Package ‘parameters’

Type Package
Title Processing of Model Parameters
Version 0.21.1
Maintainer Daniel Lüdecke <d.luedecke@uke.de>
Description Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function ’insight::supported_models()’), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).
License GPL-3
URL https://easystats.github.io/parameters/
BugReports https://github.com/easystats/parameters/issues
Depends R (>= 3.6)
Imports bayestestR (>= 0.13.0), datawizard (>= 0.7.0), insight (>= 0.19.2), graphics, methods, stats, utils
Suggests AER, afex, aod, BayesFactor, BayesFM, bbmle, betareg, BH, biglm, blme, boot, brglm2, brms, broom, cAIC4, car, carData, cgam, ClassDiscovery, clubSandwich, cluster, coda, cplm, dbscan, domir (>= 0.2.0), drc, DRR, effectsize (>= 0.8.2), EGAnet (>= 0.7), emmeans (>= 1.7.0), estimatr, factoextra, FactoMineR, fastICA, fixest, fpc, gam, gamlss, gee, geepack, ggeffects (>= 1.2.0), ggplot2, GLMMadaptive, glmmTMB, GPArotation, gt, haven, httr, Hmisc, ivprobit, ivreg, knitr, lavaan, lfe, lm.beta, lme4, lmerTest, lme4, logsmooth, lqmm, M3C, marginaleffects (>= 0.10.0), MASS, Matrix, mclogit, mclust, MCMCglmm, mediation, merDeriv, metaBMA, metafor, mfx, mgcv, mice, mmrm, multcomp, MuMIn, NbClust, nFactors, nestedLogit, nlme, nnet, openxlsx, ordinal, panelr, pbkrtest, PCDimension, performance (>= 0.10.1), plm, PMCMRplus, poorman,
posterior, PROreg, pscl, psych, pvclust, quantreg,
randomForest, rmarkdown, rms, rstanarm, sandwich, see (>=
0.7.5), sparsepca, survey, survival, testthat, tidyselect, TMB,
truncreg, VGAM, withr, WRS2

VignetteBuilder knitr
Encoding UTF-8
Language en-US
RoxygenNote 7.2.3.9000
Config/testthat/edition 3
Config/testthat/parallel true
Config/Needs/website rstudio/bisib, r-lib/pkgdown,
easystats/easystatstemplate
Config/rcmdcheck/ignore-inconsequential-notes true

NeedsCompilation no

Author Daniel Lüdecke [aut, cre] (<https://orcid.org/0000-0002-8895-3206>,
@strengelacke),
Dominique Makowski [aut] (<https://orcid.org/0000-0001-5375-9967>,
@Dom_Makowski),
Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>),
Indrajeet Patil [aut] (<https://orcid.org/0000-0003-1995-6531>,
@patilindrajeets),
Søren Højsgaard [aut],
Brenton M. Wiernik [aut] (<https://orcid.org/0000-0001-9560-6336>,
@bmwiernik),
Zen J. Lau [ctb],
Vincent Arel-Bundock [ctb] (<https://orcid.org/0000-0003-1995-6531>,
@vincentab),
Jeffrey Girard [ctb] (<https://orcid.org/0000-0002-7359-3746>,
@jeffreymgirard),
Christina Maimone [rev],
Niels Ohlsen [rev] (@Niels_Bremen),
Douglas Ezra Morrison [ctb] (<https://orcid.org/0000-0002-7195-830X>,
@demats1),
Joseph Luchman [ctb] (<https://orcid.org/0000-0002-8886-9717>)

Repository CRAN
Date/Publication 2023-05-26 10:20:02 UTC

R topics documented:

bootstrap_model ... 4
bootstrap_parameters .. 6
ci.default ... 8
ci_betwithin ... 11
ci_kenward .. 13
Model bootstrapping

Description

Bootstrap a statistical model n times to return a data frame of estimates.

Usage

bootstrap_model(model, iterations = 1000, ...)

Default S3 method:
bootstrap_model(
 model,
 iterations = 1000,
 type = "ordinary",
 parallel = c("no", "multicore", "snow"),
 n_cpus = 1,
 verbose = FALSE,
 ...
)

S3 method for class 'merMod'
bootstrap_model(
 model,
 iterations = 1000,
 type = "parametric",
 parallel = c("no", "multicore", "snow"),
 n_cpus = 1,
 cluster = NULL,
 verbose = FALSE,
 ...
)
Arguments

- **model**: Statistical model.
- **iterations**: The number of draws to simulate/bootstrap.
- **type**: Character string specifying the type of bootstrap. For mixed models of class `merMod` or `glmmTMB`, may be "parametric" (default) or "semiparametric" (see `?lme4::bootMer` for details). For all other models, see argument `sim` in `?boot::boot` (defaults to "ordinary").
- **parallel**: The type of parallel operation to be used (if any).
- **n_cpus**: Number of processes to be used in parallel operation.
- **verbose**: Toggle warnings and messages.
- **cluster**: Optional cluster when `parallel = "snow"`. See `?lme4::bootMer` for details.

Details

By default, `boot::boot()` is used to generate bootstraps from the model data, which are then used to `update()` the model, i.e. refit the model with the bootstrapped samples. For `merMod` objects (`lme4`) or models from `glmmTMB`, the `lme4::bootMer()` function is used to obtain bootstrapped samples. `bootstrap_parameters()` summarizes the bootstrapped model estimates.

Value

A data frame of bootstrapped estimates.

Using with emmeans

The output can be passed directly to the various functions from the `emmeans` package, to obtain bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then be passed to `model_parameter()` to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

See Also

`bootstrap_parameters()`, `simulate_model()`, `simulate_parameters()`

Examples

```r
## Not run:
if (require("boot", quietly = TRUE)) {
  model <- lm(mpg ~ wt + factor(cyl), data = mtcars)
  b <- bootstrap_model(model)
  print(head(b))

  if (require("emmeans", quietly = TRUE)) {
    # Example code...
  }
}
```
```
est <- emmeans(b, consec ~ cyl)
print(model_parameters(est))

## End(Not run)

### bootstrap_parameters

#### Parameters bootstrapping

**Description**

Compute bootstrapped parameters and their related indices such as Confidence Intervals (CI) and p-values.

**Usage**

```r
bootstrap_parameters(
 model,
 iterations = 1000,
 centrality = "median",
 ci = 0.95,
 ci_method = "quantile",
 test = "p-value",
 ...
)
```

**Arguments**

- **model**: Statistical model.
- **iterations**: The number of draws to simulate/bootstrap.
- **centrality**: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- **ci**: Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).
- **ci_method**: The type of index used for Credible Interval. Can be "ETI" (default, see eti()), "HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()) or "SI" (see si()).
- **test**: The indices to compute. Character (vector) with one or more of these options: "p-value" (or "p"), "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. bayestestR::rope() or bayestestR::p_direction()) and its results included in the summary output.
- **...**: Arguments passed to or from other methods.
bootstrap_parameters

Details

This function first calls bootstrap_model() to generate bootstrapped coefficients. The resulting replicated for each coefficient are treated as "distribution", and is passed to bayestestR::describe_posterior() to calculate the related indices defined in the "test" argument.

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

Value

A data frame summarizing the bootstrapped parameters.

Using with emmeans

The output can be passed directly to the various functions from the emmeans package, to obtain bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then be passed to model_parameter() to obtain standard errors, p-values, etc. (see example).

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

References


See Also

bootstrap_model(), simulate_parameters(), simulate_model()

Examples

```r
Not run:
if (require(“boot”, quietly = TRUE)) {
 set.seed(2)
 model <- lm(Sepal.Length ~ Species * Petal.Width, data = iris)
 b <- bootstrap_parameters(model)
 print(b)

 if (require(“emmeans”)) {
 est <- emmeans(b, trt.vs.ctrl ~ Species)
 print(model_parameters(est))
 }
}
End(Not run)
```
## ci.default

**Confidence Intervals (CI)**

**Description**

`ci()` attempts to return confidence intervals of model parameters.

**Usage**

```r
Default S3 method:
ci(x, ci = 0.95, dof = NULL, method = NULL, ...)

S3 method for class 'glmmTMB'
ci(
 x,
 ci = 0.95,
 dof = NULL,
 method = "wald",
 component = "all",
 verbose = TRUE,
 ...
)

S3 method for class 'merMod'
ci(x, ci = 0.95, dof = NULL, method = "wald", iterations = 500, ...)
```

**Arguments**

- `x` A statistical model.
- `ci` Confidence Interval (CI) level. Default to `0.95` (95%).
- `dof` Number of degrees of freedom to be used when calculating confidence intervals. If `NULL` (default), the degrees of freedom are retrieved by calling `degrees_of_freedom()` with approximation method defined in `method`. If not `NULL`, use this argument to override the default degrees of freedom used to compute confidence intervals.
- `method` Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section *Confidence intervals and approximation of degrees of freedom* in `model_parameters()` for further details.
- `...` Additional arguments
- `component` Model component for which parameters should be shown. See the documentation for your object’s class in `model_parameters()` or `p_value()` for further details.
verbose  Toggle warnings and messages.
iterations  The number of bootstrap replicates. Only applies to models of class `merMod` when `method=boot`.

**Value**

A data frame containing the CI bounds.

**Confidence intervals and approximation of degrees of freedom**

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

**Classical methods:**

Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

- Applies to *non-Bayesian models*. For *linear models*, CIs computed using the Wald method (SE and a *t-distribution with residual df*); p-values computed using the Wald method with a *t-distribution with residual df*. For other models, CIs computed using the Wald method (SE and a *normal distribution*); p-values computed using the Wald method with a *normal distribution*.

"normal"

- Applies to *non-Bayesian models*. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

- Applies to *non-Bayesian models*. Compute Wald CIs and p-values, but always use a *t-distribution with residual df* when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

**Methods for mixed models:**

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the [R GLMM FAQ](https://glmm.wikidot.com/faq) for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

- Applies to *linear mixed models*. CIs computed using the Wald method (SE and a *t-distribution with Satterthwaite df*); p-values computed using the Wald method with a *t-distribution with Satterthwaite df*.

"kenward"

"boot"

- Applies to *linear mixed models*. CIs computed using the Wald method (SE and a *t-distribution with Kenward & Roger df*); p-values computed using the Wald method with a *t-distribution with Kenward & Roger df*.
• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with $m-l-1$ approximated df); p-values computed using the Wald method with a t-distribution with $m-l-1$ approximated df. See `ci_ml1()`.

"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See `ci_betwithin()`.

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a $\chi^2$-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class `glm`, `polr`, `merMod` or `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::eti()`.

"hdi"
- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

- Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

- Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().

**Examples**

```r
library(parameters)
if (require("glmmTMB")) {
 model <- glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = ~mined,
 family = poisson(),
 data = Salamanders
)

 ci(model)
 ci(model, component = "zi")
}
```

---

**ci_betwithin**  
Between-within approximation for SEs, CIs and p-values

**Description**

Approximation of degrees of freedom based on a "between-within" heuristic.
Usage

```r
ci_betwithin(model, ci = 0.95, ...)
dof_betwithin(model)
p_value_betwithin(model, dof = NULL, ...)
```

Arguments

- `model`: A mixed model.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).
- `...`: Additional arguments
- `dof`: Degrees of Freedom.

Details

**Small Sample Cluster corrected Degrees of Freedom:**
Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics (see Li and Redden 2015). The Between-within denominator degrees of freedom approximation is recommended in particular for (generalized) linear mixed models with repeated measurements (longitudinal design). `dof_betwithin()` implements a heuristic based on the between-within approach. **Note** that this implementation does not return exactly the same results as shown in Li and Redden 2015, but similar.

**Degrees of Freedom for Longitudinal Designs (Repeated Measures):**
In particular for repeated measure designs (longitudinal data analysis), the between-within heuristic is likely to be more accurate than simply using the residual or infinite degrees of freedom, because `dof_betwithin()` returns different degrees of freedom for within-cluster and between-cluster effects.

Value

A data frame.

References

ci_kenward

See Also
dof_betwithin() is a small helper-function to calculate approximated degrees of freedom of model parameters, based on the "between-within" heuristic.

Examples

```r
if (require("lme4")) {
 data(sleepstudy)
 model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
 dof_betwithin(model)
 p_value_betwithin(model)
}
```

---

### ci_kenward

**Kenward-Roger approximation for SEs, CIs and p-values**

#### Description

An approximate F-test based on the Kenward-Roger (1997) approach.

#### Usage

```r
ci_kenward(model, ci = 0.95)
dof_kenward(model)
p_value_kenward(model, dof = NULL)
se_kenward(model)
```

#### Arguments

- `model`: A statistical model.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).
- `dof`: Degrees of Freedom.

#### Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1), the Kenward-Roger approximation is also applicable in more complex multilevel designs, e.g. with cross-classified clusters. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.
Value
A data frame.

References

See Also
dof_kenward() and se_kenward() are small helper-functions to calculate approximated degrees of freedom and standard errors for model parameters, based on the Kenward-Roger (1997) approach.
dof_satterthwaite() and dof_ml1() approximate degrees of freedom based on Satterthwaite’s method or the "m-l-1" rule.

Examples
if (require("lme4", quietly = TRUE)) {
  model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
  p_value_kenward(model)
}

---

**ci_ml1**
"m-l-1" approximation for SEs, CIs and p-values

Description
Approximation of degrees of freedom based on a "m-l-1" heuristic as suggested by Elff et al. (2019).

Usage
ci_ml1(model, ci = 0.95, ...)
dof_ml1(model)
p_value_ml1(model, dof = NULL, ...)

Arguments
- model: A mixed model.
- ci: Confidence Interval (CI) level. Default to 0.95 (95%).
- ...: Additional arguments
- dof: Degrees of Freedom.
Details

**Small Sample Cluster corrected Degrees of Freedom:**
Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics (see Li and Redden 2015). The \( m-l-1 \) heuristic is such an approach that uses a t-distribution with fewer degrees of freedom (\( \text{dof}\_ml1() \)) to calculate p-values (\( \text{p\_value}\_ml1() \)) and confidence intervals (\( \text{ci}(\text{method} = "ml1") \)).

**Degrees of Freedom for Longitudinal Designs (Repeated Measures):**
In particular for repeated measure designs (longitudinal data analysis), the \( m-l-1 \) heuristic is likely to be more accurate than simply using the residual or infinite degrees of freedom, because \( \text{dof}\_ml1() \) returns different degrees of freedom for within-cluster and between-cluster effects.

**Limitations of the "m-l-1" Heuristic:**
Note that the "m-l-1" heuristic is not applicable (or at least less accurate) for complex multi-level designs, e.g. with cross-classified clusters. In such cases, more accurate approaches like the Kenward-Roger approximation (\( \text{dof}\_kenward() \)) is recommended. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value
A data frame.

References


See Also

\( \text{dof}\_ml1() \) is a small helper-function to calculate approximated degrees of freedom of model parameters, based on the "m-l-1" heuristic.

Examples

