stemcell", package = "brglm2")
model <- brglm2::bracl(
  research ~ as.numeric(religion) + gender,
  weights = frequency,
  data = stemcell,
  type = "ML"
)
model_parameters(model)
Usage

```r
S3 method for class 'glht'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- **model**: Object of class `multcomp::glht()` (`multcomp`) or of class `PMCMR`, `trendPMCMR` or `osrt` (PMCMRplus).
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **exponentiate**: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use `exponentiate = TRUE` for models with log-transformed response values. **Note**: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.
- **keep**: Character containing a regular expression pattern that describes the parameters that should be included (for `keep`) or excluded (for `drop`) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If `keep` is a character vector, every parameter name in the "Parameter" column that matches the regular expression in `keep` will be selected from the returned data frame (and vice versa, all parameter names matching `drop` will be excluded). Furthermore, if `keep` has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If `keep` is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.
- **drop**: See `keep`.
- **verbose**: Toggle warnings and messages.
Arguments passed to or from other methods. For instance, when \texttt{bootstrap = TRUE}, arguments like \texttt{type} or \texttt{parallel} are passed down to \texttt{bootstrap_model()}. 

\section*{Value}

A data frame of indices related to the model's parameters.

\section*{Examples}

```r
if (require("multcomp", quietly = TRUE)) {
 # multiple linear model, swiss data
 lmod <- lm(Fertility ~ ., data = swiss)
 mod <- glht(
 model = lmod,
 linfct = c(
 "Agriculture = 0",
 "Examination = 0",
 "Education = 0",
 "Catholic = 0",
 "Infant.Mortality = 0"
)
)
 model_parameters(mod)
}
if (require("PMCMRplus", quietly = TRUE)) {
 model <- suppressWarnings(
 kwAllPairsConoverTest(count ~ spray, data = InsectSprays)
)
 model_parameters(model)
}
```

\section*{Description}

Parameters from special regression models not listed under one of the previous categories yet.

\section*{Usage}

```r
S3 method for class 'glimML'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("conditional", "random", "dispersion", "all"),
```
## S3 method for class 'averaging'
model_parameters(
  model,
  ci = 0.95,
  component = c("conditional", "full"),
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'betareg'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("conditional", "precision", "all"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'emm_list'
model_parameters(
  model,
  ci = 0.95,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
## S3 method for class 'glmx'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "extra"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'marginaleffects'
model_parameters(model, ci = 0.95, exponentiate = FALSE, ...)

## S3 method for class 'metaplus'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  include_studies = TRUE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'meta_random'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "eti",
  exponentiate = FALSE,
  include_studies = TRUE,
  verbose = TRUE,
  ...
)
## S3 method for class 'meta_bma'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "eti",
  exponentiate = FALSE,
  include_studies = TRUE,
  verbose = TRUE,
  ...
)

## S3 method for class 'betaor'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("conditional", "precision", "all"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'betamfx'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "precision", "marginal"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'mjoint'
model_parameters(
  model,
  ci = 0.95,
  effects = "fixed",
  component = c("all", "conditional", "survival"),
  exponentiate = FALSE,
model_parameters.glimML

```
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

S3 method for class 'mvord'
model_parameters(
 model,
 ci = 0.95,
 component = c("all", "conditional", "thresholds", "correlation"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'selection'
model_parameters(
 model,
 ci = 0.95,
 component = c("all", "selection", "outcome", "auxiliary"),
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- **model**: Model object.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
model_parameters.glimML

**component**
Model component for which parameters should be shown. May be one of
"conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx),
"marginal" (mfx), "conditional" or "full" (for MuMIn::model.avg()) or
"all".

**standardize**
The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

**Importantly:**
- The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS), to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

**exponentiate**
Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

**p_adjust**
Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

**summary**
Logical, if TRUE, prints summary information about the model (model formula,
number of observations, residual standard deviation and more).

**keep**
Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in \texttt{model\_parameters\_lavaan()}. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $\texttt{Parameter}$ column of the parameters table to get the exact parameter names.

\begin{itemize}
\item \texttt{drop} See \texttt{keep}.
\item \texttt{verbose} Toggle warnings and messages.
\item \texttt{...} Arguments passed to or from other methods. For instance, when bootstrap = \texttt{TRUE}, arguments like type or parallel are passed down to \texttt{bootstrap\_model()}
\item \texttt{include\_studies} Logical, if \texttt{TRUE} (default), includes parameters for all studies. Else, only parameters for overall-effects are shown.
\item \texttt{ci\_method} Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirho\_t", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section \texttt{Confidence intervals and approximation of degrees of freedom in model\_parameters()} for further details. When \texttt{ci\_method=\texttt{NULL}}, in most cases "wald" is used then.
\item \texttt{effects} Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.
\end{itemize}

\textbf{Value}

A data frame of indices related to the model’s parameters.

\textbf{See Also}

\texttt{insight::standardize\_names()} to rename columns into a consistent, standardized naming scheme.

\textbf{Examples}

\begin{verbatim}
library(parameters)
if (require("brglm2", quietly = TRUE)) {
  data("stemcell")
  model <- bracl(
    research ~ as.numeric(religion) + gender,
    weights = frequency,
    data = stemcell,
    type = "ML"
  )
  model\_parameters(model)
}
\end{verbatim}
model_parameters.htest

Parameters from hypothesis tests

Description

Parameters of h-tests (correlations, t-tests, chi-squared, ...).

Usage

```r
S3 method for class 'htest'
model_parameters(
 model,
 ci = 0.95,
 alternative = NULL,
 bootstrap = FALSE,
 es_type = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'coeftest'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "wald",
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- **model**: Object of class htest or pairwise.htest.
- **ci**: Level of confidence intervals for effect size statistic. Currently only applies to objects from chisq.test() or oneway.test().
- **alternative**: A character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See section One-Sided CIs in the effectsize_CIs vignette.
- **bootstrap**: Should estimates be bootstrapped?
- **es_type**: The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.
verbose
Arguments passed to or from other methods. For instance, when bootstrap = 
TRUE, arguments like type or parallel are passed down to bootstrap_model().

Method for computing degrees of freedom for confidence intervals (CI) and 
the related p-values. Allowed are following options (which vary depending on 
the model class): "residual", "normal", "likelihood", "satterthwaite", 
"kenward", "wald", "profile", "boot", "unirule", "ml1", "betwithin", 
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() 
for further details. When ci_method=NULL, in most cases "wald" is used then.

Character containing a regular expression pattern that describes the parameters 
that should be included (for keep) or excluded (for drop) in the returned data 
frame. keep may also be a named list of regular expressions. All non-matching 
parameters will be removed from the output. If keep is a character vector, ev-
eery parameter name in the "Parameter" column that matches the regular ex-
pression pattern in keep will be selected from the returned data frame (and vice versa, 
all parameter names matching drop will be excluded). Furthermore, if keep 
has more than one element, these will be merged with an OR operator into a 
regular expression pattern like this: "(one|two|three)". If keep is a named 
list of regular expression patterns, the names of the list-element should equal 
the column name where selection should be applied. This is useful for model 
objects where model_parameters() returns multiple columns with parameter 
components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

See keep.

For an object of class htest, data is extracted via insight::get_data(), and passed to the 
relevant function according to:

- A t-test depending on type: "cohens_d" (default), "hedges_g", or one of "p_superiority", 
  "u1", "u2", "u3", "overlap".
  * For a Paired t-test: depending on type: "rm_rm", "rm_av", "rm_b", "rm_d", "rm_z".
- A Chi-squared tests of independence or Fisher's Exact Test, depending on type: 
  "cramers_v" (default), "tschuprows_t", "phi", "cohens_w", "pearsons_c", "cohens_h", 
  "oddsratio", "riskratio", "arr", or "nnt".
- A Chi-squared tests of goodness-of-fit, depending on type: "fei" (default) "cohens_w", 
  "pearsons_c" 
- A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon" 
  -squared, "f", or "f2".
- A McNemar test returns Cohen's g.
- A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or 
  one of "p_superiority", "vda", "u2", "u3", "overlap".
- A Kruskal-Wallis test depending on type: "epsilon" (default) or "eta".
A **Friedman test** returns Kendall’s W. (Where applicable, ci and alternative are taken from the htest if not otherwise provided.)

- For an object of class BFBayesFactor, using `bayestestR::describe_posterior()`.
  - A **t-test** depending on type: "cohens_d" (default) or one of "p_superiority", "u1", "u2", "u3", "overlap".
  - A **correlation test** returns r.
  - A **contingency table test**, depending on type: "cramers_v" (default), "phi", "tchuprows_t", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio", "arr", or "nnt".
  - A **proportion test** returns p.

- Objects of class anova, aov, aovlist or afex_aov, depending on type: "eta" (default), "omega" or "epsilon"-squared, "f", or "f2".

- Other objects are passed to `parameters::standardize_parameters()`.

**For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.**

**Value**

A data frame of indices related to the model’s parameters.

**Examples**

```r
model <- cor.test(mtcars$mpg, mtcars$cyl, method = "pearson")
model_parameters(model)

model <- t.test(iris$Sepal.Width, iris$Sepal.Length)
model_parameters(model, es_type = "hedges_g")

model <- t.test(mtcars$mpg ~ mtcars$vs)
model_parameters(model, es_type = "hedges_g")

model <- t.test(iris$Sepal.Width, mu = 1)
model_parameters(model, es_type = "cohens_d")

data(airquality)
airquality$Month <- factor(airquality$Month, labels = month.abb[5:9])
model <- pairwise.t.test(airquality$Ozone, airquality$Month)
model_parameters(model)