```r
if (require("lme4")) {
 model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
 p_value_ml1(model)
}
```
ci_satterthwaite  Satterthwaite approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Satterthwaite (1946) approach.

Usage

\[
\text{ci} \_\text{satterthwaite}(\text{model}, \text{ci} = 0.95, \ldots) \\
\text{dof} \_\text{satterthwaite}(\text{model}) \\
\text{p} \_\text{value} \_\text{satterthwaite}(\text{model}, \text{dof} = \text{NULL}, \ldots) \\
\text{se} \_\text{satterthwaite}(\text{model})
\]

Arguments

- **model**: A statistical model.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **...**: Additional arguments
- **dof**: Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof.m1), the Satterthwaite approximation is also applicable in more complex multilevel designs. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

See Also
dof_satterthwaite() and se_satterthwaite() are small helper-functions to calculate approximated degrees of freedom and standard errors for model parameters, based on the Satterthwaite (1946) approach.
dof_kenward() and dof_m1() approximate degrees of freedom based on Kenward-Roger’s method or the "m-l-1" rule.

Examples

```r
if (require("lme4", quietly = TRUE)) {
 model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
 p_value_satterthwaite(model)
}
```

---

**cluster_analysis**

### Cluster Analysis

**Description**

Compute hierarchical or kmeans cluster analysis and return the group assignment for each observation as vector.

**Usage**

```r
cluster_analysis(
 x,
 n = NULL,
 method = "kmeans",
 include_factors = FALSE,
 standardize = TRUE,
 verbose = TRUE,
 distance_method = "euclidean",
 hclust_method = "complete",
 kmeans_method = "Hartigan-Wong",
 dbscan_eps = 15,
 iterations = 100,
 ...
)
```

**Arguments**

- `x` A data frame (with at least two variables), or a matrix (with at least two columns).
- `n` Number of clusters used for supervised cluster methods. If `NULL`, the number of clusters to extract is determined by calling `n_clusters()`. Note that this argument does not apply for unsupervised clustering methods like `dbscan`, `hdbscan`, `mixture`, `pvclust`, or `pamk`. 

---
Method for computing the cluster analysis. Can be "kmeans" (default; k-means using \texttt{kmeans()}), "hkmeans" (hierarchical k-means using \texttt{factoextra::hkmeans()}), \texttt{pam} (K-Medoids using \texttt{cluster::pam()}), \texttt{pamk} (K-Medoids that finds out the number of clusters), "hclust" (hierarchical clustering using \texttt{hclust()} or \texttt{pvclust::pvclust()}), \texttt{dbscan} (DBSCAN using \texttt{dbscan::dbscan()}), \texttt{hdbscan} (Hierarchical DBSCAN using \texttt{dbscan::hdbscan()}), or \texttt{mixture} (Mixture modeling using \texttt{mclust::Mclust()}, which requires the user to run \texttt{library(mclust)} before).

Logical, if TRUE, factors are converted to numerical values in order to be included in the data for determining the number of clusters. By default, factors are removed, because most methods that determine the number of clusters need numeric input only.

Standardize the dataframe before clustering (default).

Toggle warnings and messages.

Distance measure to be used for methods based on distances (e.g., when \texttt{method = "hclust"} for hierarchical clustering. For other methods, such as "kmeans", this argument will be ignored). Must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". See \texttt{dist()} and \texttt{pvclust::pvclust()} for more information.

Agglomeration method to be used when \texttt{method = "hclust"} or \texttt{method = "hkmeans"} (for hierarchical clustering). This should be one of "ward", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid". Default is "complete" (see \texttt{hclust()}).

Algorithm used for calculating kmeans cluster. Only applies, if \texttt{method = "kmeans"}. May be one of "Hartigan-Wong" (default), "Lloyd" (used by SPSS), or "MacQueen". See \texttt{kmeans()} for details on this argument.

The eps argument for DBSCAN method. See \texttt{n_clusters_dbscan()}.

The number of replications.

Arguments passed to or from other methods.

The \texttt{print()} and \texttt{plot()} methods show the (standardized) mean value for each variable within each cluster. Thus, a higher absolute value indicates that a certain variable characteristic is more pronounced within that specific cluster (as compared to other cluster groups with lower absolute mean values).

Clusters classification can be obtained via \texttt{print(x, newdata = NULL, ...)}.

The group classification for each observation as vector. The returned vector includes missing values, so it has the same length as \texttt{nrow(x)}.

There is also a \texttt{plot()}-method implemented in the \texttt{see-package}.
References


See Also

- `n_clusters()` to determine the number of clusters to extract.
- `cluster_discrimination()` to determine the accuracy of cluster group classification via linear discriminant analysis (LDA).
- `performance::check_clusterstructure()` to check suitability of data for clustering.

Examples

```r
set.seed(33)
K-Means
rez <- cluster_analysis(iris[1:4], n = 3, method = "kmeans")
rez # Show results
predict(rez) # Get clusters
summary(rez) # Extract the centers values (can use 'plot()' on that)
if (requireNamespace("MASS", quietly = TRUE)) {
 cluster_discrimination(rez) # Perform LDA
}

Hierarchical k-means (more robust k-means)
if (require("factoextra", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], n = 3, method = "hkmeans")
 rez # Show results
 predict(rez) # Get clusters
}

Hierarchical Clustering (hclust)
rez <- cluster_analysis(iris[1:4], n = 3, method = "hclust")
rez # Show results
predict(rez) # Get clusters

K-Medoids (pam)
if (require("cluster", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], n = 3, method = "pam")
 rez # Show results
 predict(rez) # Get clusters
}

PAM with automated number of clusters
if (require("fpc", quietly = TRUE)) {
 rez <- cluster_analysis(iris[1:4], method = "pamk")
 rez # Show results
 predict(rez) # Get clusters
}

DBSCAN
```
if (require("dbscan", quietly = TRUE)) {
    # Note that you can assimilate more outliers (cluster 0) to neighbouring
    # clusters by setting borderPoints = TRUE.
    rez <- cluster_analysis(iris[1:4], method = "dbscan", dbscan_eps = 1.45)
    rez # Show results
    predict(rez) # Get clusters
}

# Mixture --------------------------------------------------------
if (require("mclust", quietly = TRUE)) {
    library(mclust) # Needs the package to be loaded
    rez <- cluster_analysis(iris[1:4], method = "mixture")
    rez # Show results
    predict(rez) # Get clusters
}

---

cluster_centers  Find the cluster centers in your data

Description
For each cluster, computes the mean (or other indices) of the variables. Can be used to retrieve the
centers of clusters. Also returns the within Sum of Squares.

Usage
cluster_centers(data, clusters, fun = mean, ...)

Arguments
data      A data.frame.
clusters  A vector with clusters assignments (must be same length as rows in data).
fun        What function to use, mean by default.
...        Other arguments to be passed to or from other functions.

Value
A dataframe containing the cluster centers. Attributes include performance statistics and distance
between each observation and its respective cluster centre.

Examples
k <- kmeans(iris[1:4], 3)
cluster_centers(iris[1:4], clusters = k$cluster)
cluster_centers(iris[1:4], clusters = k$cluster, fun = median)
cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups

Description

Computes linear discriminant analysis (LDA) on classified cluster groups, and determines the goodness of classification for each cluster group. See MASS::lda() for details.

Usage

cluster_discrimination(x, cluster_groups = NULL, ...)

Arguments

x A data frame
cluster_groups Group classification of the cluster analysis, which can be retrieved from the cluster_analysis() function.
... Other arguments to be passed to or from.

See Also

n_clusters() to determine the number of clusters to extract, cluster_analysis() to compute a cluster analysis and performance::check_clusterstructure() to check suitability of data for clustering.

Examples

if (requireNamespace("MASS", quietly = TRUE)) {
  # Retrieve group classification from hierarchical cluster analysis
  clustering <- cluster_analysis(iris[, 1:4], n = 3)

  # Goodness of group classification
  cluster_discrimination(clustering)
}

cluster_meta Metaclustering

Description

One of the core "issue" of statistical clustering is that, in many cases, different methods will give different results. The metaclustering approach proposed by easystats (that finds echoes in consensus clustering; see Monti et al., 2003) consists of treating the unique clustering solutions as a ensemble, from which we can derive a probability matrix. This matrix contains, for each pair of observations, the probability of being in the same cluster. For instance, if the 6th and the 9th row of a dataframe has been assigned to a similar cluster by 5 our of 10 clustering methods, then its probability of being grouped together is 0.5.
Usage

`cluster_meta(list_of_clusters, rownames = NULL, ...)`

Arguments

- **list_of_clusters**: A list of vectors with the clustering assignments from various methods.
- **rownames**: An optional vector of row.names for the matrix.
- **...**: Currently not used.

Details

Metaclustering is based on the hypothesis that, as each clustering algorithm embodies a different prism by which it sees the data, running an infinite amount of algorithms would result in the emergence of the “true” clusters. As the number of algorithms and parameters is finite, the probabilistic perspective is a useful proxy. This method is interesting where there is no obvious reason to prefer one over another clustering method, as well as to investigate how robust some clusters are under different algorithms.

This metaclustering probability matrix can be transformed into a dissimilarity matrix (such as the one produced by `dist()` and submitted for instance to hierarchical clustering (`hclust()`). See the example below.

Value

A matrix containing all the pairwise (between each observation) probabilities of being clustered together by the methods.

Examples

```R
Not run:
data <- iris[1:4]

rez1 <- cluster_analysis(data, n = 2, method = "kmeans")
rez2 <- cluster_analysis(data, n = 3, method = "kmeans")
rez3 <- cluster_analysis(data, n = 6, method = "kmeans")

list_of_clusters <- list(rez1, rez2, rez3)

m <- cluster_meta(list_of_clusters)

Visualize matrix without reordering
heatmap(m, Rowv = NA, Colv = NA, scale = "none") # Without reordering
Reordered heatmap
heatmap(m, scale = "none")

Extract 3 clusters
predict(m, n = 3)

Convert to dissimilarity
d <- as.dist(abs(m - 1))
```
```r
model <- hclust(d)
plot(model, hang = -1)

End(Not run)
```

---

**cluster_performance**  
*Performance of clustering models*

### Description
Compute performance indices for clustering solutions.

### Usage

```r
cluster_performance(model, ...)
```

- **model**: Cluster model.
- **...**: Arguments passed to or from other methods.

- **S3 method for class 'kmeans'**
- **S3 method for class 'hclust'**
- **S3 method for class 'dbscan'**
- **S3 method for class 'parameters_clusters'**

### Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>Cluster model.</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed to or from other methods.</td>
</tr>
<tr>
<td>data</td>
<td>A data.frame.</td>
</tr>
<tr>
<td>clusters</td>
<td>A vector with clusters assignments (must be same length as rows in data).</td>
</tr>
</tbody>
</table>

### Examples

```r
kmeans
model <- kmeans(iris[1:4], 3)
cluster_performance(model)

hclust
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)
rez <- cluster_performance(model, data, clusters)
rez

DBSCAN
```
```r
if (require("dbscan", quietly = TRUE)) {
 model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)
 rez <- cluster_performance(model, iris[1:4])
 rez
} # Retrieve performance from parameters
params <- model_parameters(kmeans(iris[1:4], 3))
cluster_performance(params)
```

---

### compare_parameters

**Compare model parameters of multiple models**

**Description**

Compute and extract model parameters of multiple regression models. See `model_parameters()` for further details.

**Usage**

```r
compare_parameters(
 ...,
 ci = 0.95,
 effects = "fixed",
 component = "conditional",
 standardize = NULL,
 exponentiate = FALSE,
 ci_method = "wald",
 p_adjust = NULL,
 select = NULL,
 column_names = NULL,
 pretty_names = TRUE,
 keep = NULL,
 drop = NULL,
 verbose = TRUE
)
```

```r
compare_models(
 ...,
 ci = 0.95,
 effects = "fixed",
 component = "conditional",
 standardize = NULL,
 exponentiate = FALSE,
 ci_method = "wald",
 p_adjust = NULL,
 select = NULL,
 column_names = NULL,
```
compare_parameters