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
model <- suppressWarnings(pairwise.prop.test(smokers, patients))
model_parameters(model)

model <- suppressWarnings(chisq.test(table(mtcars$am, mtcars$cyl)))
model_parameters(model, es_type = "cramers_v")
```
model_parameters.MCMCglmm

Parameters from Bayesian Models

Description

Parameters from Bayesian models.

Usage

## S3 method for class 'MCMCglmm'
model_parameters(
  model,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = "pd",
  rope_range = "default",
  rope_ci = 0.95,
  bf_prior = NULL,
  diagnostic = c("ESS", "Rhat"),
  priors = TRUE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'data.frame'
model_parameters(model, as_draws = FALSE, verbose = TRUE, ...)

## S3 method for class 'brmsfit'
model_parameters(
  model,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = "pd",
  rope_range = "default",
  rope_ci = 0.95,
  bf_prior = NULL,
  diagnostic = c("ESS", "Rhat"),
  priors = FALSE,
  effects = "fixed",
  component = "all",
)
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

## S3 method for class 'draws'
model_parameters(
  model,
  centrality = "median",
dispersion = FALSE,
  ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

## S3 method for class 'stanreg'
model_parameters(
  model,
  centrality = "median",
dispersion = FALSE,
  ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
effects = "fixed",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
Arguments

**model**
Bayesian model (including SEM from **blavaan**. May also be a data frame with posterior samples, however, `as_draws` must be set to `TRUE` (else, for data frames `NULL` is returned).

**centrality**
The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" (see `map_estimate()`), "trimmed" (which is just `mean(x, trim = threshold)`), "mode" or "all".

**dispersion**
Logical, if `TRUE`, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively). Dispersion is not available for "MAP" or "mode" centrality indices.

**ci**
Credible Interval (CI) level. Default to 0.95 (95%). See `bayestestR::ci()` for further details.

**ci_method**
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details. When `ci_method=NULL`, in most cases "wald" is used then.

**test**
The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding `bayestestR` function is called (e.g. `rope()` or `p_direction()`) and its results included in the summary output.

**rope_range**
ROPE's lower and higher bounds. Should be a list of two values (e.g., `c(-0.1, 0.1)`) or "default". If "default", the bounds are set to `x ± 0.1*SD(response)`.

**rope_ci**
The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.

**bf_prior**
Distribution representing a prior for the computation of Bayes factors / SI. Used if the input is a posterior, otherwise (in the case of models) ignored.

**diagnostic**
Diagnostic metrics to compute. Character (vector) or list with one or more of these options: "ESS", "Rhat", "MCSE" or "all".

**priors**
Add the prior used for each parameter.

**keep**
Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter
components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

- **drop**
  - See keep.
  - Currently not used.

- **verbose**
  - Toggle messages and warnings.
  - ... Currently not used.

- **as_draws**
  - Logical, if TRUE and model is of class data.frame, the data frame is treated as posterior samples and handled similar to Bayesian models. All arguments in ... are passed to `model_parameters.draws()`.

- **effects**
  - Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.

- **component**
  - Which type of parameters to return, such as parameters for the conditional model, the zero-inflation part of the model, the dispersion term, or other auxiliary parameters be returned? Applies to models with zero-inflation and/or dispersion formula, or if parameters such as sigma should be included. May be abbreviated. Note that the conditional component is also called count or mean component, depending on the model. There are three convenient shortcuts: component = "all" returns all possible parameters. If component = "location", location parameters such as conditional, zero_inflated, or smooth_terms, are returned (everything that are fixed or random effects - depending on the effects argument - but no auxiliary parameters). For component = "distributional" (or "auxiliary"), components like sigma, dispersion, or beta (and other auxiliary parameters) are returned.

- **exponentiate**
  - Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

- **standardize**
  - The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`. **Importantly:**
    - The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with `datawizard::standardize(force=TRUE) before fitting the model.
    - For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

`group_level` Logical, for multilevel models (i.e. models with random effects) and when effects = "all" or effects = "random", include the parameters for each group level from random effects. If group_level = FALSE (the default), only information on SD and COR are shown.

**Value**

A data frame of indices related to the model’s parameters.

### Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The ci_method argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

**Classical methods:**

Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

- **"wald"**
  - Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

- **"normal"**
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

- **"residual"**
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

**Methods for mixed models:**

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

- **"satterthwaite"**
  - Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.
"kenward"

- Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See ci_ml1().

"betwithin"

- Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a \( \chi^2 \)-squared distribution to compute CIs and p-values.

"profile"

- Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

- Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"
• Applies to **all models (including Bayesian models)**. For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as **highest density intervals** for the bootstrap or posterior samples; p-values are based on the **probability of direction**. See `bayestestR::hdi()`.

"bci" (or "bcai")

• Applies to **all models (including Bayesian models)**. For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as **bias corrected and accelerated intervals** for the bootstrap or posterior samples; p-values are based on the **probability of direction**. See `bayestestR::bci()`.

"si"

• Applies to **Bayesian models** with proper priors. CIs computed as **support intervals** comparing the posterior samples against the prior samples; p-values are based on the **probability of direction**. See `bayestestR::si()`.

"boot"

• Applies to **non-Bayesian models** of class `merMod`. CIs computed using **parametric bootstrapping** (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (`bayestestR::p_direction()`), which is converted into a p-value using `bayestestR::pd_to_p()`.

**Note**

When `standardize = "refit"`, columns `diagnostic`, `bf_prior` and `priors` refer to the original model. If `model` is a data frame, arguments `diagnostic`, `bf_prior` and `priors` are ignored.

There is also a `plot()`-method implemented in the `see-package`.

**See Also**

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

**Examples**

```r
library(parameters)
if (require("rstanarm")) {
 model <- suppressWarnings(stan_glm(
 Sepal.Length ~ Petal.Length * Species,
 data = iris, iter = 500, refresh = 0
))
 model_parameters(model)
}
```
model_parameters.mipo  Parameters from multiply imputed repeated analyses

Description

Format models of class mira, obtained from mice::width.mids(), or of class mipo.

Usage

```r
S3 method for class 'mira'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'mipo'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- `model`: An object of class mira or mipo.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).
- `exponentiate`: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate
model_parameters.mipo

= "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.

Details

model_parameters() for objects of class mira works similar to summary(mice::pool()), i.e. it generates the pooled summary of multiple imputed repeated regression analyses.

Examples

library(parameters)
if (require("mice", quietly = TRUE)) {
  data(nhanes2)
  imp <- mice(nhanes2)
  fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
  model_parameters(fit)
}

# model_parameters() also works for models that have no "tidy"-method in mice
if (require("mice", quietly = TRUE) && require("gee", quietly = TRUE)) {
  data(warpbreaks)
  set.seed(1234)
  warpbreaks$tension[sample(1:nrow(warpbreaks), size = 10)] <- NA
  imp <- mice(warpbreaks)
  fit <- with(data = imp, expr = gee(breaks ~ tension, id = wool))
}
model_parameters.PCA

Parameters from PCA, FA, CFA, SEM

Description

Format structural models from the psych or FactoMineR packages.

Usage

```r
S3 method for class 'PCA'
model_parameters(
 model,
 sort = FALSE,
 threshold = NULL,
 labels = NULL,
 verbose = TRUE,
 ...
)
```

```r
S3 method for class 'lavaan'
model_parameters(
 model,
 ci = 0.95,
 standardize = FALSE,
 component = c("regression", "correlation", "loading", "defined"),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)
```
## S3 method for class 'principal'

```r
model_parameters(
 model,
 sort = FALSE,
 threshold = NULL,
 labels = NULL,
 verbose = TRUE,
 ...
)
```

### Arguments

- **model**: Model object.
- **sort**: Sort the loadings.
- **threshold**: A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).
- **labels**: A character vector containing labels to be added to the loadings data. Usually, the question related to the item.
- **verbose**: Toggle warnings and messages.
- **...**: Arguments passed to or from other methods.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **standardize**: Return standardized parameters (standardized coefficients). Can be TRUE (or "all" or "std.all") for standardized estimates based on both the variances of observed and latent variables; "latent" (or "std.lv") for standardized estimates based on the variances of the latent variables only; or "no_exogenous" (or "std.nox") for standardized estimates based on both the variances of observed and latent variables, but not the variances of exogenous covariates. See lavaan::standardizedsolution for details.
- **component**: What type of links to return. Can be "all" or some of c("regression", "correlation", "loading", "variance", "mean").
- **keep**: Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter
components, like in `model_parameters.lavaan()`.
Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop
See keep.

Details

For the structural models obtained with `psych`, the following indices are present:

- **Complexity** (Hoffman’s, 1978; Pettersson and Turkheimer, 2010) represents the number of latent components needed to account for the observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would only load on one factor, a solution with evenly distributed items has a complexity greater than 1.

- **Uniqueness** represents the variance that is ‘unique’ to the variable and not shared with other variables. It is equal to 1 - communality (variance that is shared with other variables). A uniqueness of $0.20$ suggests that $20\%$ of that variable’s variance is not shared with other variables in the overall factor model. The greater ‘uniqueness’ the lower the relevance of the variable in the factor model.

- **MSA** represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974) for each item. It indicates whether there is enough data for each factor give reliable results for the PCA. The value should be $> 0.6$, and desirable values are $> 0.8$ (Tabachnick and Fidell, 2013).

Value

A data frame of indices or loadings.

Note

There is also a `plot()`-method for lavaan models implemented in the `see`-package.

References

Examples

```r
library(parameters)
if (require("psych", quietly = TRUE)) {
 # Principal Component Analysis (PCA) ---------
 pca <- psych::principal(attitude)
 model_parameters(pca)

 pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
 model_parameters(pca, sort = TRUE, threshold = 0.2)

 principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)

 # Exploratory Factor Analysis (EFA) ---------
 efa <- psych::fa(attitude, nfactors = 3)
 model_parameters(efa,
 threshold = "max", sort = TRUE,
 labels = as.character(1:ncol(attitude))
)

 # Omega ---------
 omega <- psych::omega(mtcars, nfactors = 3)
 params <- model_parameters(omega)
 summary(params)
}

lavaan
library(parameters)

lavaan -------------------------------------
if (require("lavaan", quietly = TRUE)) {
 # Confirmatory Factor Analysis (CFA) ---------

 structure <- " visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9 "
 model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
 model_parameters(model)
 model_parameters(model, standardize = TRUE)

 # filter parameters
 model_parameters(
 model,
 parameters = list(
 To = "^?!visual",
 From = "^?!(x7|x8)"
)
)
}
```
# Structural Equation Model (SEM) ------------

structure <- "
  # latent variable definitions
  ind60 =~ x1 + x2 + x3
  dem60 =~ y1 + a*y2 + b*y3 + c*y4
  dem65 =~ y5 + a*y6 + b*y7 + c*y8
  # regressions
  dem60 ~ ind60
  dem65 ~ ind60 + dem60
  # residual correlations
  y1 ~~ y5
  y2 ~~ y4 + y6
  y3 ~~ y7
  y4 ~~ y8
  y6 ~~ y8
"

model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)

model_parameters.rma  

## S3 method for class 'rma'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  include_studies = TRUE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

---

Parameters from Meta-Analysis

Description

Extract and compute indices and measures to describe parameters of meta-analysis models.

Usage

## S3 method for class 'rma'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  include_studies = TRUE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
Arguments

model: Model object.
ci: Confidence Interval (CI) level. Default to 0.95 (95%).
bootstrap: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
iterations: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
standardize: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`.