```r
pretty_names = TRUE,
keep = NULL,
drop = NULL,
verbose = TRUE
```

**Arguments**

... One or more regression model objects, or objects returned by `model_parameters()`. Regression models may be of different model types. Model objects may be passed comma separated, or as a list. If model objects are passed with names or the list has named elements, these names will be used as column names.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".

component Model component for which parameters should be shown. See documentation for related model class in `model_parameters()`.

standardize The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`. **Importantly:**

  - The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS), to mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
  - For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
  - Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

ci_method Method for computing degrees of freedom for p-values and confidence intervals (CI). See documentation for related model class in `model_parameters()`.
p_adjust

Character vector, if not NULL, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

select

Determines which columns and which layout columns are printed. There are three options for this argument:

1. Selecting columns by name or index
   
   select can be a character vector (or numeric index) of column names that should be printed. There are two pre-defined options for selecting columns:
   
   select = "minimal" prints coefficients, confidence intervals and p-values, while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
   
   select is a string with "tokens" enclosed in braces. These tokens will be replaced by their associated columns, where the selected columns will be collapsed into one column. However, it is possible to create multiple columns as well. Following tokens are replaced by the related coefficients or statistics: \{estimate\}, \{se\}, \{ci\} or \{ci_low\} and \{ci_high\}, \{p\} and \{stars\}. The token \{ci\} will be replaced by \{ci_low\}, \{ci_high\}. Furthermore, a | separates values into new cells/columns. If format = "html", a <br> inserts a line break inside a cell. See 'Examples'.

3. A string indicating a pre-defined layout
   
   select can be one of the following string values, to create one of the following pre-defined column layouts:
   
   • "ci": Estimates and confidence intervals, no asterisks for p-values. This is equivalent to select = "\{estimate\} \{ci\}".
   
   • "se": Estimates and standard errors, no asterisks for p-values. This is equivalent to select = "\{estimate\} \{se\}".
   
   • "ci_p": Estimates, confidence intervals and asterisks for p-values. This is equivalent to select = "\{estimate\}{stars} \{ci\}".
   
   • "se_p": Estimates, standard errors and asterisks for p-values. This is equivalent to select = "\{estimate\}{stars} \{se\}".
   
   • "ci_p2": Estimates, confidence intervals and numeric p-values, in two columns. This is equivalent to select = "\{estimate\} \{ci\}|\{p\}".
   
   • "se_p2": Estimate, standard errors and numeric p-values, in two columns. This is equivalent to select = "\{estimate\} \{se\}|\{p\}".

For `model_parameters()`, glue-like syntax is still experimental in the case of more complex models (like mixed models) and may not return expected results.

column_names

Character vector with strings that should be used as column headers. Must be of same length as number of models in ....

pretty_names

Can be TRUE, which will return "pretty" (i.e. more human readable) parameter names. Or "labels", in which case value and variable labels will be used as parameters names. The latter only works for "labelled" data, i.e. if the data used to fit the model had "label" and "labels" attributes. See also section Global Options to Customize Messages when Printing.

keep

Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data.
compare_parameters

frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular ex-
pression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: ",|two|three\)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop
verbose

Details

This function is in an early stage and does not yet cope with more complex models, and probably
does not yet properly render all model components. It should also be noted that when including
models with interaction terms, not only do the values of the parameters change, but so does their
meaning (from main effects, to simple slopes), thereby making such comparisons hard. Therefore,
you should not use this function to compare models with interaction terms with models without
interaction terms.

Value

A data frame of indices related to the model’s parameters.

Examples

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
compare_parameters(lm1, lm2)

# custom style
custom_compare_parameters(lm1, lm2, select = "{estimate}(stars) {{se}}")

# Not run:
# custom style, in HTML
result <- compare_parameters(lm1, lm2, select = "{estimate}<br>({se})\{(p)\}"
print_html(result)

# End(Not run)

data(mtcars)
m1 <- lm(mpg ~ wt, data = mtcars)
m2 <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
compare_parameters(m1, m2)
## Not run:
# exponentiate coefficients, but not for lm
compare_parameters(m1, m2, exponentiate = "nongaussian")

# change column names
compare_parameters("linear model" = m1, "logistic reg." = m2)
compare_parameters(m1, m2, column_names = c("linear model", "logistic reg."))

# or as list
compare_parameters(list(m1, m2))
compare_parameters(list("linear model" = m1, "logistic reg." = m2))

## End(Not run)

---

**convert_efa_to_cfa**  
*Conversion between EFA results and CFA structure*

### Description

Enables a conversion between Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) lavaan-ready structure.

### Usage

```r
convert_efa_to_cfa(model, ...)
```

**## S3 method for class 'fa'**

```r
class_to_cfa(model, threshold = "max", names = NULL, ...)
```

### Arguments

- **model**: An EFA model (e.g., a psych::fa object).
- **...**: Arguments passed to or from other methods.
- **threshold**: A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).
- **names**: Vector containing dimension names.

### Value

Converted index.
Examples

```r
library(parameters)
if (require("psych") && require("lavaan")) {
 efa <- psych::fa(attitude, nfactors = 3)

 model1 <- efa_to_cfa(efa)
 model2 <- efa_to_cfa(efa, threshold = 0.3)

 suppressWarnings(anova(
 lavaan::cfa(model1, data = attitude),
 lavaan::cfa(model2, data = attitude)
))
}
```

---

### degrees_of_freedom

**Degrees of Freedom** (DoF)

**Description**

Estimate or extract degrees of freedom of models parameters.

**Usage**

```r
degrees_of_freedom(model, ...)
```  
```r
Default S3 method:
degrees_of_freedom(model, method = "analytical", ...)
```

**Arguments**

- **model**: A statistical model.
- **...**: Currently not used.
- **method**: Can be "analytical" (default, DoFs are estimated based on the model type), "residual" in which case they are directly taken from the model if available (for Bayesian models, the goal (looking for help to make it happen) would be to refit the model as a frequentist one before extracting the DoFs), "ml1" (see \texttt{dof_ml1})", "betwithin" (see \texttt{dof_betwithin})", "satterthwaite" (see \texttt{dof_satterthwaite})", "kenward" (see \texttt{dof_kenward}) or "any", which tries to extract DoF by any of those methods, whichever succeeds. See 'Details'.

```r
dof(model, ...)
```
Details

Methods for calculating degrees of freedom:

- "analytical" for models of class \texttt{lmerMod}, Kenward-Roger approximated degrees of freedom are calculated, for other models, n-k (number of observations minus number of parameters).
- "residual" tries to extract residual degrees of freedom, and returns Inf if residual degrees of freedom could not be extracted.
- "any" first tries to extract residual degrees of freedom, and if these are not available, extracts analytical degrees of freedom.
- "nokr" same as "analytical", but does not Kenward-Roger approximation for models of class \texttt{lmerMod}. Instead, always uses n-k to calculate df for any model.
- "normal" returns Inf.
- "wald" returns residual df for models with t-statistic, and Inf for all other models.
- "kenward" calls \texttt{dof\_kenward()}.  
- "satterthwaite" calls \texttt{dof\_satterthwaite()}.  
- "ml1" calls \texttt{dof\_ml1()}. 
- "betwithin" calls \texttt{dof\_betwithin()}. 

For models with z-statistic, the returned degrees of freedom for model parameters is Inf (unless method = "ml1" or method = "betwithin"), because there is only one distribution for the related test statistic.

Note

In many cases, \texttt{degrees\_of\_freedom()} returns the same as \texttt{df\_residuals()}, or n-k (number of observations minus number of parameters). However, \texttt{degrees\_of\_freedom()} refers to the model’s parameters degrees of freedom of the distribution for the related test statistic. Thus, for models with z-statistic, results from \texttt{degrees\_of\_freedom()} and \texttt{df\_residuals()} differ. Furthermore, for other approximation methods like "kenward" or "satterthwaite", each model parameter can have a different degree of freedom.

Examples

```r
model <- lm(Sepal.Length ~ Petal.Length * Species, data = iris)
\texttt{dof(model)}

model <- glm(vs ~ mpg * cyl, data = mtcars, family = "binomial")
\texttt{dof(model)}
```

```
\#
\texttt{Not run:}
\texttt{if (require("lme4", quietly = TRUE)) {}
 model <- \texttt{lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)}
 \texttt{dof(model)}
\}}
```

```r
\texttt{if (require("rstanarm", quietly = TRUE)) {}
 model <- \texttt{stan_glm(}
```
display.parameters_model

Sepal.Length ~ Petal.Length * Species,
data = iris,
chains = 2,
refresh = 0
)
dof(model)
}

## End(Not run)

display.parameters_model

*Print tables in different output formats*

**Description**

Prints tables (i.e. data frame) in different output formats. `print_md()` is a alias for `display(format = "markdown")`.

**Usage**

```r
S3 method for class 'parameters_model'
display(
 object,
 format = "markdown",
 pretty_names = TRUE,
 split_components = TRUE,
 select = NULL,
 caption = NULL,
 subtitle = NULL,
 footer = NULL,
 align = NULL,
 digits = 2,
 ci_digits = 2,
 p_digits = 3,
 footer_digits = 3,
 ci_brackets = c("(", ")"),
 show_sigma = FALSE,
 show_formula = FALSE,
 zap_small = FALSE,
 font_size = "100%",
 line_padding = 4,
 column_labels = NULL,
 verbose = TRUE,
 ...
)
```

## S3 method for class 'parameters_sem'
display(
  object,
  format = "markdown",
  digits = 2,
  ci_digits = 2,
  p_digits = 3,
  ci_brackets = c("(", ")"),
  ...
)

## S3 method for class 'parameters_efa_summary'
display(object, format = "markdown", digits = 3, ...)

## S3 method for class 'parameters_efa'
display(
  object,
  format = "markdown",
  digits = 2,
  sort = FALSE,
  threshold = NULL,
  labels = NULL,
  ...
)

## S3 method for class 'equivalence_test_lm'
display(object, format = "markdown", digits = 2, ...)

## S3 method for class 'parameters_model'
format(
  x,
  pretty_names = TRUE,
  split_components = TRUE,
  select = NULL,
  digits = 2,
  ci_digits = 2,
  p_digits = 3,
  ci_width = NULL,
  ci_brackets = NULL,
  zap_small = FALSE,
  format = NULL,
  groups = NULL,
  ...
)

## S3 method for class 'parameters_model'
print_html(
  x,
  pretty_names = TRUE,
split_components = TRUE,
select = NULL,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,
digits = 2,

## S3 method for class 'parameters_model'
print_md(
x,
pretty_names = TRUE,
split_components = TRUE,
select = NULL,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,
digits = 2,

Arguments

object An object returned by `model_parameters()`, `simulate_parameters()`, `equivalence_test()` or `principal_components()`.
display.parameters_model

format String, indicating the output format. Can be "markdown" or "html".

pretty_names Can be TRUE, which will return "pretty" (i.e. more human readable) parameter names. Or "labels", in which case value and variable labels will be used as parameter names. The latter only works for "labelled" data, i.e. if the data used to fit the model had "label" and "labels" attributes. See also section Global Options to Customize Messages when Printing.

split_components Logical, if TRUE (default), For models with multiple components (zero-inflation, smooth terms,...), each component is printed in a separate table. If FALSE, model parameters are printed in a single table and a Component column is added to the output.

select Determines which columns and which layout columns are printed. There are three options for this argument:

1. Selecting columns by name or index
   select can be a character vector (or numeric index) of column names that should be printed. There are two pre-defined options for selecting columns: select = "minimal" prints coefficients, confidence intervals and p-values, while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
   select is a string with "tokens" enclosed in braces. These tokens will be replaced by their associated columns, where the selected columns will be collapsed into one column. However, it is possible to create multiple columns as well. Following tokens are replaced by the related coefficients or statistics: {estimate}, {se}, {ci} (or {ci_low} and {ci_high}), {p} and {stars}. The token {ci} will be replaced by {ci_low}, {ci_high}. Furthermore, a | separates values into new cells/columns. If format = "html", a <br> inserts a line break inside a cell. See 'Examples'.

3. A string indicating a pre-defined layout
   select can be one of the following string values, to create one of the following pre-defined column layouts:
   - "ci": Estimates and confidence intervals, no asterisks for p-values. This is equivalent to select = "{estimate}\{ci\}".
   - "se": Estimates and standard errors, no asterisks for p-values. This is equivalent to select = "{estimate}\{se\}".
   - "ci_p": Estimates, confidence intervals and asterisks for p-values. This is equivalent to select = "{estimate}\{stars\}\{ci\}".
   - "se_p": Estimates, standard errors and asterisks for p-values. This is equivalent to select = "{estimate}\{stars\}\{se\}".
   - "ci_p2": Estimates, confidence intervals and numeric p-values, in two columns. This is equivalent to select = "{estimate}\{ci\}\{p\}".
   - "se_p2": Estimate, standard errors and numeric p-values, in two columns. This is equivalent to select = "{estimate}\{se\}\{p\}".

For model_parameters(), glue-like syntax is still experimental in the case of more complex models (like mixed models) and may not return expected results.

caption Table caption as string. If NULL, depending on the model, either a default caption or no table caption is printed. Use caption = "" to suppress the table caption.
subtitle
Table title (same as caption) and subtitle, as strings. If NULL, no title or subtitle is
printed, unless it is stored as attributes (table_title, or its alias table_caption,
and table_subtitle). If x is a list of data frames, caption may be a list of ta-
ble captions, one for each table.

footer
Can either be FALSE or an empty string (i.e. "") to suppress the footer, NULL to
print the default footer, or a string. The latter will combine the string value with
the default footer.

align
Only applies to HTML tables. May be one of "left", "right" or "center".

digits, ci_digits, p_digits
Number of digits for rounding or significant figures. May also be "signif" to
return significant figures or "scientific" to return scientific notation. Control
the number of digits by adding the value as suffix, e.g. digits = "scientific4" to
have scientific notation with 4 decimal places, or digits = "signif5" for 5
significant figures (see also signif()).

footer_digits
Number of decimal places for values in the footer summary.

ci_brackets
Logical, if TRUE (default), CI-values are encompassed in square brackets (else
in parentheses).

show_sigma
Logical, if TRUE, adds information about the residual standard deviation.

show_formula
Logical, if TRUE, adds the model formula to the output.

zap_small
Logical, if TRUE, small values are rounded after digits decimal places. If
FALSE, values with more decimal places than digits are printed in scientific
notation.

font_size
For HTML tables, the font size.

line_padding
For HTML tables, the distance (in pixel) between lines.

column_labels
Labels of columns for HTML tables. If NULL, automatic column names are
generated. See 'Examples'.

verbose
Toggle messages and warnings.

... Arguments passed to or from other methods.

sort
Sort the loadings.

threshold
A value between 0 and 1 indicates which (absolute) values from the loadings
should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
loading per variable (the most simple structure).

labels
A character vector containing labels to be added to the loadings data. Usually,
the question related to the item.

x
An object returned by model_parameters().

ci_width
Minimum width of the returned string for confidence intervals. If not NULL and
width is larger than the string’s length, leading whitespaces are added to the
string. If width="auto", width will be set to the length of the longest string.

groups
Named list, can be used to group parameters in the printed output. List elements
may either be character vectors that match the name of those parameters that be-
long to one group, or list elements can be row numbers of those parameter rows
that should belong to one group. The names of the list elements will be used
as group names, which will be inserted as "header row". A possible use case might be to emphasize focal predictors and control variables, see 'Examples'. Parameters will be re-ordered according to the order used in groups, while all non-matching parameters will be added to the end.

Details

display() is useful when the table-output from functions, which is usually printed as formatted text-table to console, should be formatted for pretty table-rendering in markdown documents, or if knitted from rmarkdown to PDF or Word files. See vignette for examples.

Value

If format = "markdown", the return value will be a character vector in markdown-table format. If format = "html", an object of class gt_tbl.

See Also

print.parameters_model()

Examples

model <- lm(mpg ~ wt + cyl, data = mtcars)
mp <- model_parameters(model)
display(mp)

## Not run:
data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
lm3 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)
out <- compare_parameters(lm1, lm2, lm3)
print_html(out,
  select = "{coef}{stars}|({ci})",
  column_labels = c("Estimate", "95% CI")
)

# line break, unicode minus-sign
print_html(out,
  select = "{estimate}{stars}<br>({ci_low} \u2212 {ci_high})",
  column_labels = c("Est. (95% CI)"
)

## End(Not run)
dominance_analysis  Dominance Analysis

Description
Computes Dominance Analysis Statistics and Designations

Usage
dominance_analysis(
  model,
  sets = NULL,
  all = NULL,
  conditional = TRUE,
  complete = TRUE,
  quote_args = NULL,
  ...
)

Arguments
model A model object supported by performance::r2(). See 'Details'.
sets A (named) list of formula objects with no left hand side/response. If the list has
names, the name provided each element will be used as the label for the set.
Unnamed list elements will be provided a set number name based on its position
among the sets as entered.
Predictors in each formula are bound together as a set in the dominance analysis
and dominance statistics and designations are computed for the predictors to-
gether. Predictors in sets must be present in the model submitted to the model
argument and cannot be in the all argument.
all A formula with no left hand side/response.
Predictors in the formula are included in each subset in the dominance analy-
sis and the R2 value associated with them is subtracted from the overall value.
Predictors in all must be present in the model submitted to the model argument
and cannot be in the sets argument.
conditional Logical. If FALSE then conditional dominance matrix is not computed.
If conditional dominance is not desired as an importance criterion, avoiding
computing the conditional dominance matrix can save computation time.
complete Logical. If FALSE then complete dominance matrix is not computed.
If complete dominance is not desired as an importance criterion, avoiding com-
puting complete dominance designations can save computation time.
quote_args A character vector of arguments in the model submitted to model to quote()
prior to submitting to the dominance analysis. This is necessary for data masked
arguments (e.g., weights) to prevent them from being evaluated before being
applied to the model and causing an error.
...
Not used at current.
Details
Computes two decompositions of the model’s R2 and returns a matrix of designations from which predictor relative importance determinations can be obtained.

Note in the output that the "constant" subset is associated with a component of the model that does not directly contribute to the R2 such as an intercept. The "all" subset is apportioned a component of the fit statistic but is not considered a part of the dominance analysis and therefore does not receive a rank, conditional dominance statistics, or complete dominance designations.

The input model is parsed using insight::find_predictors(), does not yet support interactions, transformations, or offsets applied in the R formula, and will fail with an error if any such terms are detected.

The model submitted must accept a formula object as a formula argument. In addition, the model object must accept the data on which the model is estimated as a data argument. Formulas submitted using object references (i.e., lm(mtcars$mpg ~ mtcars$vs)) and functions that accept data as a non-data argument (e.g., survey::svyglm()) uses design) will fail with an error.

Models that return TRUE for the insight::model_info() function’s values "is_bayesian", "is_mixed", "is_gam", is_multivariate", "is_zero_inflated", or "is_hurdle" are not supported at current.

When performance::r2() returns multiple values, only the first is used by default.

The underlying domir::domin() function that implements the dominance statistic and designation computations has only been tested to R version 3.5 and will fail with an error if called in R versions < 3.5.

Value
Object of class "parameters_da".

An object of class "parameters_da" is a list of data.frames composed of the following elements:

General A data.frame which associates dominance statistics with model parameters. The variables in this data.frame include:
- Parameter Parameter names.
- General_Dominance Vector of general dominance statistics. The R2 ascribed to variables in the all argument are also reported here though they are not general dominance statistics.
- Percent Vector of general dominance statistics normalized to sum to 1.
- Ranks Vector of ranks applied to the general dominance statistics.
- Subset Names of the subset to which the parameter belongs in the dominance analysis. Each other data.frame returned will refer to these subset names.

Conditional A data.frame of conditional dominance statistics. Each observation represents a subset and each variable represents an the average increment to R2 with a specific number of subsets in the model. NULL if conditional argument is FALSE.

Complete A data.frame of complete dominance designations. The subsets in the observations are compared to the subsets referenced in each variable. Whether the subset in each variable dominates the subset in each observation is represented in the logical value. NULL if complete argument is FALSE.

Author(s)
Joseph Luchman
References


See Also
domir::domin()

Examples