Importantly:
- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with `datawizard::standardize(force=TRUE)` before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata. But these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

include_studies: Logical, if TRUE (default), includes parameters for all studies. Else, only parameters for overall-effects are shown.

keep: Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter
components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the `$Parameter` column of the parameters table to get the exact parameter names.

- **drop**
  - See `keep`.

- **verbose**
  - Toggle warnings and messages.

- **...**
  - Arguments passed to or from other methods. For instance, when `bootstrap = TRUE`, arguments like `type` or `parallel` are passed down to `bootstrap_model()`.

### Value

A data frame of indices related to the model’s parameters.

### Examples

```r
library(parameters)
mydat <<- data.frame(
effectsize = c(-0.393, 0.675, 0.282, -1.398),
stderr = c(0.317, 0.317, 0.13, 0.36)
)
if (require("metafor", quietly = TRUE)) {
 model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
 model_parameters(model)
}

with subgroups
if (require("metafor", quietly = TRUE)) {
 data(dat.bcg)
 dat <- escalc(
 measure = "RR",
 ai = tpos,
 bi = tneg,
 ci = cpos,
 di = cneg,
 data = dat.bcg
)
 dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
 d <<- dat
 model <- rma(yi, vi, mods = ~alloc, data = d, digits = 3, slab = author)
 model_parameters(model)
}

if (require("metaBMA", quietly = TRUE)) {
 data(towels)
 m <- suppressWarnings(meta_random(logOR, SE, study, data = towels))
 model_parameters(m)
}
```
Description
Parameters from robust statistical objects in WRS2

Usage
## S3 method for class 't1way'
model_parameters(model, keep = NULL, verbose = TRUE, ...)

Arguments
model Object from WRS2 package.
keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.
verbose Toggle warnings and messages.
... Arguments passed to or from other methods.

Value
A data frame of indices related to the model’s parameters.

Examples
if (require("WRS2") && packageVersion("WRS2") >= "1.1.3") {
  model <- t1way(libido ~ dose, data = viagra)
  model_parameters(model)
}
Parameters from Zero-Inflated Models

Description

Parameters from zero-inflated models (from packages like pscl, cplm or countreg).

Usage

```r
S3 method for class 'zcpglm'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "zi", "zero_inflated"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 summary = getOption("parameters_summary", FALSE),
 verbose = TRUE,
 ...
)

S3 method for class 'mhurdle'
model_parameters(
 model,
 ci = 0.95,
 component = c("all", "conditional", "zi", "zero_inflated", "infrequent_purchase", "ip", "auxiliary"),
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- **model**: A model with zero-inflation component.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).
iterations  The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

component  Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. Component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

standardize  The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Importantly:

  • The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). to mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
  • For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
  • Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate  Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust  Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

keep  Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter
n_clusters

components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

Drop

See keep.

Summary

Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

Verbose

Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value

A data frame of indices related to the model’s parameters.

See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

Examples

```r
library(parameters)
if (require("pscl")) {
 data("bioChemists")
 model <- zeroinfl(art ~ fem + mar + kid5 + ment | kid5 + phd, data = bioChemists)
 model_parameters(model)
}
```

---

n_clusters

Find number of clusters in your data

Description

Similarly to `n_factors()` for factor / principal component analysis, `n_clusters()` is the main function to find out the optimal numbers of clusters present in the data based on the maximum consensus of a large number of methods.

Essentially, there exist many methods to determine the optimal number of clusters, each with pros and cons, benefits and limitations. The main `n_clusters` function proposes to run all of them, and find out the number of clusters that is suggested by the majority of methods (in case of ties, it will select the most parsimonious solution with fewer clusters).

Note that we also implement some specific, commonly used methods, like the Elbow or the Gap method, with their own visualization functionalities. See the examples below for more details.
**Usage**

```
n_clusters(
 x,
 standardize = TRUE,
 include_factors = FALSE,
 package = c("easystats", "NbClust", "mclust"),
 fast = TRUE,
 nbclust_method = "kmeans",
 n_max = 10,
 ...
)
```

```
n_clusters_elbow(
 x,
 standardize = TRUE,
 include_factors = FALSE,
 clustering_function = stats::kmeans,
 n_max = 10,
 ...
)
```

```
n_clusters_gap(
 x,
 standardize = TRUE,
 include_factors = FALSE,
 clustering_function = stats::kmeans,
 n_max = 10,
 gap_method = "firstSEmax",
 ...
)
```

```
n_clusters_silhouette(
 x,
 standardize = TRUE,
 include_factors = FALSE,
 clustering_function = stats::kmeans,
 n_max = 10,
 ...
)
```

```
n_clusters_dbscan(
 x,
 standardize = TRUE,
 include_factors = FALSE,
 method = c("kNN", "SS"),
 min_size = 0.1,
 eps_n = 50,
 eps_range = c(0.1, 3),
 ...
)
```
n_clusters_hclust(
    x,
    standardize = TRUE,
    include_factors = FALSE,
    distance_method = "correlation",
    hclust_method = "average",
    ci = 0.95,
    iterations = 100,
    ...
)

Arguments

- **x**: A data frame.
- **standardize**: Standardize the dataframe before clustering (default).
- **include_factors**: Logical, if TRUE, factors are converted to numerical values in order to be included in the data for determining the number of clusters. By default, factors are removed, because most methods that determine the number of clusters need numeric input only.
- **package**: Package from which methods are to be called to determine the number of clusters. Can be “all” or a vector containing “easystats”, “NbClust”, “mclust”, and “M3C”.
- **fast**: If FALSE, will compute 4 more indices (sets index = "allong" in NbClust). This has been deactivated by default as it is computationally heavy.
- **nbclust_method**: The clustering method (passed to NbClust::NbClust() as method).
- **n_max**: Maximal number of clusters to test.
- **...**: Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().
- **clustering_function**, **gap_method**: Other arguments passed to other functions. clustering_function is used by fviz_nbclust() and can be kmeans, cluster::pam, cluster::clara, cluster::fanny, and more. gap_method is used by cluster::maxSE to extract the optimal numbers of clusters (see its method argument).
- **method**, **min_size**, **eps_n**, **eps_range**: Arguments for DBSCAN algorithm.
- **distance_method**: The distance method (passed to dist()). Used by algorithms relying on the distance matrix, such as hclust or dbscan.
- **hclust_method**: The hierarchical clustering method (passed to hclust()).
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
**n_clusters**

**Note**

There is also a `plot()`-method implemented in the `see-package`.

**Examples**

```r
library(parameters)

The main 'n_clusters' function ===============================
if (require("mclust", quietly = TRUE) && require("NbClust", quietly = TRUE) &&
 require("cluster", quietly = TRUE) && require("see", quietly = TRUE)) {
 n <- n_clusters(iris[, 1:4], package = c("NbClust", "mclust")) # package can be "all"
 n
 summary(n)
 as.data.frame(n) # Duration is the time elapsed for each method in seconds
 plot(n)

 # The following runs all the method but it significantly slower
 # n_clusters(iris[1:4], standardize = FALSE, package = "all", fast = FALSE)
}

x <- n_clusters_elbow(iris[1:4])
x
as.data.frame(x)
plot(x)

Gap method -------------------
if (require("see", quietly = TRUE) &&
 require("cluster", quietly = TRUE) &&
 require("factoextra", quietly = TRUE)) {
 x <- n_clusters_gap(iris[1:4])
x
 as.data.frame(x)
 plot(x)
}

Silhouette method -----------------------
if (require("factoextra", quietly = TRUE)) {
 x <- n_clusters_silhouette(iris[1:4])
x
 as.data.frame(x)
 plot(x)
}
```

if (require("dbscan", quietly = TRUE)) {
  # DBSCAN method --------------
  # NOTE: This actually primarily estimates the 'eps' parameter, the number of
  # clusters is a side effect (it's the number of clusters corresponding to
  # this 'optimal' EPS parameter).
  x <- n_clusters_dbscan(iris[1:4], method = "kNN", min_size = 0.05) # 5 percent
  head(as.data.frame(x))
  plot(x)

  x <- n_clusters_dbscan(iris[1:4], method = "SS", eps_n = 100, eps_range = c(0.1, 2))
  head(as.data.frame(x))
  plot(x)
}

if (require("pvclust", quietly = TRUE)) {
  # hclust method ----------------
  x <- n_clusters_hclust(iris[1:4], iterations = 50, ci = 0.9)
  head(as.data.frame(x), n = 10) # Print 10 first rows
  plot(x)
}

---

n_factors  
---

**Number of components/factors to retain in PCA/FA**

**Description**

This function runs many existing procedures for determining how many factors to retain/extract from factor analysis (FA) or dimension reduction (PCA). It returns the number of factors based on the maximum consensus between methods. In case of ties, it will keep the simplest model and select the solution with the fewer factors.

**Usage**

```r
n_factors(
 x,
 type = "FA",
 rotation = "varimax",
 algorithm = "default",
 package = c("nFactors", "psych"),
 cor = NULL,
 safe = TRUE,
 n_max = NULL,
)```

\textit{n_factors}

...)

n_components(
 x,
 type = "PCA",
 rotation = "varimax",
 algorithm = "default",
 package = c("nFactors", "psych"),
 cor = NULL,
 safe = TRUE,
...
)

Arguments

- **x**: A data frame.
- **type**: Can be "FA" or "PCA", depending on what you want to do.
- **rotation**: Only used for VSS (Very Simple Structure criterion, see \texttt{psych::VSS()}). The rotation to apply. Can be "none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor" for orthogonal rotations, and "promax", "oblimin", "simplimax", "bentlerQ", "geominQ", "biquartimin" and "cluster" for oblique transformations.
- **algorithm**: Factoring method used by VSS. Can be "pa" for Principal Axis Factor Analysis, "minres" for minimum residual (OLS) factoring, "mle" for Maximum Likelihood FA and "pc" for Principal Components. "default" will select "minres" if type = "FA" and "pc" if type = "PCA".
- **package**: Package from which respective methods are used. Can be "all" or a vector containing "nFactors", "psych", "PCDimension", "fit" or "EGA\texttt{net}". Note that "fit" (which actually also relies on the \texttt{psych} package) and "EGA\texttt{net}" can be very slow for bigger datasets. Thus, the default is \texttt{c("nFactors", "psych")}. You must have the respective packages installed for the methods to be used.
- **cor**: An optional correlation matrix that can be used (note that the data must still be passed as the first argument). If NULL, will compute it by running \texttt{cor()} on the passed data.
- **safe**: If TRUE, the function will run all the procedures in try blocks, and will only return those that work and silently skip the ones that may fail.
- **n_max**: If set to a value (e.g., 10), will drop from the results all methods that suggest a higher number of components. The interpretation becomes 'from all the methods that suggested a number lower than n_max, the results are ...'.

... Arguments passed to or from other methods.

Details

\texttt{n_components()} is actually an alias for \texttt{n_factors()}, with different defaults for the function arguments.
Value

A data frame.

Note

There is also a `plot()`-method implemented in the `see-package`. `n_components()` is a convenient short-cut for `n_factors(type = "PCA")`.

References

Examples

```r
library(parameters)
n_factors(mtcars, type = "PCA")
result <- n_factors(mtcars[1:5], type = "FA")
as.data.frame(result)
```
summary(result)

Setting package = 'all' will increase the number of methods (but is slow)
n_factors(mtcars, type = "PCA", package = "all")
n_factors(mtcars, type = "FA", algorithm = "mle", package = "all")

parameters_type

<table>
<thead>
<tr>
<th>parameters_type</th>
<th>Type of model parameters</th>
</tr>
</thead>
</table>

Description

In a regression model, the parameters do not all have the meaning. For instance, the intercept has to be interpreted as theoretical outcome value under some conditions (when predictors are set to 0), whereas other coefficients are to be interpreted as amounts of change. Others, such as interactions, represent changes in another of the parameter. The params type function attempts to retrieve information and meaning of parameters. It outputs a dataframe of information for each parameters, such as the Type (whether the parameter corresponds to a factor or a numeric predictor, or whether it is a (regular) interaction or a nested one), the Link (whether the parameter can be interpreted as a mean value, the slope of an association or a difference between two levels) and, in the case of interactions, which other parameters is impacted by which parameter.

Usage

parameters_type(model, ...)

Arguments

model A statistical model.
... Arguments passed to or from other methods.

Value

A data frame.

Examples

library(parameters)

model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
parameters_type(model)
Interactions
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Sepal.Width * Species * Petal.Length, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / Sepal.Width, data = iris)
parameters_type(model)

Complex interactions
data <- iris
data$fac2 <- ifelse(data$Sepal.Width > mean(data$Sepal.Width), "A", "B")
model <- lm(Sepal.Length ~ Species / fac2 / Petal.Length, data = data)
parameters_type(model)

model <- lm(Sepal.Length ~ Species / fac2 * Petal.Length, data = data)
parameters_type(model)

pool_parameters | Pool Model Parameters

Description

This function "pools" (i.e. combines) model parameters in a similar fashion as `mice::pool()`. However, this function pools parameters from `parameters_model` objects, as returned by `model_parameters()`.

Usage

```r
pool_parameters(
  x,  
  exponentiate = FALSE,  
  effects = "fixed",  
  component = "conditional",  
  verbose = TRUE,  
  ...
)
```

Arguments

- **x**
 A list of `parameters_model` objects, as returned by `model_parameters()`, or a list of model-objects that is supported by `model_parameters()`.

- **exponentiate**
 Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.

effects

Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use `effects = "fixed"`.

component

Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. `component` may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

verbose

Toggle warnings and messages.

...

Arguments passed down to `model_parameters()`, if `x` is a list of model-objects. Can be used, for instance, to specify arguments like `ci` or `ci_method` etc.

Details

Averaging of parameters follows Rubin’s rules (*Rubin, 1987, p. 76*). The pooled degrees of freedom is based on the Barnard-Rubin adjustment for small samples (*Barnard and Rubin, 1999*).

Value

A data frame of indices related to the model’s parameters.

Note

Models with multiple components, (for instance, models with zero-inflation, where predictors appear in the count and zero-inflation part) may fail in case of identical names for coefficients in the different model components, since the coefficient table is grouped by coefficient names for pooling. In such cases, coefficients of count and zero-inflation model parts would be combined. Therefore, the `component` argument defaults to "conditional" to avoid this.

Some model objects do not return standard errors (e.g. objects of class `htest`). For these models, no pooled confidence intervals nor p-values are returned.

References

Examples

example for multiple imputed datasets
data("nhanes2", package = "mice")
imp <- mice::mice(nhanes2, printFlag = FALSE)
models <- lapply(1:5, function(i) {
 lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
})
pool_parameters(models)

should be identical to:
m <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
summary(mice::pool(m))

For glm, mice used residual df, while `pool_parameters()` uses `Inf`
nhanes2$hyp <- datawizard::slide(as.numeric(nhanes2$hyp))
imp <- mice::mice(nhanes2, printFlag = FALSE)
models <- lapply(1:5, function(i) {
 glm(hyp ~ age + chl, family = binomial, data = mice::complete(imp, action = i))
})
m <- with(data = imp, exp = glm(hyp ~ age + chl, family = binomial))
residual df
summary(mice::pool(m))$df
df = Inf
pool_parameters(models)$df_error
use residual df instead
pool_parameters(models, ci_method = "residual")$df_error

predict.parameters_clusters

Predict method for parameters_clusters objects

Description

Predict method for parameters_clusters objects

Usage

S3 method for class 'parameters_clusters'
predict(object, newdata = NULL, names = NULL, ...)

Arguments

object a model object for which prediction is desired.
newdata data.frame
names character vector or list
... additional arguments affecting the predictions produced.
Calculate calibrated p-values.

Description

Compute calibrated p-values that can be interpreted probabilistically, i.e. as posterior probability of H0 (given that H0 and H1 have equal prior probabilities).

Usage

p_calibrate(x, ...)

Default S3 method:
p_calibrate(x, type = "frequentist", verbose = TRUE, ...)

Arguments

x A numeric vector of p-values, or a regression model object.
... Currently not used.
type Type of calibration. Can be "frequentist" or "bayesian". See 'Details'.
verbose Toggle warnings.

Details

The Bayesian calibration, i.e. when type = "bayesian", can be interpreted as the lower bound of the Bayes factor for H0 to H1, based on the data. The full Bayes factor would then require multiplying by the prior odds of H0 to H1. The frequentist calibration also has a Bayesian interpretation; it is the posterior probability of H0, assuming that H0 and H1 have equal prior probabilities of 0.5 each (Sellke et al. 2001).

The calibration only works for p-values lower than or equal to 1/e.

Value

A data frame with p-values and calibrated p-values.

References

Examples

model <- lm(mpg ~ wt + as.factor(gear) + am, data = mtcars)
p_calibrate(model, verbose = FALSE)
Description

Compute p-values and compatibility (confidence) intervals for statistical models, at different levels. This function is also called consonance function. It allows to see which estimates are compatible with the model at various compatibility levels. Use `plot()` to generate plots of the p resp. consonance function and compatibility intervals at different levels.

Usage

```r
p_function(
  model,
  ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
  exponentiate = FALSE,
  effects = "fixed",
  component = "all",
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
```

```r
consonance_function(
  model,
  ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
  exponentiate = FALSE,
  effects = "fixed",
  component = "all",
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
```

```r
confidence_curve(
  model,
  ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
  exponentiate = FALSE,
  effects = "fixed",
  component = "all",
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
```
Arguments

model Statistical Model.

ci_levels Vector of scalars, indicating the different levels at which compatibility intervals should be printed or plotted. In plots, these levels are highlighted by vertical lines. It is possible to increase thickness for one or more of these lines by providing a names vector, where the to be highlighted values should be named "emph", e.g. `ci_levels = c(0.25, 0.5, emph = 0.95)`.

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use `exponentiate = TRUE` for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use `effects = "fixed"`.

component Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. `component` may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If `keep` is a character vector, every parameter name in the "Parameter" column that matches the regular expression in `keep` will be selected from the returned data frame (and vice versa, all parameter names matching `drop` will be excluded). Furthermore, if `keep` has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If `keep` is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See `keep`.

verbose Toggle warnings and messages.
...Arguments passed to or from other methods. Non-documented arguments are
digits, p_digits, ci_digits and footer_digits to set the number of digits
for the output. If s_value = TRUE, the p-value will be replaced by the S-value
in the output (cf. Rafi and Greenland 2020). pd adds an additional column with the
probability of direction (see bayestestR::p_direction() for details). groups
can be used to group coefficients. It will be passed to the print-method, or can
directly be used in print(), see documentation in print.parameters_model().
Furthermore, see 'Examples' in model_parameters.default(). For developers,
whose interest mainly is to get a "tidy" data frame of model summaries, it
is recommended to set pretty_names = FALSE to speed up computation of the
summary table.

Details

Compatibility intervals and continuous p-values for different estimate values:
p_function() only returns the compatibility interval estimates, not the related p-values. The
reason for this is because the p-value for a given estimate value is just 1 - CI_level. The values
indicating the lower and upper limits of the intervals are the related estimates associated with the
p-value. E.g., if a parameter x has a 75% compatibility interval of (0.81, 1.05), then the p-
value for the estimate value of 0.81 would be 1 - 0.75, which is 0.25. This relationship is more
intuitive and better to understand when looking at the plots (using plot()).

Conditional versus unconditional interpretation of p-values and intervals:
p_function(), and in particular its plot() method, aims at re-interpreting p-values and con-
fidence intervals (better named: compatibility intervals) in unconditional terms. Instead of refer-
ing to the long-term property and repeated trials when interpreting interval estimates (so-called
"aleatory probability", Schweder 2018), and assuming that all underlying assumptions are cor-
rect and met, p_function() interprets p-values in a Fisherian way as "continuous measure of
evidence against the very test hypothesis and entire model (all assumptions) used to compute it"
(P-Values Are Tough and S-Values Can Help, lesslikely.com/statistics/s-values; see also
Amrhein and Greenland 2022).

This interpretation as a continuous measure of evidence against the test hypothesis and the entire
model used to compute it can be seen in the figure below (taken from P-Values Are Tough and S-
Values Can Help, lesslikely.com/statistics/s-values). The "conditional" interpretation of p-values
and interval estimates (A) implicitly assumes certain assumptions to be true, thus the interpretation
is "conditioned" on these assumptions (i.e. assumptions are taken as given). The unconditional
interpretation (B), however, questions all these assumptions.

"Emphasizing unconditional interpretations helps avoid overconfident and misleading inferences
in light of uncertainties about the assumptions used to arrive at the statistical results." (Greenland
et al. 2022).

Note: The term "conditional" as used by Rafi and Greenland probably has a slightly different
meaning than normally. "Conditional" in this notion means that all model assumptions are taken
as given - it should not be confused with terms like "conditional probability". See also Greenland
et al. 2022 for a detailed elaboration on this issue.