```r
if (getRversion() >= "3.5.0" && require("domir") && require("performance")) {
 data(mtcars)

 # Dominance Analysis with Logit Regression
 model <- glm(vs ~ cyl + carb + mpg, data = mtcars, family = binomial())
 performance::r2(model)
 dominance_analysis(model)

 # Dominance Analysis with Weighted Logit Regression
 model_wt <- glm(vs ~ cyl + carb + mpg, data = mtcars, weights = wt, family = quasibinomial())
 dominance_analysis(model_wt, quote_args = "weights")
}
```

---

equivalence_test.lm  
Equivalence test

Description

Compute the (conditional) equivalence test for frequentist models.

Usage

```r
S3 method for class 'lm'
equivalence_test(
 x,
 range = "default",

)```
ci = 0.95,
rule = "classic",
verbose = TRUE,
...
)

S3 method for class 'merMod'
equivalence_test(
 x,
 range = "default",
 ci = 0.95,
 rule = "classic",
 effects = c("fixed", "random"),
 verbose = TRUE,
 ...
)

S3 method for class 'ggeffects'
equivalence_test(
 x,
 range = "default",
 rule = "classic",
 test = "pairwise",
 verbose = TRUE,
 ...
)

Arguments

- **x**: A statistical model.
- **range**: The range of practical equivalence of an effect. May be "default", to automatically define this range based on properties of the model's data.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **rule**: Character, indicating the rules when testing for practical equivalence. Can be "bayes", "classic" or "cet". See 'Details'.
- **verbose**: Toggle warnings and messages.
- **...**: Arguments passed to or from other methods.
- **effects**: Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".
- **test**: Hypothesis test for computing contrasts or pairwise comparisons. See \texttt{?ggeffects::hypothesis_test} for details.

Details

In classical null hypothesis significance testing (NHST) within a frequentist framework, it is not possible to accept the null hypothesis, H0 - unlike in Bayesian statistics, where such probability
One way to address this issue without Bayesian methods is **Equivalence Testing**, as implemented in `equivalence_test()`. While you either can reject the null hypothesis or claim an inconclusive result in NHST, the equivalence test - according to Pernet - adds a third category, "accept". Roughly speaking, the idea behind equivalence testing in a frequentist framework is to check whether an estimate and its uncertainty (i.e. confidence interval) falls within a region of "practical equivalence". Depending on the rule for this test (see below), statistical significance does not necessarily indicate whether the null hypothesis can be rejected or not, i.e. the classical interpretation of the p-value may differ from the results returned from the equivalence test.

Calculation of equivalence testing:

- "bayes" - Bayesian rule (Kruschke 2018)
 This rule follows the "HDI+ROPE decision rule" (Kruschke, 2014, 2018) used for the Bayesian counterpart. This means, if the confidence intervals are completely outside the ROPE, the "null hypothesis" for this parameter is "rejected". If the ROPE completely covers the CI, the null hypothesis is accepted. Else, it's undecided whether to accept or reject the null hypothesis. Desirable results are low proportions inside the ROPE (the closer to zero the better).
- "classic" - The TOST rule (Lakens 2017)
 This rule follows the "TOST rule", i.e. a two one-sided test procedure (Lakens 2017). Following this rule, practical equivalence of an effect (i.e. H0) is rejected, when the coefficient is statistically significant and the narrow confidence intervals (i.e. 1-2*alpha) include or exceed the ROPE boundaries. Practical equivalence is assumed (i.e. H0 "accepted") when the narrow confidence intervals are completely inside the ROPE, no matter if the effect is statistically significant or not. Else, the decision whether to accept or reject practical equivalence is undecided.
- "cet" - Conditional Equivalence Testing (Campbell/Gustafson 2018)
 The Conditional Equivalence Testing as described by Campbell and Gustafson 2018. According to this rule, practical equivalence is rejected when the coefficient is statistically significant. When the effect is not significant and the narrow confidence intervals are completely inside the ROPE, we accept (i.e. assume) practical equivalence, else it is undecided.

Levels of Confidence Intervals used for Equivalence Testing:

For `rule = "classic"`, "narrow" confidence intervals are used for equivalence testing. "Narrow" means, the the intervals are not 1 - alpha, but 1 - 2 * alpha. Thus, if `ci = .95`, alpha is assumed to be 0.05 and internally a ci-level of 0.90 is used. `rule = "cet"` uses both regular and narrow confidence intervals, while `rule = "bayes"` only uses the regular intervals.

p-Values:

The equivalence p-value is the area of the (cumulative) confidence distribution that is outside of the region of equivalence. It can be interpreted as p-value for rejecting the alternative hypothesis and accepting the "null hypothesis" (i.e. assuming practical equivalence). That is, a high p-value means we reject the assumption of practical equivalence and accept the alternative hypothesis.

Second Generation p-Value (SGPV):

Second generation p-values (SGPV) were proposed as a statistic that represents the proportion of data-supported hypotheses that are also null hypotheses (Blume et al. 2018, Lakens and Delacre 2020). It represents the proportion of the confidence interval range that is inside the ROPE.
ROPE range:
Some attention is required for finding suitable values for the ROPE limits (argument range). See 'Details' in bayestestR::rope_range() for further information.

Value
A data frame.

Note
There is also a plot()-method implemented in the see-package.

References

See Also
For more details, see bayestestR::equivalence_test(). Further readings can be found in the references.

Examples
```r
data(qol_cancer)
model <- lm(QoL ~ time + age + education, data = qol_cancer)

# default rule
equivalence_test(model)

# conditional equivalence test
equivalence_test(model, rule = "cet")

# plot method
if (require("see", quietly = TRUE)) {
  result <- equivalence_test(model)
```

factor_analysis

plot(result)
}

factor_analysis

Principal Component Analysis (PCA) and Factor Analysis (FA)

Description

The functions principal_components() and factor_analysis() can be used to perform a principal component analysis (PCA) or a factor analysis (FA). They return the loadings as a data frame, and various methods and functions are available to access / display other information (see the Details section).

Usage

factor_analysis(
 x,
 n = "auto",
 rotation = "none",
 sort = FALSE,
 threshold = NULL,
 standardize = TRUE,
 cor = NULL,
 ...
)

principal_components(
 x,
 n = "auto",
 rotation = "none",
 sparse = FALSE,
 sort = FALSE,
 threshold = NULL,
 standardize = TRUE,
 ...
)

rotated_data(pca_results, verbose = TRUE)

S3 method for class 'parameters_efa'
predict(
 object,
 newdata = NULL,
 names = NULL,
 keep_na = TRUE,
 verbose = TRUE,
 ...
)
Arguments

x A data frame or a statistical model.
n Number of components to extract. If n="all", then n is set as the number
 of variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number
 of components is selected through n_factors() resp. n_components(). In
 reduce_parameters(), can also be "max", in which case it will select all the
 components that are maximally pseudo-loaded (i.e., correlated) by at least one
 variable.
rotation If not "none", the PCA / FA will be computed using the psych package. Possible
 options include "varimax", "quartimax", "promax", "oblimin", "simplimax",
 or "cluster" (and more). See psych::fa() for details.
sort Sort the loadings.
threshold A value between 0 and 1 indicates which (absolute) values from the loadings
 should be removed. An integer higher than 1 indicates the n strongest loadings
 to retain. Can also be "max", in which case it will only display the maximum
 loading per variable (the most simple structure).
standardize A logical value indicating whether the variables should be standardized (cen-
 tered and scaled) to have unit variance before the analysis (in general, such
 scaling is advisable).
cor An optional correlation matrix that can be used (note that the data must still be
 passed as the first argument). If NULL, will compute it by running cor() on the
 passed data.
... Arguments passed to or from other methods.
sparse Whether to compute sparse PCA (SPCA, using sparcspca::spca()). SPCA
 attempts to find sparse loadings (with few nonzero values), which improves
 interpretability and avoids overfitting. Can be TRUE or "robust" (see sparcspca::robspca()).
pca_results The output of the principal_components() function.
verbose Toggle warnings.
object An object of class parameters_pca or parameters_efa
newdata An optional data frame in which to look for variables with which to predict. If
 omitted, the fitted values are used.
names Optional character vector to name columns of the returned data frame.
keep_na Logical, if TRUE, predictions also return observations with missing values from the original data, hence the number of rows of predicted data and original data is equal.

digits, labels Arguments for print().

Details

Methods and Utilities:

• n_components() and n_factors() automatically estimates the optimal number of dimensions to retain.
• performance::check_factorstructure() checks the suitability of the data for factor analysis using the sphericity (see performance::check_sphericity_bartlett()) and the KMO (see performance::check_kmo()) measure.
• performance::check_itemscale() computes various measures of internal consistencies applied to the (sub)scales (i.e., components) extracted from the PCA.
• Running summary() returns information related to each component/factor, such as the explained variance and the Eigenvalues.
• Running get_scores() computes scores for each subscale.
• Running closest_component() will return a numeric vector with the assigned component index for each column from the original data frame.
• Running rotated_data() will return the rotated data, including missing values, so it matches the original data frame.
• Running plot() visually displays the loadings (that requires the see-package to work).

Complexity:
Complexity represents the number of latent components needed to account for the observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would only load on one factor, a solution with evenly distributed items has a complexity greater than 1 (Hofman, 1978; Pettersson and Turkheimer, 2010).

Uniqueness:
Uniqueness represents the variance that is ‘unique’ to the variable and not shared with other variables. It is equal to 1 communality (variance that is shared with other variables). A uniqueness of 0.20 suggests that 20% or that variable’s variance is not shared with other variables in the overall factor model. The greater ‘uniqueness’ the lower the relevance of the variable in the factor model.

MSA:
MSA represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974) for each item. It indicates whether there is enough data for each factor give reliable results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and Fidell, 2013).

PCA or FA?:
There is a simplified rule of thumb that may help do decide whether to run a factor analysis or a principal component analysis:

• Run factor analysis if you assume or wish to test a theoretical model of latent factors causing observed variables.
• Run principal component analysis If you want to simply reduce your correlated observed variables to a smaller set of important independent composite variables.

(Source: CrossValidated)

Computing Item Scores:
Use get_scores() to compute scores for the "subscales" represented by the extracted principal components. get_scores() takes the results from principal_components() and extracts the variables for each component found by the PCA. Then, for each of these "subscales", raw means are calculated (which equals adding up the single items and dividing by the number of items). This results in a sum score for each component from the PCA, which is on the same scale as the original, single items that were used to compute the PCA. One can also use predict() to back-predict scores for each component, to which one can provide newdata or a vector of names for the components.