In other words, the term compatibility interval emphasizes "the dependence of the p-value on the
assumptions as well as on the data, recognizing that p<0.05 can arise from assumption violations
even if the effect under study is null" (Gelman/Greenland 2019).
Probabilistic interpretation of compatibility intervals:
Schweder (2018) resp. Schweder and Hjort (2016) (and others) argue that confidence curves (as produced by `p_function()`) have a valid probabilistic interpretation. They distinguish between aleatory probability, which describes the aleatory stochastic element of a distribution ex ante, i.e. before the data are obtained. This is the classical interpretation of confidence intervals following the Neyman-Pearson school of statistics. However, there is also an ex post probability, called epistemic probability, for confidence curves. The shift in terminology from confidence intervals to compatibility intervals may help emphasizing this interpretation.

In this sense, the probabilistic interpretation of p-values and compatibility intervals is "conditional" - on the data and model assumptions (which is in line with the "unconditional" interpretation in the sense of Rafi and Greenland).

Ascribing a probabilistic interpretation to one realized confidence interval is possible without repeated sampling of the specific experiment. Important is the assumption that a sampling distribution is a good description of the variability of the parameter (Vos and Holbert 2022). At the core, the interpretation of a confidence interval is "I assume that this sampling distribution is a good description of the uncertainty of the parameter. If that’s a good assumption, then the values in this interval are the most plausible or compatible with the data". The source of confidence in probability statements is the assumption that the selected sampling distribution is appropriate.

"The realized confidence distribution is clearly an epistemic probability distribution" (Schweder 2018). In Bayesian words, compatibility intervals (or confidence distributions, or consonance curves) are "posteriors without priors" (Schweder, Hjort, 2003). In this regard, interpretation of p-values might be guided using `bayestestR::p_to_pd()`.

Compatibility intervals - is their interpretation conditional or not?:
The fact that the term "conditional" is used in different meanings, is confusing and unfortunate. Thus, we would summarize the probabilistic interpretation of compatibility intervals as follows: The intervals are built from the data and our modeling assumptions. The accuracy of the intervals depends on our model assumptions. If a value is outside the interval, that might be because (1) that parameter value isn’t supported by the data, or (2) the modeling assumptions are a poor fit for the situation. When we make bad assumptions, the compatibility interval might be too wide or (more commonly and seriously) too narrow, making us think we know more about the parameter than is warranted.

When we say "there is a 95% chance the true value is in the interval", that is a statement of epistemic probability (i.e. description of uncertainty related to our knowledge or belief). When we talk about repeated samples or sampling distributions, that is referring to aleatoric (physical properties) probability. Frequentist inference is built on defining estimators with known aleatoric probability properties, from which we can draw epistemic probabilistic statements of uncertainty (Schweder and Hjort 2016).

Value
A data frame with p-values and compatibility intervals.

Note
Currently, `p_function()` computes intervals based on Wald t- or z-statistic. For certain models (like mixed models), profiled intervals may be more accurate, however, this is currently not supported.
References

- Gelman A, Greenland S. Are confidence intervals better termed "uncertainty intervals"? BMJ (2019)5381. doi:10.1136/bmj.15381

Examples

```r
model <- lm(Sepal.Length ~ Species, data = iris)
p_function(model)

model <- lm(mpg ~ wt + as.factor(gear) + am, data = mtcars)
result <- p_function(model)

# single panels
plot(result, n_columns = 2)

# integrated plot, the default
plot(result)
```
p_value

p_value

- **p-values**

Description

This function attempts to return, or compute, p-values of a model’s parameters. See the documentation for your object’s class:

- **Bayesian models** (*rstanarm*, *brms*, *MCMCglmm*, ...)
- **Zero-inflated models** (*hurdle*, *zeroinfl*, *zerocount*, ...)
- **Marginal effects models** (*mfx*)
- **Models with special components** (*DirichletRegModel*, *clm2*, *cgam*, ...)

Usage

```r
p_value(model, ...)  
```

Default S3 method:

```r
p_value(  
  model,  
  dof = NULL,  
  method = NULL,  
  component = "all",  
  vcov = NULL,  
  vcov_args = NULL,  
  verbose = TRUE,  
  ...)  
)
```

S3 method for class 'emmGrid'

```r
p_value(model, ci = 0.95, adjust = "none", ...)
```

Arguments

- **model**
 - A statistical model.
- **...**
 - Additional arguments
- **dof**
 - Number of degrees of freedom to be used when calculating confidence intervals. If `NULL` (default), the degrees of freedom are retrieved by calling `degrees_of_freedom()` with approximation method defined in `method`. If not `NULL`, use this argument to override the default degrees of freedom used to compute confidence intervals.
- **method**
 - Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "m1l", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details.
component
Model component for which parameters should be shown. See the documentation for your object's class in `model_parameters()` or `p_value()` for further details.

vcov
Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `sandwich::vcovHC`.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See `sandwich::vcovBS`.
 - Other `sandwich` package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args
List of arguments to be passed to the function identified by the `vcov` argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., `?sandwich::vcovHAC`) to see the list of available arguments.

verbose
Toggle warnings and messages.

ci
Confidence Interval (CI) level. Default to 0.95 (95%).

adjust
Character value naming the method used to adjust p-values or confidence intervals. See `?emmeans::summary.emmGrid` for details.

Value
A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.

Confidence intervals and approximation of degrees of freedom
There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:
Classical inference is generally based on the Wald method. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":
• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"

• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with ml1 approximated df); p-values computed using the Wald method with a t-distribution with ml1 approximated df. See ci_ml1().

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ²-squared distribution to compute CIs and p-values.

"profile"
• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution) (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi","quantile","ci","eti","si","bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().
Examples

data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)
Description

This function attempts to return, or compute, p-values of models with special model components.

Usage

```r
## S3 method for class 'DirichletRegModel'
p_value(model, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'averaging'
p_value(model, component = c("conditional", "full"), ...)

## S3 method for class 'betareg'
p_value(model,
    component = c("all", "conditional", "precision"),
    verbose = TRUE,
    ...
)

## S3 method for class 'cgam'
p_value(model, component = c("all", "conditional", "smooth_terms"), ...)

## S3 method for class 'clm2'
p_value(model, component = c("all", "conditional", "scale"), ...)
```

Arguments

- **model**: A statistical model.
- **component**: Should all parameters, parameters for the conditional model, precision- or scale-component or smooth_terms be returned? component may be one of "conditional", "precision", "scale", "smooth_terms", "full" or "all" (default).
- **...**: Additional arguments
- **verbose**: Toggle warnings and messages.

Value

The p-values.
p_value.poissonmfx

p-values for Marginal Effects Models

Description

This function attempts to return, or compute, p-values of marginal effects models from package mfx.

Usage

```r
## S3 method for class 'poissonmfx'
p_value(model, component = c("all", "conditional", "marginal"), ...)

## S3 method for class 'betaor'
p_value(model, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'betamfx'
p_value(
  model,
  component = c("all", "conditional", "precision", "marginal"),
  ...
)
```

Arguments

- `model` A statistical model.
- `component` Should all parameters, parameters for the conditional model, precision-component or marginal effects be returned? `component` may be one of "conditional", "precision", "marginal" or "all" (default).
- `...` Currently not used.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.

Examples

```r
if (require("mfx", quietly = TRUE)) {
  set.seed(12345)
  n <- 1000
  x <- rnorm(n)
  y <- rnegbin(n, mu = exp(1 + 0.5 * x), theta = 0.5)
  d <- data.frame(y, x)
  model <- poissonmfx(y ~ x, data = d)
  p_value(model)
}
p_value.zcpglm

p-value for Models with Zero-Inflation

Description

This function attempts to return, or compute, p-values of hurdle and zero-inflated models.

Usage

```r
S3 method for class 'zcpglm'
p_value(model, component = c("all", "conditional", "zi", "zero_inflated"), ...)

S3 method for class 'zeroinfl'
p_value(
 model,
 component = c("all", "conditional", "zi", "zero_inflated"),
 method = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- `model` A statistical model.
- `component` Model component for which parameters should be shown. See the documentation for your object’s class in `model_parameters()` or `p_value()` for further details.
- `...` Additional arguments
- `method` Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details.
- `verbose` Toggle warnings and messages.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.
Examples

```r
if (require("pscl", quietly = TRUE)) {
 data("bioChemists")
 model <- zeroinfl(art ~ fem + mar + kid5 | kid5 + phd, data = bioChemists)
 p_value(model)
 p_value(model, component = "zi")
}
```

---

**qol_cancer**  
**Sample data set**

**Description**

A sample data set with longitudinal data, used in the vignette describing the datawizard::demean() function. Health-related quality of life from cancer-patients was measured at three time points (pre-surgery, 6 and 12 months after surgery).

**Format**

A data frame with 564 rows and 7 variables:

- **ID**  Patient ID
- **QoL**  Quality of Life Score
- **time**  Timepoint of measurement
- **age**  Age in years
- **phq4**  Patients' Health Questionnaire, 4-item version
- **hospital**  Hospital ID, where patient was treated
- **education**  Patients' educational level

---

**random_parameters**  
**Summary information from random effects**

**Description**

This function extracts the different variance components of a mixed model and returns the result as a data frame.

**Usage**

```r
random_parameters(model, component = "conditional")
```
random_parameters

Arguments

model A mixed effects model (including \texttt{stanreg} models).

component Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

Details

The variance components are obtained from \texttt{insight::get_variance()} and are denoted as following:

**Within-group (or residual) variance:**
The residual variance, $\sigma^2$, is the sum of the distribution-specific variance and the variance due to additive dispersion. It indicates the \textit{within-group variance}.

**Between-group random intercept variance:**
The random intercept variance, or \textit{between-group} variance for the intercept ($\tau_{00}$), is obtained from \texttt{VarCorr()}. It indicates how much groups or subjects differ from each other.

**Between-group random slope variance:**
The random slope variance, or \textit{between-group} variance for the slopes ($\tau_{11}$) is obtained from \texttt{VarCorr()}. This measure is only available for mixed models with random slopes. It indicates how much groups or subjects differ from each other according to their slopes.

**Random slope-intercept correlation:**
The random slope-intercept correlation ($\rho_{01}$) is obtained from \texttt{VarCorr()}. This measure is only available for mixed models with random intercepts and slopes.

\textbf{Note:} For the within-group and between-group variance, variance and standard deviations (which are simply the square root of the variance) are shown.

Value

A data frame with random effects statistics for the variance components, including number of levels per random effect group, as well as complete observations in the model.