Explained Variance and Eingenvalues:
Use summary() to get the Eigenvalues and the explained variance for each extracted component. The eigenvectors and eigenvalues represent the "core" of a PCA: The eigenvectors (the principal components) determine the directions of the new feature space, and the eigenvalues determine their magnitude. In other words, the eigenvalues explain the variance of the data along the new feature axes.

Value
A data frame of loadings.

References

Examples

```r
library(parameters)

# Principal Component Analysis (PCA) -------------------
principal_components(mtcars[, 1:7], n = "all", threshold = 0.2)

# Automated number of components
principal_components(mtcars[, 1:4], n = "auto")

# Sparse PCA
```
fish

Sample data set

Description
A sample data set, used in tests and some examples.

format_df_adjust

Format the name of the degrees-of-freedom adjustment methods

Description
Format the name of the degrees-of-freedom adjustment methods.
Usage

format_df_adjust(
 method,
 approx_string = "-approximated",
 dof_string = " degrees of freedom"
)

Arguments

<table>
<thead>
<tr>
<th>method</th>
<th>Name of the method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx_string, dof_string</td>
<td>Suffix added to the name of the method in the returned string.</td>
</tr>
</tbody>
</table>

Value

A formatted string.

Examples

library(parameters)

format_df_adjust("kenward")
format_df_adjust("kenward", approx_string = ",
 dof_string = " DoF")

format_order

Order (first, second, ...) formatting

Description

Format order.

Usage

format_order(order, textual = TRUE, ...)

Arguments

<table>
<thead>
<tr>
<th>order</th>
<th>value or vector of orders.</th>
</tr>
</thead>
<tbody>
<tr>
<td>textual</td>
<td>Return number as words. If FALSE, will run insight::format_value().</td>
</tr>
<tr>
<td>...</td>
<td>Arguments to be passed to insight::format_value() if textual is FALSE.</td>
</tr>
</tbody>
</table>

Value

A formatted string.
format_parameters

Examples

format_order(2)
format_order(8)
format_order(25, textual = FALSE)

Description

This function formats the names of model parameters (coefficients) to make them more human-readable.

Usage

format_parameters(model, ...)

Default S3 method:
format_parameters(model, brackets = c("[", "]"), ...)

Arguments

model A statistical model.
...
Currently not used.
brackets A character vector of length two, indicating the opening and closing brackets.

Value

A (names) character vector with formatted parameter names. The value names refer to the original names of the coefficients.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between a * b a : b, and a / b, suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on a or b being factors of covariates, included as main effects or not, etc.). Their interpretation depends on the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as modelbased, emmeans, ggeffects, or marginaleffects. To raise awareness for this issue, you may use print(. . . , show_formula=TRUE) to add the model-specification to the output of the print() method for model_parameters().
Examples

```r
model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
format_parameters(model)
```

```r
model <- lm(Sepal.Length ~ Petal.Length + (Species / Sepal.Width), data = iris)
format_parameters(model)
```

```r
model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
format_parameters(model)
```

```r
model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
format_parameters(model)
```

format_p_adjust

Format the name of the p-value adjustment methods

Description

Format the name of the p-value adjustment methods.

Usage

```r
format_p_adjust(method)
```

Arguments

- `method` Name of the method.

Value

A string with the full surname(s) of the author(s), including year of publication, for the adjustment-method.

Examples

```r
library(parameters)
format_p_adjust("holm")
format_p_adjust("bonferroni")
```
get_scores

Get Scores from Principal Component Analysis (PCA)

Description

get_scores() takes n_items amount of items that load the most (either by loading cutoff or number) on a component, and then computes their average.

Usage

get_scores(x, n_items = NULL)

Arguments

- **x**: An object returned by `principal_components()`.
- **n_items**: Number of required (i.e. non-missing) items to build the sum score. If NULL, the value is chosen to match half of the number of columns in a data frame.

Details

get_scores() takes the results from `principal_components()` and extracts the variables for each component found by the PCA. Then, for each of these "subscales", row means are calculated (which equals adding up the single items and dividing by the number of items). This results in a sum score for each component from the PCA, which is on the same scale as the original, single items that were used to compute the PCA.

Value

A data frame with subscales, which are average sum scores for all items from each component.

Examples

```r
if (require("psych")) {
  pca <- principal_components(mtcars[, 1:7], n = 2, rotation = "varimax")

  # PCA extracted two components
  pca

  # assignment of items to each component
  closest_component(pca)

  # now we want to have sum scores for each component
  get_scores(pca)

  # compare to manually computed sum score for 2nd component, which
  # consists of items "hp" and "qsec"
  (mtcars$hp + mtcars$qsec) / 2
}
```
model_parameters Model Parameters

Description

Compute and extract model parameters. The available options and arguments depend on the modeling package and model class. Follow one of these links to read the model-specific documentation:

- Default method: lm, glm, stats, censReg, MASS, survey, ...
- Additive models: bamlls, gamlls, mgcv, scam, VGAM, Gam, gamm, ...
- ANOVA: afex, aov, anova, ...
- Bayesian: BayesFactor, blavaan, brms, MCMCglmm, posterior, rstanarm, bayesQR, bcplm, BGGM, blmrm, blrm, mcmc.list, MCMCglmm, ...
- Clustering: hclust, kmeans, mclust, pam, ...
- Correlations, t-tests, etc.: lmtest, ttest, pairwise.ttest, ...
- Meta-Analysis: metaBMA, metafor, metaplus, ...
- Mixed models: cplm, glmTMB, lme4, lmerTest, nlme, ordinal, robustlmm, spaMM, mixed, MixMod, ...
- Multinomial, ordinal and cumulative link: brglm2, DirichletReg, nnet, ordinal, mlm, ...
- Multiple imputation: mice
- PCA, FA, CFA, SEM: FactoMineR, lavaan, psych, sem, ...
- Zero-inflated and hurdle: cplm, mhurdle, pscl, ...
- Other models: aod, bbmle, betareg, emmeans, epiR, ggeffects, glmx, ipvixed, ivprobit, JRM, lmodel2, logistf, marginaleffects, margins, maxLik, mediation, mfx, multcomp, mvord, plm, PMCMRplus, quantreg, selection, systemfit, tidymodels, varEST, WRS2, bfs1, deltaMethod, fitdistr, mjoint, mle, model.avg, ...

Usage

model_parameters(model, ...)

parameters(model, ...)

Arguments

model Statistical Model.

... Arguments passed to or from other methods. Non-documented arguments are
 digits, p_digits, ci_digits and footer_digits to set the number of digits
 for the output. If s_value = TRUE, the p-value will be replaced by the S-value in
 the output (cf. Rafi and Greenland 2020). pd adds an additional column with the
 probability of direction (see bayestestR::p_direction() for details). groups
 can be used to group coefficients. It will be passed to the print-method, or can di-
 rectly be used in print(), see documentation in print.parameters_model().
Furthermore, see ‘Examples’ in `model_parameters.default()`. For developers, whose interest mainly is to get a "tidy" data frame of model summaries, it is recommended to set `pretty_names = FALSE` to speed up computation of the summary table.

Value

A data frame of indices related to the model’s parameters.

Standardization of model coefficients

Standardization is based on `standardize_parameters()`. In case of `standardize = "refit"`, the data used to fit the model will be standardized and the model is completely refitted. In such cases, standard errors and confidence intervals refer to the standardized coefficient. The default, `standardize = "refit"`, never standardizes categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages or other software packages (like SPSS). To mimic behaviour of SPSS or packages such as `lm.beta`, use `standardize = "basic"`.

Standardization Methods

- **refit**: This method is based on a complete model re-fit with a standardized version of the data. Hence, this method is equal to standardizing the variables before fitting the model. It is the "purest" and the most accurate (Neter et al., 1989), but it is also the most computationally costly and long (especially for heavy models such as Bayesian models). This method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a robust standardization of data, i.e., based on the median and MAD instead of the mean and SD. See `standardize()` for more details. Note that `standardize_parameters(method = "refit")` may not return the same results as fitting a model on data that has been standardized with `standardize()`: `standardize_parameters()` used the data used by the model fitting function, which might not be same data if there are missing values. see the `remove_na` argument in `standardize()`.

- **posthoc**: Post-hoc standardization of the parameters, aiming at emulating the results obtained by "refit" without refitting the model. The coefficients are divided by the standard deviation (or MAD if robust) of the outcome (which becomes their expression 'unit'). Then, the coefficients related to numeric variables are additionally multiplied by the standard deviation (or MAD if robust) of the related terms, so that they correspond to changes of 1 SD of the predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y"). This does not apply to binary variables or factors, so the coefficients are still related to changes in levels. This method is not accurate and tend to give aberrant results when interactions are specified.

- **basic**: This method is similar to method = "posthoc", but treats all variables as continuous: it also scales the coefficient by the standard deviation of model’s matrix’ parameter of factors levels (transformed to integers) or binary predictors. Although being inappropriate for these cases, this method is the one implemented by default in other software packages, such as `lm.beta::lm.beta()`.

- **smart** (Standardization of Model’s parameters with Adjustment, Reconnaissance and Transformation - experimental): Similar to method = “posthoc” in that it does not involve model refitting. The difference is that the SD (or MAD if robust) of the response is computed on the
relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and C is entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance of the response at the intercept only. As a result, the coefficients for effects of factors are similar to a Glass’ delta.

- **pseudo (for 2-level (G)LMMs only):** In this (post-hoc) method, the response and the predictor are standardized based on the level of prediction (levels are detected with `performance::check_heterogeneity_bias`); Predictors are standardized based on their SD at level of prediction (see also `datawizard::demean()`);
 The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model, where \(\sqrt{\text{random-intercept-variance}} \) is used for level 2 predictors, and \(\sqrt{\text{residual-variance}} \) is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-group variable is found to have access between-group variance.

See also package vignette.

Labeling the Degrees of Freedom

Throughout the `parameters` package, we decided to label the residual degrees of freedom `df_error`. The reason for this is that these degrees of freedom not always refer to the residuals. For certain models, they refer to the estimate error - in a linear model these are the same, but in - for instance - any mixed effects model, this isn’t strictly true. Hence, we think that `df_error` is the most generic label for these degrees of freedom.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the **Wald method.** The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

- Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.
Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"

- Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See `ci_ml1()`.

"betwithin"

- Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See `ci_betwithin()`.

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ²-squared distribution to compute CIs and p-values.

"profile"

- Applies to non-Bayesian models of class `glm`, `polr`, `merMod` or `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

- Applies to non-Bayesian models of class `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:
Bootstrap-based inference is based on **resampling** and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to **all models** (including Bayesian models). For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as **equal tailed intervals** using the quantiles of the bootstrap or posterior samples; p-values are based on the **probability of direction**. See `bayestestR::eti()`.

"hdi"

- Applies to **all models** (including Bayesian models). For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as **highest density intervals** for the bootstrap or posterior samples; p-values are based on the **probability of direction**. See `bayestestR::hdi()`.

"bci" (or "bcai")

- Applies to **all models** (including Bayesian models). For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as **bias corrected and accelerated intervals** for the bootstrap or posterior samples; p-values are based on the **probability of direction**. See `bayestestR::bci()`.

"si"

- Applies to **Bayesian models** with proper priors. CIs computed as **support intervals** comparing the posterior samples against the prior samples; p-values are based on the **probability of direction**. See `bayestestR::si()`.

"boot"

- Applies to **non-Bayesian models** of class `merMod`. CIs computed using **parametric bootstrapping** (simulating data from the fitted model); p-values computed using the Wald method with a **normal-distribution** (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (`bayestestR::p_direction()`), which is converted into a p-value using `bayestestR::pd_to_p()`.

Interpretation of Interaction Terms

Note that the **interpretation** of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between \(a \times b \) and \(a / b \), suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on \(a \) or \(b \) being factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as `modelbased`, `emmeans`, `ggeffects`, or `marginaleffects`. To raise awareness for this issue, you may use `print(..., show_formula=TRUE)` to add the model-specification to the output of the `print()` method for `model_parameters()`.
Global Options to Customize Messages and Tables when Printing

The verbose argument can be used to display or silence messages and warnings for the different functions in the parameters package. However, some messages providing additional information can be displayed or suppressed using options():

- parameters_summary: options(parameters_summary = TRUE) will override the summary argument in model_parameters() and always show the model summary for non-mixed models.
- parameters_mixed_summary: options(parameters_mixed_summary = TRUE) will override the summary argument in model_parameters() for mixed models, and will then always show the model summary.
- parameters_cimethod: options(parameters_cimethod = TRUE) will show the additional information about the approximation method used to calculate confidence intervals and p-values. Set to FALSE to hide this message when printing model_parameters() objects.
- parameters_exponentiate: options(parameters_exponentiate = TRUE) will show the additional information about how to interpret coefficients of models with log-transformed response variables or with log-/logit-links when the exponentiate argument in model_parameters() is not TRUE. Set this option to FALSE to hide this message when printing model_parameters() objects.

There are further options that can be used to modify the default behaviour for printed outputs:

- parameters_labels: options(parameters_labels = TRUE) will use variable and value labels for pretty names, if data is labelled. If no labels available, default pretty names are used.
- parameters_interaction: options(parameters_interaction = <character>) will replace the interaction mark (by default, *) with the related character.
- parameters_select: options(parameters_select = <value>) will set the default for the select argument. See argument's documentation for available options.

Note

The print() method has several arguments to tweak the output. There is also a plot()-method implemented in the see-package, and a dedicated method for use inside markdown files, print_md().

For developers, if speed performance is an issue, you can use the (undocumented) pretty_names argument, e.g. model_parameters(..., pretty_names = FALSE). This will skip the formatting of the coefficient names and make model_parameters() faster.

References

See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

Parameters from ANOVAs

Description

Parameters from ANOVAs

Usage

```r
## S3 method for class 'aov'
model_parameters(
  model,
  type = NULL,
  df_error = NULL,
  ci = NULL,
  alternative = NULL,
  test = NULL,
  power = FALSE,
  effectsize_type = NULL,
  keep = NULL,
  drop = NULL,
  table_wide = FALSE,
  verbose = TRUE,
  omega_squared = NULL,
  eta_squared = NULL,
  epsilon_squared = NULL,
  ...
)

## S3 method for class 'anova'
model_parameters(
  model,
  type = NULL,
  df_error = NULL,
  ci = NULL,
  alternative = NULL,
  test = NULL,
  power = FALSE,
  effectsize_type = NULL,
  keep = NULL,
  drop = NULL,
  table_wide = FALSE,
  verbose = TRUE,
```
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...