Examples

```r
if (require("lme4")) {
 data(sleepstudy)
 model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
 random_parameters(model)
}
```
reduce_parameters

Dimensionality reduction (DR) / Features Reduction

Description

This function performs a reduction in the parameter space (the number of variables). It starts by creating a new set of variables, based on the given method (the default method is "PCA", but other are available via the method argument, such as "cMDS", "DRR" or "ICA"). Then, it names this new dimensions using the original variables that correlates the most with it. For instance, a variable named 'V1_0.97/V4_-0.88' means that the V1 and the V4 variables correlate maximally (with respective coefficients of .97 and -.88) with this dimension. Although this function can be useful in exploratory data analysis, it’s best to perform the dimension reduction step in a separate and dedicated stage, as this is a very important process in the data analysis workflow. reduce_data() is an alias for reduce_parameters.data.frame().

Usage

reduce_parameters(x, method = "PCA", n = "max", distance = "euclidean", ...)
reduce_data(x, method = "PCA", n = "max", distance = "euclidean", ...)

Arguments

x
A data frame or a statistical model.

method
The feature reduction method. Can be one of "PCA", "cMDS", "DRR", "ICA" (see the 'Details' section).

n
Number of components to extract. If n="all", then n is set as the number of variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number of components is selected through n_factors() resp. n_components(). Else, if n is a number, n components are extracted. If n exceeds number of variables in the data, it is automatically set to the maximum number (i.e. ncol(x)). In reduce_parameters(), can also be "max", in which case it will select all the components that are maximally pseudo-loaded (i.e., correlated) by at least one variable.

distance
The distance measure to be used. Only applies when method = "cMDS". This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.

... Arguments passed to or from other methods.

Details

The different methods available are described below:

Supervised Methods:

- **PCA**: See principal_components().
• **cMDS / PCoA**: Classical Multidimensional Scaling (cMDS) takes a set of dissimilarities (i.e., a distance matrix) and returns a set of points such that the distances between the points are approximately equal to the dissimilarities.

• **DRR**: Dimensionality Reduction via Regression (DRR) is a very recent technique extending PCA (Laparra et al., 2015). Starting from a rotated PCA, it predicts redundant information from the remaining components using non-linear regression. Some of the most notable advantages of performing DRR are avoidance of multicollinearity between predictors and overfitting mitigation. DRR tends to perform well when the first principal component is enough to explain most of the variation in the predictors. Requires the DRR package to be installed.

• **ICA**: Performs an Independent Component Analysis using the FastICA algorithm. Contrary to PCA, which attempts to find uncorrelated sources (through least squares minimization), ICA attempts to find independent sources, i.e., the source space that maximizes the "non-gaussianity" of all sources. Contrary to PCA, ICA does not rank each source, which makes it a poor tool for dimensionality reduction. Requires the fastICA package to be installed.

See also package vignette.

**References**


**Examples**

```r
data(iris)
model <- lm(Sepal.Width ~ Species * Sepal.Length + Petal.Width, data = iris)
model
reduce_parameters(model)

out <- reduce_data(iris, method = "PCA", n = "max")
head(out)
```

---

**reshape_loadings**

Reshape loadings between wide/long formats

**Description**

Reshape loadings between wide/long formats.

**Usage**

```r
reshape_loadings(x, ...)
```

## S3 method for class 'parameters_efa'
reshape_loadings(x, threshold = NULL, ...) # S3 method for class 'data.frame' reshape_loadings(x, threshold = NULL, loadings_columns = NULL, ...)

Arguments

x  A data frame or a statistical model.

... Arguments passed to or from other methods.

threshold  A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).

loadings_columns  Vector indicating the columns corresponding to loadings.

Examples

if (require("psych")) {
  pca <- model_parameters(psych::fa(attitude, nfactors = 3))
  loadings <- reshape_loadings(pca)

  loadings
  reshape_loadings(loadings)
}

select_parameters  Automated selection of model parameters

Description

This function performs an automated selection of the 'best' parameters, updating and returning the "best" model.

Usage

select_parameters(model, ...) # S3 method for class 'lm'
select_parameters(model, direction = "both", steps = 1000, k = 2, ...)

# S3 method for class 'merMod'
select_parameters(model, direction = "backward", steps = 1000, ...)
select_parameters

Arguments

model A statistical model (of class lm, glm, or merMod).

... Arguments passed to or from other methods.

direction the mode of stepwise search, can be one of "both", "backward", or "forward", with a default of "both". If the scope argument is missing the default for direction is "backward". Values can be abbreviated.

steps the maximum number of steps to be considered. The default is 1000 (essentially as many as required). It is typically used to stop the process early.

k The multiple of the number of degrees of freedom used for the penalty. Only k = 2 gives the genuine AIC: k = log(n) is sometimes referred to as BIC or SBC.

Value

The model refitted with optimal number of parameters.

Classical lm and glm

For frequentist GLMs, select_parameters() performs an AIC-based stepwise selection.

Mixed models

For mixed-effects models of class merMod, stepwise selection is based on cAIC4::stepcAIC(). This step function only searches the "best" model based on the random-effects structure, i.e. select_parameters() adds or excludes random-effects until the cAIC can't be improved further.

Examples

```r
model <- lm(mpg ~ ., data = mtcars)
select_parameters(model)

model <- lm(mpg ~ cyl * disp * hp * wt, data = mtcars)
select_parameters(model)

lme4 ---
model <- lme4::lmer(
 Sepal.Width ~ Sepal.Length * Petal.Width * Petal.Length + (1 | Species),
 data = iris
)
select_parameters(model)
```
simulate_model

Simulated draws from model coefficients

Description

Simulate draws from a statistical model to return a data frame of estimates.

Usage

simulate_model(model, iterations = 1000, ...)

## S3 method for class 'glmmTMB'
simulate_model(
  model,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
  verbose = FALSE,
  ...
)

Arguments

model            Statistical model (no Bayesian models).
iterations       The number of draws to simulate/bootstrap.
...              Arguments passed to insight::get_varcov(), e.g. to allow simulated draws to be based on heteroscedasticity consistent variance covariance matrices.
component        Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.
verbose          Toggle warnings and messages.

Details

Technical Details:
simulate_model() is a computationally faster alternative to bootstrap_model(). Simulated draws for coefficients are based on a multivariate normal distribution (MASS::mvtnorm()) with mean mu = coef(model) and variance Sigma = vcov(model).

Models with Zero-Inflation Component:
For models from packages glmmTMB, pscl, GLMMadaptive and countreg, the component argument can be used to specify which parameters should be simulated. For all other models, parameters from the conditional component (fixed effects) are simulated. This may include smooth terms, but not random effects.
Value
A data frame.

See Also
simulate_parameters(), bootstrap_model(), bootstrap_parameters()

Examples
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
head(simulate_model(model))

if (require("glmmTMB", quietly = TRUE)) {
  model <- glmmTMB(
    count ~ spp + mined + (1 | site),
    ziformula = ~mined,
    family = poisson(),
    data = Salamanders
  )
  head(simulate_model(model))
  head(simulate_model(model, component = "zero_inflated"))
}

Description
Compute simulated draws of parameters and their related indices such as Confidence Intervals (CI) and p-values. Simulating parameter draws can be seen as a (computationally faster) alternative to bootstrapping.

Usage
## S3 method for class 'glmmTMB'
simulate_parameters(
  model,
  iterations = 1000,
  centrality = "median",
  ci = 0.95,
  ci_method = "quantile",
  test = "p-value",
  ...
)

simulate_parameters(model, ...)
simulate_parameters() is a computationally faster alternative to bootstrap_parameters(). Simulated draws for coefficients are based on a multivariate normal distribution (MASS::mvrnorm()) with mean $\mu = \text{coef}(\text{model})$ and variance $\Sigma = \text{vcov}(\text{model})$.

Models with Zero-Inflation Component:
For models from packages `glmmTMB`, `pscl`, `GLMMadaptive` and `countreg`, the component argument can be used to specify which parameters should be simulated. For all other models, parameters from the conditional component (fixed effects) are simulated. This may include smooth terms, but not random effects.

Value
A data frame with simulated parameters.
sort_parameters

Note

There is also a `plot()`-method implemented in the `see-package`.

References


See Also

`bootstrap_model()`, `bootstrap_parameters()`, `simulate_model()`

Examples

```r
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
simulate_parameters(model)

if (require("glmmTMB", quietly = TRUE)) {
 model <- glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = -mined,
 family = poisson(),
 data = Salamanders
)
simulate_parameters(model, centrality = "mean")
simulate_parameters(model, ci = c(.8, .95), component = "zero_inflated")
}
```

sort_parameters

Sort parameters by coefficient values

Description

Sort parameters by coefficient values

Usage

```r
sort_parameters(x, ...)

Default S3 method:
sort_parameters(x, sort = "none", column = "Coefficient", ...)
```
standardize_info

Arguments

x A data frame or a parameters_model object.
...
Arguments passed to or from other methods.
sort If "none" (default) do not sort, "ascending" sort by increasing coefficient value, or "descending" sort by decreasing coefficient value.
column The column containing model parameter estimates. This will be "Coefficient" (default) in easystats packages, "estimate" in broom package, etc.

Value
A sorted data frame or original object.

Examples

# creating object to sort (can also be a regular data frame)
mod <- model_parameters(stats::lm(wt ~ am * cyl, data = mtcars))

# original output
mod

# sorted outputs
sort_parameters(mod, sort = "ascending")
sort_parameters(mod, sort = "descending")

standardize_info Get Standardization Information

Description
This function extracts information, such as the deviations (SD or MAD) from parent variables, that are necessary for post-hoc standardization of parameters. This function gives a window on how standardized are obtained, i.e., by what they are divided. The "basic" method of standardization uses.

Usage

standardize_info(model, ...)

## Default S3 method:
standardize_info(
  model,
  robust = FALSE,
  two_sd = FALSE,
  include_pseudo = FALSE,
  verbose = TRUE,
  ...)


standardize_parameters

Parameters standardization

Arguments

model A statistical model.

... Arguments passed to or from other methods.

robust Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).

include_pseudo (For (G)LMMs) Should Pseudo-standardized information be included?

verbose Toggle warnings and messages on or off.

Value

A data frame with information on each parameter (see parameters_type()), and various standardization coefficients for the post-hoc methods (see standardize_parameters()) for the predictor and the response.

See Also

Other standardize: standardize_parameters()

Examples

```r
model <- lm(mpg ~ ., data = mtcars)
standardize_info(model)
standardize_info(model, robust = TRUE)
standardize_info(model, two_sd = TRUE)
```

Description

Compute standardized model parameters (coefficients).
standardize_parameters

Usage

standardize_parameters(
  model,
  method = "refit",
  ci = 0.95,
  robust = FALSE,
  two_sd = FALSE,
  include_response = TRUE,
  verbose = TRUE,
  ...
)

standardize_posteriors(
  model,
  method = "refit",
  robust = FALSE,
  two_sd = FALSE,
  include_response = TRUE,
  verbose = TRUE,
  ...
)

Arguments

model A statistical model.
method The method used for standardizing the parameters. Can be "refit" (default), "posthoc", "smart", "basic", "pseudo" or "sdy". See Details.
.ci Confidence Interval (CI) level
robust Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).
two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).
include_response If TRUE (default), the response value will also be standardized. If FALSE, only the predictors will be standardized. For GLMs the response value will never be standardized (see Generalized Linear Models section).
verbose Toggle warnings and messages on or off.
... For standardize_parameters(), arguments passed to model_parameters(), such as:
  • ci_method, centrality for Mixed models and Bayesian models...
  • exponentiate,...
  • etc.
Details

Standardization Methods:

- **refit**: This method is based on a complete model re-fit with a standardized version of the data. Hence, this method is equal to standardizing the variables before fitting the model. It is the "purest" and the most accurate (Neter et al., 1989), but it is also the most computationally costly and long (especially for heavy models such as Bayesian models). This method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a robust standardization of data, i.e., based on the median and MAD instead of the mean and SD. See `datawizard::standardize()` for more details.

  - Note that `standardize_parameters(method = "refit")` may not return the same results as fitting a model on data that has been standardized with `standardize()`: `standardize_parameters()` used the data used by the model fitting function, which might not be same data if there are missing values. see the remove_na argument in `standardize()`.

- **posthoc**: Post-hoc standardization of the parameters, aiming at emulating the results obtained by "refit" without refitting the model. The coefficients are divided by the standard deviation (or MAD if robust) of the outcome (which becomes their expression ‘unit’). Then, the coefficients related to numeric variables are additionally multiplied by the standard deviation (or MAD if robust) of the related terms, so that they correspond to changes of 1 SD of the predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y"). This does not apply to binary variables or factors, so the coefficients are still related to changes in levels. This method is not accurate and tend to give aberrant results when interactions are specified.

- **basic**: This method is similar to method = "posthoc", but treats all variables as continuous: it also scales the coefficient by the standard deviation of model’s matrix’ parameter of factors levels (transformed to integers) or binary predictors. Although being inappropriate for these cases, this method is the one implemented by default in other software packages, such as `lm.beta::lm.beta()`.

- **smart** (Standardization of Model’s parameters with Adjustment, Reconnaissance and Transformation - experimental): Similar to method = "posthoc" in that it does not involve model refitting. The difference is that the SD (or MAD if robust) of the response is computed on the relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and C is entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance of the response at the intercept only. As a results, the coefficients for effects of factors are similar to a Glass’ delta.

- **pseudo** (for 2-level (G)LMMs only): In this (post-hoc) method, the response and the predictor are standardized based on the level of prediction (levels are detected with `performance::check_heterogeneity_bias()`). Predictors are standardized based on their SD at level of prediction (see also `datawizard::demean()`). The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model, where sqrt(random-intercept-variance) is used for level 2 predictors, and sqrt(residual-variance) is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-group variable is found to have access between-group variance.

- **sdy** (for logistic regression models only): This y-standardization is useful when comparing coefficients of logistic regression models across models for the same sample. Unobserved heterogeneity varies across models with different independent variables, and thus, odds ratios from the same predictor of different models cannot be compared directly. The y-standardization makes coefficients “comparable across models by dividing them with the
estimated standard deviation of the latent variable for each model" (Mood 2010). Thus, whenever one has multiple logistic regression models that are fit to the same data and share certain predictors (e.g. nested models), it can be useful to use this standardization approach to make log-odds or odds ratios comparable.

**Transformed Variables:**
When the model’s formula contains transformations (e.g. \( y \sim \exp(X) \)) method = "refit" will give different results compared to method = "basic" ("posthoc" and "smart" do not support such transformations): While "refit" standardizes the data prior to the transformation (e.g. equivalent to \( \exp(\text{scale}(X)) \)), the "basic" method standardizes the transformed data (e.g. equivalent to \( \text{scale}(\exp(X)) \)).

See the Transformed Variables section in `datawizard::standardize.default()` for more details on how different transformations are dealt with when method = "refit".

**Confidence Intervals:**
The returned confidence intervals are re-scaled versions of the unstandardized confidence intervals, and not "true" confidence intervals of the standardized coefficients (cf. Jones & Waller, 2015).

**Generalized Linear Models:**
Standardization for generalized linear models (GLM, GLMM, etc) is done only with respect to the predictors (while the outcome remains as-is, unstandardized) - maintaining the interpretability of the coefficients (e.g., in a binomial model: the exponent of the standardized parameter is the OR of a change of 1 SD in the predictor, etc.)

**Dealing with Factors:**
`standardize(model)` or `standardize_parameters(model, method = "refit")` do not standardize categorical predictors (i.e. factors) / their dummy-variables, which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS).

To mimic such behaviours, either use `standardize_parameters(model, method = "basic")` to obtain post-hoc standardized parameters, or standardize the data with `datawizard::standardize(data, force = TRUE)` before fitting the model.

**Value**
A data frame with the standardized parameters (Std_*, depending on the model type) and their CIs (CI_low and CI_high). Where applicable, standard errors (SEs) are returned as an attribute (attr(x, "standard_error")).

**References**
• Mood C. Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do About It. European Sociological Review (2010) 26:67–82.

See Also
See also package vignette.

Other standardize: `standardize_info()`

Examples

```r
model <- lm(len ~ supp * dose, data = ToothGrowth)
standardize_parameters(model, method = "refit")

standardize_parameters(model, method = "posthoc")
standardize_parameters(model, method = "smart")
standardize_parameters(model, method = "basic")

Robust and 2 SD
standardize_parameters(model, robust = TRUE)
standardize_parameters(model, two_sd = TRUE)

model <- glm(am ~ cyl * mpg, data = mtcars, family = "binomial")
standardize_parameters(model, method = "refit")
standardize_parameters(model, method = "posthoc")
standardize_parameters(model, method = "basic", exponentiate = TRUE)

m <- lme4::lmer(mpg ~ cyl + am + vs + (1 | cyl), mtcars)
standardize_parameters(m, method = "pseudo", ci_method = "satterthwaite")

model <- rstanarm::stan_glm(rating ~ critical + privileges, data = attitude, refresh = 0)
standardize_posteriors(model, method = "refit", verbose = FALSE)
standardize_posteriors(model, method = "posthoc", verbose = FALSE)
standardize_posteriors(model, method = "smart", verbose = FALSE)
head(standardize_posteriors(model, method = "basic", verbose = FALSE))
```

---

<table>
<thead>
<tr>
<th>standard_error</th>
<th>Standard Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**standard_error**

*Description*

`standard_error()` attempts to return standard errors of model parameters.

*Usage*

```r
standard_error(model, ...)
```

```r
Default S3 method:
standard_error(
 model,
 component = "all",
 vcov = NULL,
 vcov_args = NULL,
 verbose = TRUE,
 ...
)
```

```r
S3 method for class 'factor'
standard_error(model, force = FALSE, verbose = TRUE, ...)
```

```r
S3 method for class 'glmmTMB'
standard_error(
 model,
 effects = "fixed",
 component = "all",
 verbose = TRUE,
 ...
)
```

```r
S3 method for class 'merMod'
standard_error(
 model,
 effects = "fixed",
 method = NULL,
 vcov = NULL,
 vcov_args = NULL,
 ...
)
```

*Arguments*

- `model` A model.
- `...` Arguments passed to or from other methods.
- `component` Model component for which standard errors should be shown. See the documentation for your object’s class in `model_parameters()` or `p_value()` for further details.
- `vcov` Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function
which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A string which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `?sandwich::vcovHC`.
  - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

### vcov_args
List of arguments to be passed to the function identified by the `vcov` argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., `?sandwich::vcovHAC`) to see the list of available arguments.

### verbose
Toggle warnings and messages.

### force
Logical, if TRUE, factors are converted to numerical values to calculate the standard error, with the lowest level being the value 1 (unless the factor has numeric levels, which are converted to the corresponding numeric value). By default, NA is returned for factors or character vectors.

### effects
Should standard errors for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned.

### method
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section *Confidence intervals and approximation of degrees of freedom* in `model_parameters()` for further details.

### Value
A data frame with at least two columns: the parameter names and the standard errors. Depending on the model, may also include columns for model components etc.

### Note
For Bayesian models (from `rstanarm` or `brms`), the standard error is the SD of the posterior samples.
Examples

model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris)
standard_error(model)

if (require("sandwich") && require("clubSandwich")) {
  standard_error(model, vcov = "HC3")

  standard_error(model,
    vcov = "vcovCL",
    vcov_args = list(cluster = iris$Species)
  )
}