S3 method for class 'aovlist'
model_parameters(
 model,
 type = NULL,
 df_error = NULL,
 ci = NULL,
 alternative = NULL,
 test = NULL,
 power = FALSE,
 effectsize_type = NULL,
 keep = NULL,
 drop = NULL,
 table_wide = FALSE,
 verbose = TRUE,
 omega_squared = NULL,
 eta_squared = NULL,
 epsilon_squared = NULL,
 ...
)

S3 method for class 'afex_aov'
model_parameters(
 model,
 effectsize_type = NULL,
 df_error = NULL,
 type = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'anova.rms'
model_parameters(
 model,
 type = NULL,
 df_error = NULL,
 ci = NULL,
 alternative = NULL,
 test = NULL,
 power = FALSE,
 effectsize_type = NULL,
model_parameters.aov

keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)

S3 method for class 'Anova.mlm'
model_parameters(
 model,
 type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
)

S3 method for class 'maov'
model_parameters(
 model,
 type = NULL,
df_error = NULL,
ci = NULL,
alternative = NULL,
test = NULL,
power = FALSE,
effectsize_type = NULL,
keep = NULL,
drop = NULL,
table_wide = FALSE,
verbose = TRUE,
omega_squared = NULL,
eta_squared = NULL,
epsilon_squared = NULL,
...
Arguments

model Object of class \texttt{aov()}, \texttt{anova()}, \texttt{aovlist}, \texttt{Gam}, \texttt{manova()}, \texttt{Anova.mlm}, \texttt{afex_aov} or \texttt{maov}.

type Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables using \texttt{car::Anova()} will be returned. (Ignored for \texttt{afex_aov}.)
df_error Denominator degrees of freedom (or degrees of freedom of the error estimate, i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from mixed models. See 'Examples'. (Ignored for \texttt{afex_aov}.)
ci Confidence Interval (CI) level for effect sizes specified in \texttt{effectsize_type}. The default, NULL, will compute no confidence intervals. \texttt{ci} should be a scalar between 0 and 1.
alternative A character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "1", "two"...). See section \texttt{One-Sided CIs} in the \texttt{effectsize_CIs} vignette.
test String, indicating the type of test for \texttt{Anova.mlm} to be returned. If "multivariate" (or NULL), returns the summary of the multivariate test (that is also given by the \texttt{print}-method). If \texttt{test = "univariate"}, returns the summary of the univariate test.
power Logical, if \texttt{TRUE}, adds a column with power for each parameter.
effectsize_type The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.
keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. \texttt{keep} may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If \texttt{keep} is a character vector, every parameter name in the "Parameter" column that matches the regular expression in \texttt{keep} will be selected from the returned data frame (and vice versa, all parameter names matching \texttt{drop} will be excluded). Furthermore, if \texttt{keep} has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If \texttt{keep} is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where \texttt{model_parameters()} returns multiple columns with parameter components, like in \texttt{model_parameters.lavaan()}. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the \$\texttt{Parameter} column of the parameters table to get the exact parameter names.
drop See \texttt{keep}.
table_wide Logical that decides whether the ANOVA table should be in wide format, i.e. should the numerator and denominator degrees of freedom be in the same row. Default: \texttt{FALSE}.
verbose Toggle warnings and messages.
omega_squared, eta_squared, epsilon_squared
Depreciated. Please use effectsize_type.

Arguments passed to effectsize::effectsize(). For example, to calculate partial effect sizes types, use partial = TRUE. For objects of class htest or BFBayesFactor, adjust = TRUE can be used to return bias-corrected effect sizes, which is advisable for small samples and large tables. See also ?effectsize::eta_squared for arguments partial and generalized; ?effectsize::phi for adjust; and ?effectsize::oddratio for log.

Details

• For an object of class htest, data is extracted via insight::get_data(), and passed to the relevant function according to:
 - A t-test depending on type: "cohens_d" (default), "hedges_g", or one of "p_superiority", "u1", "u2", "u3", "overlap".
 - A Chi-squared tests of independence or Fisher’s Exact Test, depending on type: "cramers_v" (default), "tschuprows_t", "phi", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", "riskratio", "arr", or "nnt".
 - A Chi-squared tests of goodness-of-fit, depending on type: "fei" (default) "cohens_w", "pearsons_c"
 - A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
 - A McNemar test returns Cohen’s g.
 - A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or one of "p_superiority", "vda", "u2", "u3", "overlap".
 - A Kruskal-Wallis test depending on type: "epsilon" (default) or "eta".
 - A Friedman test returns Kendall’s W. (Where applicable, ci and alternative are taken from the htest if not otherwise provided.)

• For an object of class BFBayesFactor, using bayestestR::describe_posterior(),
 - A t-test depending on type: "cohens_d" (default) or one of "p_superiority", "u1", "u2", "u3", "overlap".
 - A correlation test returns r.
 - A contingency table test, depending on type: "cramers_v" (default), "phi", "tschuprows_t", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio", "arr", or "nnt".
 - A proportion test returns p.

• Objects of class anova, aov, aovlist or afex_aov, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".

• Other objects are passed to parameters::standardize_parameters().

For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.

Value

A data frame of indices related to the model’s parameters.
Note

For ANOVA-tables from mixed models (i.e. `anova(lmer())`), only partial or adjusted effect sizes can be computed. Note that type 3 ANOVAs with interactions involved only give sensible and informative results when covariates are mean-centred and factors are coded with orthogonal contrasts (such as those produced by `contr.sum`, `contr.poly`, or `contr.helmert`, but not by the default `contr.treatment`).

Examples

def <- iris
def$Sepal.Big <- ifelse(df$Sepal.Width >= 3, "Yes", "No")

model <- aov(Sepal.Length ~ Sepal.Big, data = df)
model_parameters(model)

model_parameters(model, effectsize_type = c("omega", "eta"), ci = 0.9)

model <- anova(lm(Sepal.Length ~ Sepal.Big, data = df))
model_parameters(model)

model_parameters(
 model,
 effectsize_type = c("omega", "eta", "epsilon"),
 alternative = "greater"
)

model <- aov(Sepal.Length ~ Sepal.Big + Error(Species), data = df)
model_parameters(model)

Not run:
mm <- lmer(Sepal.Length ~ Sepal.Big + Petal.Width + (1 | Species), data = df)
model <- anova(mm)

simple parameters table
model_parameters(model)

parameters table including effect sizes
model_parameters(
 model,
 effectsize_type = "eta",
 ci = 0.9,
 df_error = dof_satterthwaite(mm)[2:3]
)

End(Not run)
Parameters from Bayesian Exploratory Factor Analysis

Description

Format Bayesian Exploratory Factor Analysis objects from the BayesFM package.

Usage

```r
## S3 method for class 'befa'
model_parameters(
  model,
  sort = FALSE,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = NULL,
  verbose = TRUE,
  ...
)
```

Arguments

- `model` Bayesian EFA created by the `BayesFM::befa`.
- `sort` Sort the loadings.
- `centrality` The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- `dispersion` Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).
- `ci` Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).
- `ci_method` The type of index used for Credible Interval. Can be "ETI" (default, see `eti()`), "HDI" (see `hdi()`), "BCI" (see `bci()`), "SPI" (see `spi()`), or "SI" (see `si()`).
- `test` The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding `bayestestR` function is called (e.g. `rope()` or `p_direction()`) and its results included in the summary output.
- `verbose` Toggle warnings.
- `...` Arguments passed to or from other methods.

Value

A data frame of loadings.
Examples

```r
library(parameters)

if (require("BayesFM")) {
  efa <- BayesFM::befa(mtcars, iter = 1000)
  results <- model_parameters(efa, sort = TRUE, verbose = FALSE)
  results
  efa_to_cfa(results, verbose = FALSE)
}
```

model_parameters.BFBayesFactor

Parameters from `BayesFactor` objects

Description

Parameters from `BFBayesFactor` objects from `{BayesFactor}` package.

Usage

```r
## S3 method for class 'BFBayesFactor'
model_parameters(
  model,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = "pd",
  rope_range = "default",
  rope_ci = 0.95,
  priors = TRUE,
  effectsize_type = NULL,
  include_proportions = FALSE,
  verbose = TRUE,
  cohens_d = NULL,
  cramers_v = NULL,
  ...
)
```

Arguments

- **model**: Object of class `BFBayesFactor`.
- **centrality**: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- **dispersion**: Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).
ci
Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).

```markdown
**ci**
```

```markdown
**ci_method**
The type of index used for Credible Interval. Can be "ETI" (default, see eti()), "HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).
```

```markdown
**test**
The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding `bayestestR` function is called (e.g. rope() or p_direction()) and its results included in the summary output.
```

```markdown
**rope_range**
ROPE's lower and higher bounds. Should be a list of two values (e.g., c(-0.1, 0.1)) or "default". If "default", the bounds are set to x ± 0.1*SD(response).
```

```markdown
**rope_ci**
The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.
```

```markdown
**priors**
Add the prior used for each parameter.
```

```markdown
**effectsize_type**
The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.
```

```markdown
**include_proportions**
Logical that decides whether to include posterior cell proportions/counts for Bayesian contingency table analysis (from BayesFactor::contingencyTableBF()). Defaults to FALSE, as this information is often redundant.
```

```markdown
**verbose**
Toggle warnings and messages.
```

```markdown
**cohens_d, cramers_v**
Deprecated. Please use `effectsize_type`.
```

```markdown
**...**
Additional arguments to be passed to or from methods.
```

Details
The meaning of the extracted parameters:

- For `BayesFactor::ttestBF()`: Difference is the raw difference between the means.
- For `BayesFactor::correlationBF()`: rho is the linear correlation estimate (equivalent to Pearson’s r).
- For `BayesFactor::lmBF() / BayesFactor::generalTestBF() / BayesFactor::regressionBF() / BayesFactor::anovaBF()`: in addition to parameters of the fixed and random effects, there are: mu is the (mean-centered) intercept; sig2 is the model’s sigma; g / g_* are the g parameters; See the *Bayesian Factors for ANOVAs* paper (doi:10.1016/j.jmp.2012.08.001).

Value
A data frame of indices related to the model’s parameters.
Examples

```r
if (require("BayesFactor")) {
  # Bayesian t-test
  model <- ttestBF(x = rnorm(100, 1, 1))
  model_parameters(model)
  model_parameters(model, cohens_d = TRUE, ci = .9)

  # Bayesian contingency table analysis
  data(raceDolls)
  bf <- contingencyTableBF(raceDolls, sampleType = "indepMulti", fixedMargin = "cols")
  model_parameters(bf,
                  centrality = "mean",
                  dispersion = TRUE,
                  verbose = FALSE,
                  effectsize_type = "cramers_v"
  )
}
```

Description

Extract and compute indices and measures to describe parameters of generalized additive models (GAM(M)s).

Usage

```r
## S3 method for class 'cgam'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "residual",
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'gam'
model_parameters(
```
model,
ci = 0.95,
ci_method = "residual",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...)

S3 method for class 'gamlss'
model_parameters(
 model,
ci = 0.95,
ci_method = "residual",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...)

S3 method for class 'gamm'
model_parameters(
 model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
verbose = TRUE,
...)

S3 method for class 'Gam'
model_parameters(
 model,
effectsize_type = NULL,
df_error = NULL,
type = NULL,
table_wide = FALSE,
verbose = TRUE,
Arguments

model A gam/gamm model.

.ci Confidence Interval (CI) level. Default to 0.95 (95%).

.ci_method Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

.bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).
iterations The number of bootstrap replicates. This only apply in the case of bootstrapped
frequentist models.

standardize The method used for standardizing the parameters. Can be NULL (default; no
standardization), "refit" (for re-fitting the model on standardized data) or one
of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Importantly:

• The "refit" method does not standardize categorical predictors (i.e. fac-
tors), which may be a different behaviour compared to other R packages
(such as lm.beta) or other software packages (like SPSS). to mimic such
behaviours, either use standardize="basic" or standardize the data with
datawizard::standardize(force=TRUE) before fitting the model.

• For mixed models, when using methods other than "refit", only the fixed
effects will be standardized.

• Robust estimation (i.e., vcov set to a value other than NULL) of standardized
parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related
confidence intervals). This is typical for logistic regression, or more generally
speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note:
Delta-method standard errors are also computed (by multiplying the standard
errors by the transformed coefficients). This is to mimic behaviour of other soft-
ware packages, such as Stata, but these standard errors poorly estimate uncer-
tainty for the transformed coefficient. The transformed confidence interval more
clearly captures this uncertainty. For compare_parameters(), exponentiate
= "nongaussian" will only exponentiate coefficients from non-Gaussian fami-
lies.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See
stats::p.adjust() for details. Further possible adjustment methods are "tukey",
"scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid
objects (from emmeans).

keep Character containing a regular expression pattern that describes the parameters
that should be included (for keep) or excluded (for drop) in the returned data
frame. keep may also be a named list of regular expressions. All non-matching
parameters will be removed from the output. If keep is a character vector, ev-
ery parameter name in the "Parameter" column that matches the regular
expression in keep will be selected from the returned data frame (and vice versa,
all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a
regular expression pattern like this: "(one|two|three)". If keep is a named
list of regular expression patterns, the names of the list-element should equal
the column name where selection should be applied. This is useful for model
objects where model_parameters() returns multiple columns with parameter
components, like in model_parameters.lavaan(). Note that the regular ex-
pression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the
$Parameter column of the parameters table to get the exact parameter names.

drop See keep.
verbose

Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

effectsize_type

The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See ‘Details’. For Anova models, can also be a character vector with multiple effect size names.
df_error

Denominator degrees of freedom (or degrees of freedom of the error estimate, i.e., the residuals). This is used to compute effect sizes for ANOVA-tables from mixed models. See ‘Examples’. (Ignored for afex_aov.)
type

Numeric, type of sums of squares. May be 1, 2 or 3. If 2 or 3, ANOVA-tables using car::Anova() will be returned. (Ignored for afex_aov.)
table_wide

Logical that decides whether the ANOVA table should be in wide format, i.e. should the numerator and denominator degrees of freedom be in the same row. Default: FALSE.

Details

The reporting of degrees of freedom for the spline terms slightly differs from the output of summary(model), for example in the case of mgcv::gam(). The estimated degrees of freedom, column edf in the summary-output, is named df in the returned data frame, while the column df_error in the returned data frame refers to the residual degrees of freedom that are returned by df.residual(). Hence, the values in the the column df_error differ from the column Ref.df from the summary, which is intentional, as these reference degrees of freedom “is not very interpretable” (web).

Value

A data frame of indices related to the model’s parameters.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("mgcv")) {
 dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
 model <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
 model_parameters(model)
}
Description

Parameters from (linear) mixed models.

Usage

```r
## S3 method for class 'cpglmm'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
  group_level = FALSE,
  exponentiate = FALSE,
  p_adjust = NULL,
  include_sigma = FALSE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...)

## S3 method for class 'glmmTMB'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "wald",
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
  component = "all",
  group_level = FALSE,
  exponentiate = FALSE,
  p_adjust = NULL,
  wb_component = TRUE,
  summary = getOption("parameters_mixed_summary", FALSE),
  keep = NULL,
...)
```
S3 method for class 'merMod'

```r
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
  group_level = FALSE,
  exponentiate = FALSE,
  p_adjust = NULL,
  wb_component = TRUE,
  summary =getOption("parameters_mixed_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...)
```

S3 method for class 'merModList'

```r
model_parameters(
  model,
  ci = 0.95,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...)
```

S3 method for class 'mixed'

```r
model_parameters(
  model,
  ci = 0.95,
  ci_method = "wald",
  ci_random = NULL,
  ...)
```
model_parameters.cppLmm

S3 method for class 'MixMod'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "wald",
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 effects = "all",
 component = "all",
 group_level = FALSE,
 exponentiate = FALSE,
 p_adjust = NULL,
 wb_component = TRUE,
 summary = getOption("parameters_mixed_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 include_sigma = FALSE,
 ...
)

S3 method for class 'mixor'
model_parameters(
 model,
 ci = 0.95,
 effects = "all",
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
```r
model_parameters.cpglmm

  exponentiate = FALSE,
  include_sigma = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  
  }
)

## S3 method for class 'lme'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  ci_random = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  effects = "all",
  group_level = FALSE,
  exponentiate = FALSE,
  p_adjust = NULL,
  wb_component = TRUE,
  summary = getOption("parameters_mixed_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  include_sigma = FALSE,
  vcov = NULL,
  vcov_args = NULL,
  ...
)

## S3 method for class 'clmm2'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "scale"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
```
S3 method for class 'clmm'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 effects = "all",
 group_level = FALSE,
 exponentiate = FALSE,
 p_adjust = NULL,
 include_sigma = FALSE,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'rlmerMod'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 ci_random = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 effects = "all",
 group_level = FALSE,
 exponentiate = FALSE,
 p_adjust = NULL,
 include_sigma = FALSE,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'HLfit'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
model

Arguments

model A mixed model.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method Method for computing degrees of freedom for confidence intervals (CI) and
the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite",
"kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin",
"hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence
intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

ci_random Logical, if TRUE, includes the confidence intervals for random effects parameters. Only applies if effects is not "fixed" and if ci is not NULL. Set ci_random = FALSE if computation of the model summary is too much time consuming. By default, ci_random = NULL, which uses a heuristic to guess if computation of confidence intervals for random effects is fast enough or not. For models with larger sample size and/or more complex random effects structures, confidence intervals will not be computed by default, for simpler models or fewer observations, confidence intervals will be included. Set explicitly to TRUE or FALSE to enforce or omit calculation of confidence intervals.

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of draws to simulate/bootstrap.

standardize The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-ffitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters(). Importantly:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
• Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

effects Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".

group_level Logical, for multilevel models (i.e. models with random effects) and when effects = "all" or effects = "random", include the parameters for each group level from random effects. If group_level = FALSE (the default), only information on SD and COR are shown.

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

include_sigma Logical, if TRUE, includes the residual standard deviation. For mixed models, this is defined as the sum of the distribution-specific variance and the variance for the additive overdispersion term (see insight::get_variance() for details). Defaults to FALSE for mixed models due to the longer computation time.

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this:

"(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See keep.
verbose

Toggle warnings and messages.

Arguments passed to or from other methods. For instance, when `bootstrap = TRUE`, arguments like `type` or `parallel` are passed down to `bootstrap_model()`.

component

Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. `component` may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

wb_component

Logical, if `TRUE` and models contains within- and between-effects (see `datawizard::demean()`), the Component column will indicate which variables belong to the within-effects, between-effects, and cross-level interactions. By default, the Component column indicates, which parameters belong to the conditional or zero-inflation component of the model.

summary

Logical, if `TRUE`, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

vcov

Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `?sandwich::vcovHC`.
 - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args

List of arguments to be passed to the function identified by the `vcov` argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., `?sandwich::vcovHAC`) to see the list of available arguments.

Value

A data frame of indices related to the model’s parameters.

Confidence intervals for random effect variances

For models of class `merMod` and `glmmTMB`, confidence intervals for random effect variances can be calculated.

- For models of from package `lme4`, when `ci_method` is either "profile" or "boot", and `effects` is either "random" or "all", profiled resp. bootstrapped confidence intervals are computed for the random effects.
• For all other options of ci_method, and only when the merDeriv package is installed, confidence intervals for random effects are based on normal-distribution approximation, using the delta-method to transform standard errors for constructing the intervals around the log-transformed SD parameters. These are than back-transformed, so that random effect variances, standard errors and confidence intervals are shown on the original scale. Due to the transformation, the intervals are asymmetrical, however, they are within the correct bounds (i.e. no negative interval for the SD, and the interval for the correlations is within the range from -1 to +1).

• For models of class glmmTMB, confidence intervals for random effect variances always use a Wald t-distribution approximation.

Dispersion parameters in glmmTMB

For some models from package glmmTMB, both the dispersion parameter and the residual variance from the random effects parameters are shown. Usually, these are the same but presented on different scales, e.g.

```r
model <- glmmTMB(Sepal.Width ~ Petal.Length + (1|Species), data = iris)
exp(fixef(model)$disp) # 0.09902987
sigma(model)^2 # 0.09902987
```

For models where the dispersion parameter and the residual variance are the same, only the residual variance is shown in the output.

Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The ci_method argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:
Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

• Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"
• Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:
Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"
• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

"kenward"
• Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"
• Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See ci_ml1().

"betwithin"
• Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See ci_betwithin().

Likelihood-based methods:
Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a \(\chi^2 \)-squared distribution to compute CIs and p-values.

"profile"
• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"
• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)
Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

- Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

- Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().

Note

If the calculation of random effects parameters takes too long, you may use effects = "fixed". There is also a plot() - method implemented in the see-package.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.
model_parameters.dbscan

Examples

library(parameters)
if (require("lme4")) {
 data(mtcars)
 model <- lmer(mpg ~ wt + (1 | gear), data = mtcars)
 model_parameters(model)
}

if (require("glmmTMB")) {
 data(Salamanders)
 model <- glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = ~mined,
 family = poisson(),
 data = Salamanders
)
 model_parameters(model, effects = "all")
}

if (require("lme4")) {
 model <- lmer(mpg ~ wt + (1 | gear), data = mtcars)
 model_parameters(model, bootstrap = TRUE, iterations = 50, verbose = FALSE)
}

model_parameters.dbscan

Parameters from Cluster Models (k-means, ...)

Description

Format cluster models obtained for example by kmeans().

Usage

S3 method for class 'dbscan'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'hclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'pvclust'
model_parameters(model, data = NULL, clusters = NULL, ci = 0.95, ...)

S3 method for class 'kmeans'
model_parameters(model, ...)

S3 method for class 'hkmeans'
model_parameters(model, ...)

S3 method for class 'Mclust'
model_parameters(model, data = NULL, clusters = NULL, ...)

S3 method for class 'pam'
model_parameters(model, data = NULL, clusters = NULL, ...)

Arguments

- **model**: Cluster model.
- **data**: A data.frame.
- **clusters**: A vector with clusters assignments (must be same length as rows in data).
- **...**: Arguments passed to or from other methods.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).

Examples

DBSCAN

```r
if (require("dbscan", quietly = TRUE)) {
  model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10)

  rez <- model_parameters(model, iris[1:4])
  rez

  # Get clusters
  predict(rez)

  # Clusters centers in long form
  attributes(rez)$means

  # Between and Total Sum of Squares
  attributes(rez)$Sum_Squares_Total
  attributes(rez)$Sum_Squares_Between

  # HDBSCAN
  model <- dbscan::hdbscan(iris[1:4], minPts = 10)
  model_parameters(model, iris[1:4])
}
```

Hierarchical clustering (hclust)

```r
data <- iris[1:4]
model <- hclust(dist(data))
clusters <- cutree(model, 3)

rez <- model_parameters(model, data, clusters)
rez
```
Get clusters
predict(rez)

Clusters centers in long form
attributes(rez)$means

Between and Total Sum of Squares
attributes(rez)$Total_Sum_Squares
attributes(rez)$Between_Sum_Squares

pvclust (finds "significant" clusters) ---------------------------
if (require("pvclust", quietly = TRUE)) {
 data <- iris[1:4]
 # NOTE: pvclust works on transposed data
 model <- pvclust::pvclust(datawizard::data_transpose(data, verbose = FALSE),
 method.dist = "euclidean",
 nboot = 50,
 quiet = TRUE
)
 rez <- model_parameters(model, data, ci = 0.90)
 rez
 # Get clusters
 predict(rez)
 # Clusters centers in long form
 attributes(rez)$means
 # Between and Total Sum of Squares
 attributes(rez)$Sum_Squares_Total
 attributes(rez)$Sum_Squares_Between
}

Not run:
K-means -------------------------------
model <- kmeans(iris[1:4], centers = 3)
rez <- model_parameters(model)
rez

Get clusters
predict(rez)

Clusters centers in long form
attributes(rez)$means

Between and Total Sum of Squares
attributes(rez)$Sum_Squares_Total
attributes(rez)$Sum_Squares_Between

End(Not run)
Not run:
#
Hierarchical K-means (factoextra::hkclust) ----------------------
if (require("factoextra", quietly = TRUE)) {
 data <- iris[1:4]
 model <- factoextra::hkmeans(data, k = 3)

 rez <- model_parameters(model)
 rez

 # Get clusters
 predict(rez)

 # Clusters centers in long form
 attributes(rez)$means

 # Between and Total Sum of Squares
 attributes(rez)$Sum_Squares_Total
 attributes(rez)$Sum_Squares_Between
}
End(Not run)

if (require("mclust", quietly = TRUE)) {
 model <- mclust::Mclust(iris[1:4], verbose = FALSE)
 model_parameters(model)
}
Not run:
#
K-Medoids (PAM and HPAM) ==============
if (require("cluster", quietly = TRUE)) {
 model <- cluster::pam(iris[1:4], k = 3)
 model_parameters(model)
}
if (require("fpc", quietly = TRUE)) {
 model <- fpc::pamk(iris[1:4], criterion = "ch")
 model_parameters(model)
}
End(Not run)

model_parameters.default

Parameters from (General) Linear Models

Description

Extract and compute indices and measures to describe parameters of (general) linear models (GLMs).
Usage

```r
## Default S3 method:
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  vcov = NULL,
  vcov_args = NULL,
  ...
)

## S3 method for class 'glm'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  vcov = NULL,
  vcov_args = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'censReg'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  ```
model_parameters.default

p_adjust = NULL,
summary =getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
vcov = NULL,
vcov_args = NULL,
...

S3 method for class 'ridgelm'
model_parameters(model, verbose = TRUE, ...)

S3 method for class 'polr'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary =getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 vcov = NULL,
 vcov_args = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'negbin'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary =getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 vcov = NULL,
 vcov_args = NULL,
 verbose = TRUE,
Arguments

model
Model object.

ci
Confidence Interval (CI) level. Default to 0.95 (95%).

ci_method
Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

bootstrap
Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations
The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

standardize
The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Importantly:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). to mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate
Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust
Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).
Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

See keep.

Toggle warnings and messages.

Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., stats::vcov())
- A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
 - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

A data frame of indices related to the model’s parameters.
Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

Classical methods:

Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":

- Applies to non-Bayesian models. For *linear models*, CIs computed using the Wald method (SE and a *t-distribution with residual df*); p-values computed using the Wald method with a *t-distribution with residual df*. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

"normal"

- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

- Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a *t-distribution with residual df* when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

Methods for mixed models:

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a *t-distribution with Satterthwaite df*); p-values computed using the Wald method with a *t-distribution with Satterthwaite df*.

"kenward"

- Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a *t-distribution with Kenward-Roger df*); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

"ml1"

- Applies to linear mixed models. CIs computed using the Wald method (SE and a *t-distribution with m-l-1 approximated df*); p-values computed using the Wald method with a *t-distribution with m-l-1 approximated df*. See `ci_ml1()`.
"betwithin"

• Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See `ci_betwithin()`.

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a χ²-squared distribution to compute CIs and p-values.

"profile"

• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::eti()`.

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::hdi()`.

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::bci()`.
"si"

- Applies to *Bayesian models* with proper priors. CIs computed as *support intervals* comparing the posterior samples against the prior samples; p-values are based on the *probability of direction*. See `bayestestR::si()`.

"boot"

- Applies to *non-Bayesian models* of class `merMod`. CIs computed using *parametric bootstrapping* (simulating data from the fitted model); p-values computed using the Wald method with a *normal-distribution* (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (`bayestestR::p_direction()`), which is converted into a p-value using `bayestestR::pd_to_p()`.

See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

Examples

```r
library(parameters)
model <- lm(mpg ~ wt + cyl, data = mtcars)
model_parameters(model)

# bootstrapped parameters
if (require("boot", quietly = TRUE)) {
  model_parameters(model, bootstrap = TRUE)
}

# standardized parameters
model_parameters(model, standardize = "refit")

# robust, heteroskedasticity-consistent standard errors
if (require("sandwich") && require("clubSandwich")) {
  model_parameters(model, vcov = "HC3")

  model_parameters(model,
    vcov = "vcovCL",
    vcov_args = list(cluster = mtcars$cyl)
  )
}

# different p-value style in output
model_parameters(model, p_digits = 5)
model_parameters(model, digits = 3, ci_digits = 4, p_digits = "scientific")

# logistic regression model
model <- glm(vs ~ wt + cyl, data = mtcars, family = "binomial")
model_parameters(model)
```
show odds ratio / exponentiated coefficients
model_parameters(model, exponentiate = TRUE)

model_parameters.DirichletRegModel

Parameters from multinomial or cumulative link models

Description

Parameters from multinomial or cumulative link models

Usage

```r
## S3 method for class 'DirichletRegModel'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "precision"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'bifeAPEs'
model_parameters(model, ...)