Index

* data
  fish, 47
  qol_cancer, 161
* effect size indices
  standardize_parameters, 172
* standardize
  standardize_info, 171
  standardize_parameters, 172
... , 40
Additive models, 64
ANOVA, 64
anova(), 71
aov(), 71
BayesFactor::anovaBF(), 77
BayesFactor::correlationBF(), 77
BayesFactor::generalTestBF(), 77
BayesFactor::lmBF(), 77
BayesFactor::regressionBF(), 77
BayesFactor::ttestBF(), 76
Bayesian, 64
Bayesian models, 153
Bayesian regressions, 79, 85, 96, 103, 111, 131, 134
bayestestR::bci(), 11, 68, 90, 100, 123, 156
bayestestR::ci(), 119
bayestestR::describe_posterior(), 7, 72, 116
bayestestR::equivalence_test(), 42
bayestestR::eti(), 10, 68, 90, 100, 122, 156
bayestestR::hdi(), 11, 68, 90, 100, 123, 156
bayestestR::p_direction(), 7, 11, 63, 69, 90, 100, 123, 150, 156, 157
bayestestR::p_to_pd(), 151
bayestestR::pd_to_p(), 11, 69, 90, 100, 123, 156
bayestestR::rope(), 7
bayestestR::rope_range(), 41
bayestestR::si(), 11, 68, 90, 100, 123, 156
bci(), 6, 75, 76, 169
bootstrap_model, 4
bootstrap_model(), 7, 168, 170
bootstrap_parameters, 6
bootstrap_parameters(), 5, 79, 85, 96, 103, 111, 131, 134, 168, 170
cAIC4::stepAIC(), 166
ci.default, 8
ci.glmMCMC (ci.default), 8
ci.merMod (ci.default), 8
ci_betwithin, 11
ci_betwithin(), 10, 67, 89, 99, 122, 155
ci_kennard, 13
ci_ml1, 14
ci_ml1(), 10, 67, 89, 99, 122, 155
ci_satterthwaite, 16
closest_component (factor_analysis), 43
closest_component(), 45
cluster_analysis, 17
cluster_analysis(), 21
cluster_centers, 20
cluster_discrimination, 21
cluster_discrimination(), 19
cluster_meta, 21
cluster_performance, 23
Clustering, 64
compare_models (compare_parameters), 24
compare_parameters, 24
compare_parameters(), 48, 49
confidence_curve (p_function), 148
corsonance_function (p_function), 148
contrasts, 37
convert_efa_to_cfa, 28
Correlations, t-tests, etc., 64
datawizard::demean(), 66, 174
datawizard::standardize(), 65, 174
datawizard::standardize.default(), 175
Default method, 64
degrees_of_freedom, 30
degrees_of_freedom(), 8, 153
display(), 58
display.equivalence_test_lmr
display.parameters_efa
display.parameters_model
display.parameters_efa_summary
displayparameters_model, 31
display.parameters_sem
dist(), 18, 138
dof (degrees_of_freedom), 30
dof_betwithin (ci_betwithin), 11
dof_betwithin(), 30, 31
dof_kernward (ci_kernward), 13
dof_kernward(), 17, 30
dof_ml1 (ci_ml1), 14
dof_ml1(), 14, 15, 17, 30, 31
dof_satterthwaite (ci_satterthwaite), 16
dof_satterthwaite(), 14, 30
dominance_analysis, 36
domir::domin(), 39
efa_to_cfa (convert_efo_to_cfa), 28
effectsize::effectsize(), 72
equivalence_test(), 33
equivalence_test.ggeffects
equivalence_test.lm, 39
equivalence_test.merMod
eti(), 6, 75, 76, 169
factor_analysis, 43
fish, 47
format.compare_parameters, 48
format.parameters_model, 53
format_ddf_adjust, 60
format_order, 61
format_p_adjust, 62
format_parameters, 61
get_scores, 63
get_scores(), 45, 46
hclust(), 18, 138
hdi(), 6, 75, 76, 169
insight::format_value(), 61
insight::get_data(), 72, 115
insight::get_modelmatrix(), 37
insight::get_varcov(), 167, 169
insight::get_varianc(), 86, 162
insight::standardize_names(), 70, 80, 91
kmeans(), 18, 91
lm.beta::lm.beta(), 66, 174
manova(), 71
map_estimate(), 6, 74, 76, 119, 169
Marginal effects models, 153
Meta-Analysis, 64
Mixed models, 64
model_parameters, 64
model_parameters(), 8, 9, 24–26, 33, 35, 53,
55, 79, 85, 96, 113, 115, 119, 144,
153, 154, 160, 173, 177, 178
model_parameters.efex_aov
(model_parameters.glimML), 107
model_parameters.aov, 70
model_parameters.aov, 70
model_parameters.averaging
(model_parameters.glimML), 107
model_parameters.befa, 74
model_parameters.betamfx
(model_parameters.glimML), 107
model_parameters.betaor
(model_parameters.glimML), 107
model_parameters.betareg
(model_parameters.glimML), 107
model_parameters.BFBayesFactor, 75
model_parameters.bifeAPEs
(model_parameters.DirichletRegModel), 101
model_parameters.bracl
(model_parameters.DirichletRegModel), 101
model_parameters.brmsfit
(model_parameters.MCMCglmm), 117
model_parameters.censReg
(model_parameters.default), 95
model_parameters.cgam, 77
model_parameters.clm2
(model_parameters.DirichletRegModel), 101
model_parameters.clmm
  (model_parameters.cpglmm), 81
model_parameters.clmm2
  (model_parameters.cpglmm), 81
model_parameters.coeftest
  (model_parameters.htest), 114
model_parameters.cpglmm, 81
model_parameters.data.frame
  (model_parameters.MCMCglmm), 117
model_parameters.dbscan, 91
model_parameters.default, 95
model_parameters.default(), 65, 150
model_parameters.DirichletRegModel, 101
model_parameters.draws
  (model_parameters.MCMCglmm), 117
model_parameters.emm_list
  (model_parameters.glimML), 107
model_parameters.Gam
  (model_parameters.cgam), 77
model_parameters.gamm
  (model_parameters.cgam), 77
model_parameters.glht, 105
model_parameters.glimML, 107
model_parameters.glm
  (model_parameters.default), 95
model_parameters.glmmTMB
  (model_parameters.cpglmm), 81
model_parameters.glmx
  (model_parameters.glimML), 107
model_parameters.hclust
  (model_parameters.dbscan), 91
model_parameters.hkmeans
  (model_parameters.dbscan), 91
model_parameters.htest, 114
model_parameters.kmeans
  (model_parameters.dbscan), 91
model_parameters.lavaan
  (model_parameters.PCA), 126
model_parameters.lavaan(), 27, 72, 80, 86, 97, 104, 106, 113, 115, 120, 125, 128, 132, 133, 136, 149
model_parameters.lme
  (model_parameters.cpglmm), 81
model_parameters.marginaleffects
  (model_parameters.glimML), 107
model_parameters.Mclust
  (model_parameters.dbscan), 91
model_parameters.MCMCglmm, 117
model_parameters.merMod
  (model_parameters.cpglmm), 81
model_parameters.meta_bma
  (model_parameters.glimML), 107
model_parameters.meta_random
  (model_parameters.glimML), 107
model_parameters.metaplus
  (model_parameters.glimML), 107
model_parameters.mhurdle
  (model_parameters.zcpglm), 134
model_parameters.mipo, 124
model_parameters.mira
  (model_parameters.mipo), 124
model_parameters.mixed
  (model_parameters.cpglmm), 81
model_parameters.MixMod
  (model_parameters.cpglmm), 81
model_parameters.mjoint
  (model_parameters.glimML), 107
model_parameters.mlm
  (model_parameters.DirichletRegModel), 101
model_parameters.mvord
  (model_parameters.glimML), 107
model_parameters.pam
  (model_parameters.dbscan), 91
model_parameters.PCA, 126
model_parameters.principal
  (model_parameters.PCA), 126
model_parameters.pvclust
  (model_parameters.dbscan), 91
model_parameters.ridgelm
  (model_parameters.default), 91
model_parameters.rma, 130
model_parameters.scam
  (model_parameters.cgam), 77
model_parameters.selection
  (model_parameters.glimML), 107
model_parameters.stanreg
  (model_parameters.MCMCglmm), 117
model_parameters.t1way, 133
model_parameters.zcpglm, 134
Models with special components, 153
multcomp::glht(), 106
Multinomial, ordinal and cumulative link, 64
Multiple imputation, 64

n_clusters, 136
n_clusters(), 17, 19, 21
n_clusters_dbscan(n_clusters), 136
n_clusters_elbow(n_clusters), 136
n_clusters_gap(n_clusters), 136
n_clusters_hclust(n_clusters), 136
n_clusters_silhouette(n_clusters), 136
n_components(n_factors), 140
n_components(), 44, 45, 136, 163
n_factors(), 44, 45, 136, 163

Other models, 64

p_calibrate, 147
p_direction(), 75, 76, 119, 169
p_function, 148
p_value, 153
p_value(), 9, 154, 160, 177
p_value.averaging
  (p_value.DirichletRegModel), 158
p_value.betamfx(p_value.poissonmfx), 159
p_value.betaor(p_value.poissonmfx), 159
p_value.betareg
  (p_value.DirichletRegModel), 158
p_value.BFBayesFactor, 157
p_value.cgam
  (p_value.DirichletRegModel), 158
p_value.clm2
  (p_value.DirichletRegModel), 158
p_value.DirichletRegModel, 158
p_value.poissonmfx, 159
p_value.zcpglm, 160
p_value.zeroinfl(p_value.zcpglm), 160
p_value_betwithin(ci_betwithin), 11
p_value_kenward(ci_kenward), 13
p_value_ml1(ci_ml1), 14
p_value_satterthwaite
  (ci_satterthwaite), 16
parameters(model_parameters), 64
parameters::standardize_parameters(), 73, 116
parameters_type, 143
parameters_type(), 172
PCA, FA, CFA, SEM, 64
performance::check_clusterstructure(), 19, 21
performance::check_factorstructure(), 45
performance::check_heterogeneity_bias(), 66, 174
performance::check_itemscale(), 45
performance::check_kmo(), 45
performance::check_singularity(), 88
performance::check_sphericity_bartlett(), 45
pool_parameters, 144
predict.parameters_clusters, 146
predict.parameters_efa
  (factor_analysis), 43
principal_components(factor_analysis), 43
principal_components(), 33, 63, 163
print(), 58, 62, 69, 70
print.compare_parameters
  (format.compare_parameters), 48
print.compare_parameters(), 35
print.parameters_efa(factor_analysis), 43
print.parameters_model(factor_analysis), 53
print.md(), 70
print.md.compare_parameters
  (format.compare_parameters), 48
print.md.parameters_model(factor_analysis), 53
print_table(display.parameters_model), 31
psych::fa(), 44
psych::VSS(), 141
qol_cancer, 161
random_parameters, 161
reduce_data(reduce_parameters), 163
reduce_parameters, 163
reduce_parameters(), 44, 163
reshape_loadings, 164
rope(), 75, 76, 119, 169
rotated_data(factor_analysis), 43
rotated_data(), 45

se_kenward(ci_kenward), 13
se_satterthwaite(ci_satterthwaite), 16
select_parameters, 165
si(), 6, 75, 76, 169
signif(), 34, 50, 56
simulate_model, 167
simulate_model(), 5, 7, 170
simulate_parameters
(simulate_parameters.glmmTMB), 168
simulate_parameters(), 5, 7, 33, 168
simulate_parameters.glmmTMB, 168
sort_parameters_efa(factor_analysis), 43
sort_parameters, 170
sparsepca::robspca(), 44
sparsepca::spca(), 44
spi(), 6, 75, 76, 169
standard_error, 176
standardise_info(standardize_info), 171
standardise_parameters
(standardize_parameters), 172
standardise_posteriors
(standardize_parameters), 172
standardize_info, 171, 176
standardize_parameters, 172
standardize_parameters(), 25, 65, 79, 85, 96, 103, 112, 120, 131, 135, 172
standardize_posteriors
(standardize_parameters), 172
stats::p.adjust(), 26, 79, 86, 97, 104, 112, 125, 135
summary.parameters_model
(format.parameters_model), 53

Zero-inflated and hurdle, 64
Zero-inflated models, 153