## S3 method for class 'bracl'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  summary = getOption("parameters_summary", FALSE),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
```
model_parameters.DirichletRegModel

S3 method for class 'mlm'
model_parameters(
 model,
 ci = 0.95,
 vcov = NULL,
 vcov_args = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'clm2'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "scale"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

Arguments

- **model**: A model with multinomial or categorical response value.
- **ci**: Confidence Interval (CI) level. Default to 0.95 (95%).
- **bootstrap**: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).
- **iterations**: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- **component**: Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. component may be one of
model_parameters.DirichletRegModel

"conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

standardize
The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Importantly:
- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize = "basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize = "refit".

exponentiate
Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust
Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

keep
Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop
See keep.
verbose

Toggle warnings and messages.

Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

summary

Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

vcov

Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., stats::vcov())
- A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
 - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args

List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

Details

Multinomial or cumulative link models, i.e. models where the response value (dependent variable) is categorical and has more than two levels, usually return coefficients for each response level. Hence, the output from model_parameters() will split the coefficient tables by the different levels of the model’s response.

Value

A data frame of indices related to the model’s parameters.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("brglm2", quietly = TRUE)) {
 data("stemcell")
 model <- bracl(
 research ~ as.numeric(religion) + gender,
weights = frequency,
data = stemcell,
type = "ML"
)
model_parameters(model)
}

model_parameters.htest

Parameters from hypothesis tests

Description

Parameters of h-tests (correlations, t-tests, chi-squared, ...).

Usage

```r
## S3 method for class 'htest'
model_parameters(
  model,
  ci = 0.95,
  alternative = NULL,
  bootstrap = FALSE,
  effects_size_type = NULL,
  verbose = TRUE,
  cramers_v = NULL,
  phi = NULL,
  standardized_d = NULL,
  hedges_g = NULL,
  omega_squared = NULL,
  eta_squared = NULL,
  epsilon_squared = NULL,
  cohen_s_g = NULL,
  rank_biserial = NULL,
  rank_epsilon_squared = NULL,
  kendalls_w = NULL,
  ...
)

## S3 method for class 'pairwise.htest'
model_parameters(model, verbose = TRUE, ...)

## S3 method for class 'coeftest'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "wald",
  ...)```
Arguments

model  Object of class htest or pairwise.htest.
ic  Level of confidence intervals for effect size statistic. Currently only applies to objects from chisq.test() or oneway.test().
alternative  A character string specifying the alternative hypothesis; Controls the type of CI returned: "two.sided" (default, two-sided CI), "greater" or "less" (one-sided CI). Partial matching is allowed (e.g., "g", "l", "two"...). See section One-Sided CIs in the effectsize_CIs vignette.
bootstrap  Should estimates be bootstrapped?
effectsize_type  The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names.
verbose  Toggle warnings and messages.
cramers_v, phi, cohens_g, standardized_d, hedges_g, omega_squared, eta_squared, epsilon_squared, rank_biserial, rank_epsilon_squared, kendalls_w  Deprecated. Please use effectsize_type.

Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

...  Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

ci_method  Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

keep  Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the re-
turned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop
   See keep.

Details

• For an object of class htest, data is extracted via insight::get_data(), and passed to the relevant function according to:
  – A t-test depending on type: "cohens_d" (default), "hedges_g", or one of "p_superiority", "u1", "u2", "u3", "overlap".
  – A Chi-squared tests of independence or Fisher’s Exact Test, depending on type: "cramers_v" (default), "tschuprows_t", "phi", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", "riskratio", "arr", or "nnt".
  – A Chi-squared tests of goodness-of-fit, depending on type: "fei" (default) "cohens_w", "pearsons_c"
  – A One-way ANOVA test, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".
  – A McNemar test returns Cohen’s g.
  – A Wilcoxon test depending on type: returns "rank_biserial" correlation (default) or one of "p_superiority", "vda", "u2", "u3", "overlap".
  – A Kruskal-Wallis test depending on type: "epsilon" (default) or "eta".
  – A Friedman test returns Kendall’s W. (Where applicable, ci and alternative are taken from the htest if not otherwise provided.)

• For an object of class BFBayesFactor, using bayestestR::describe_posterior()
  – A t-test depending on type: "cohens_d" (default) or one of "p_superiority", "u1", "u2", "u3", "overlap".
  – A correlation test returns r.
  – A contingency table test, depending on type: "cramers_v" (default), "phi", "tschuprows_t", "cohens_w", "pearsons_c", "cohens_h", "oddsratio", or "riskratio", "arr", or "nnt".
  – A proportion test returns p.

• Objects of class anova, aov, aovlist or afex_aov, depending on type: "eta" (default), "omega" or "epsilon" -squared, "f", or "f2".

• Other objects are passed to parameters::standardize_parameters().

For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.

Value

A data frame of indices related to the model’s parameters.

Examples

model <- cor.test(mtcars$mpg, mtcars$cyl, method = "pearson")
model_parameters(model)
model <- t.test(iris$Sepal.Width, iris$Sepal.Length)
model_parameters(model, effectsize_type = "hedges_g")

model <- t.test(mtcars$mpg ~ mtcars$vs)
model_parameters(model, effectsize_type = "hedges_g")

model <- t.test(iris$Sepal.Width, mu = 1)
model_parameters(model, effectsize_type = "cohens_d")

data(airquality)
airquality$Month <- factor(airquality$Month, labels = month.abb[5:9])
model <- pairwise.t.test(airquality$Ozone, airquality$Month)
model_parameters(model)

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
model <- suppressWarnings(pairwise.prop.test(smokers, patients))
model_parameters(model)

model <- suppressWarnings(chisq.test(table(mtcars$am, mtcars$cyl)))
model_parameters(model, effectsize_type = "cramers_v")

---

model_parameters.MCMCglmm

Parameters from Bayesian Models

Description

Parameters from Bayesian models.

Usage

```r
S3 method for class 'MCMCglmm'
model_parameters(
 model,
 centrality = "median",
 dispersion = FALSE,
 ci = 0.95,
 ci_method = "eti",
 test = "pd",
 rope_range = "default",
 rope_ci = 0.95,
 bf_prior = NULL,
 diagnostic = c("ESS", "Rhat"),
 priors = TRUE,
 keep = NULL,
 drop = NULL,
)```
model_parameters.MCMCglmm

```r

verbose = TRUE,
...
)

## S3 method for class 'bamlss'
model_parameters(
  model,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = "pd",
  rope_range = "default",
  rope_ci = 0.95,
  component = "all",
  exponentiate = FALSE,
  standardize = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'data.frame'
model_parameters(model, as_draws = FALSE, verbose = TRUE, ...)

## S3 method for class 'bayesQR'
model_parameters(
  model,
  centrality = "median",
  dispersion = FALSE,
  ci = 0.95,
  ci_method = "eti",
  test = "pd",
  rope_range = "default",
  rope_ci = 0.95,
  bf_prior = NULL,
  diagnostic = c("ESS", "Rhat"),
  priors = TRUE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'brmsfit'
model_parameters(
  model,
  ...
model_parameters.MCMCglmm

    centrality = "median",
    dispersion = FALSE,
    ci = 0.95,
    ci_method = "eti",
    test = "pd",
    rope_range = "default",
    rope_ci = 0.95,
    bf_prior = NULL,
    diagnostic = c("ESS", "Rhat"),
    priors = FALSE,
    effects = "fixed",
    component = "all",
    exponentiate = FALSE,
    standardize = NULL,
    group_level = FALSE,
    keep = NULL,
    drop = NULL,
    verbose = TRUE,
    ...
)

## S3 method for class 'mcmc.list'
model_parameters(model, as_draws = FALSE, verbose = TRUE, ...)

## S3 method for class 'bcplm'
model_parameters(
    model,
    centrality = "median",
    dispersion = FALSE,
    ci = 0.95,
    ci_method = "eti",
    test = "pd",
    rope_range = "default",
    rope_ci = 0.95,
    bf_prior = NULL,
    diagnostic = c("ESS", "Rhat"),
    priors = TRUE,
    keep = NULL,
    drop = NULL,
    verbose = TRUE,
    ...
)

## S3 method for class 'blrm'
model_parameters(
    model,
    centrality = "median",
    dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = TRUE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...)

## S3 method for class 'draws'
model_parameters(
  model,
centrality = "median",
dispersion = FALSE,
  ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
keep = NULL,
drop = NULL,
verbose = TRUE,
...)

## S3 method for class 'stanfit'
model_parameters(
  model,
centrality = "median",
dispersion = FALSE,
  ci = 0.95,
ci_method = "eti",
test = "pd",
rope_range = "default",
rope_ci = 0.95,
diagnostic = c("ESS", "Rhat"),
effects = "fixed",
exponentiate = FALSE,
standardize = NULL,
group_level = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
Arguments

model  Bayesian model (including SEM from blavaan. May also be a data frame with posterior samples, however, as.draws must be set to TRUE (else, for data frames NULL is returned).

centrality  The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".

dispersion  Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).

ci  Credible Interval (CI) level. Default to 0.95 (95%). See bayestestR::ci() for further details.

ci_method  Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniratio", "ml", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bca". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

test  The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding `bayestestR` function is called (e.g. `rope()` or `p_direction()`) and its results included in the summary output.

**rope_range**
ROPE's lower and higher bounds. Should be a list of two values (e.g., `c(-0.1, 0.1)`) or "default". If "default", the bounds are set to `x ± 0.1*SD(response)`.

**rope_ci**
The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.

**bf_prior**
Distribution representing a prior for the computation of Bayes factors / SI. Used if the input is a posterior, otherwise (in the case of models) ignored.

**diagnostic**
Diagnostic metrics to compute. Character (vector) or list with one or more of these options: "ESS", "Rhat", "MCSE" or "all".

**priors**
Add the prior used for each parameter.

**keep**
Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If `keep` is a character vector, every parameter name in the "Parameter" column that matches the regular expression in `keep` will be selected from the returned data frame (and vice versa, all parameter names matching `drop` will be excluded). Furthermore, if `keep` has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If `keep` is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the `$Parameter` column of the parameters table to get the exact parameter names.

**drop**
See `keep`.

**verbose**
Toggle messages and warnings.

**component**
Which type of parameters to return, such as parameters for the conditional model, the zero-inflation part of the model, the dispersion term, or other auxiliary parameters be returned? Applies to models with zero-inflation and/or dispersion formula, or if parameters such as `sigma` should be included. May be abbreviated. Note that the `conditional` component is also called `count` or `mean` component, depending on the model. There are three convenient shortcuts: `component = "all"` returns all possible parameters. If `component = "location"`, location parameters such as conditional, zero_inflated, or smooth_terms, are returned (everything that are fixed or random effects - depending on the effects argument - but no auxiliary parameters). For `component = "distributional"` (or "auxiliary"), components like sigma, dispersion, or beta (and other auxiliary parameters) are returned.

**exponentiate**
Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use...
exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.

**standardize** The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`.

**Importantly:**
- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). to mimic such behaviours, either use `standardize="basic"` or standardize the data with `datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when `standardize="refit"`.

**as_draws** Logical, if TRUE and model is of class data.frame, the data frame is treated as posterior samples and handled similar to Bayesian models. All arguments in ... are passed to `model_parameters.draws()`.

**effects** Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.

**group_level** Logical, for multilevel models (i.e. models with random effects) and when effects = "all" or effects = "random", include the parameters for each group level from random effects. If `group_level = FALSE` (the default), only information on SD and COR are shown.

**Value**
A data frame of indices related to the model’s parameters.

**Confidence intervals and approximation of degrees of freedom**
There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The `ci_method` argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

**Classical methods:**
Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

"wald":
• Applies to *non-Bayesian models*. For *linear models*, CIs computed using the Wald method (SE and a *t-distribution with residual df*); p-values computed using the Wald method with a *t-distribution with residual df*. For other models, CIs computed using the Wald method (SE and a *normal distribution*); p-values computed using the Wald method with a *normal distribution*.

"normal"

• Applies to *non-Bayesian models*. Compute Wald CIs and p-values, but always use a normal distribution.

"residual"

• Applies to *non-Bayesian models*. Compute Wald CIs and p-values, but always use a *t-distribution with residual df* when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

**Methods for mixed models:**

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

"satterthwaite"

• Applies to *linear mixed models*. CIs computed using the Wald method (SE and a *t-distribution with Satterthwaite df*); p-values computed using the Wald method with a *t-distribution with Satterthwaite df*.

"kenward"

• Applies to *linear mixed models*. CIs computed using the Wald method (*Kenward-Roger SE* and a *t-distribution with Kenward-Roger df*); p-values computed using the Wald method with *Kenward-Roger SE* and a *t-distribution with Kenward-Roger df*.

"ml1"

• Applies to *linear mixed models*. CIs computed using the Wald method (SE and a *t-distribution with m-l-1 approximated df*); p-values computed using the Wald method with a *t-distribution with m-l-1 approximated df*. See `ci_ml1()`.

"betwithin"

• Applies to *linear mixed models* and *generalized linear mixed models*. CIs computed using the Wald method (SE and a *t-distribution with between-within df*); p-values computed using the Wald method with a *t-distribution with between-within df*. See `ci_betwithin()`.

**Likelihood-based methods:**

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a *χ*-squared distribution to compute CIs and p-values.

"profile"
• Applies to non-Bayesian models of class glm, polr, merMod or glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

• Applies to non-Bayesian models of class glmmTMB. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter's sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::eti().

"hdi"

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::hdi().

"bci" (or "bcai")

• Applies to all models (including Bayesian models). For non-Bayesian models, only applies if bootstrap = TRUE. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See bayestestR::bci().

"si"

• Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"

• Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().
Note

When standardize = "refit", columns diagnostic, bf_prior and priors refer to the original model. If model is a data frame, arguments diagnostic, bf_prior and priors are ignored.

There is also a plot()-method implemented in the see-package.

See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

```r
Not run:
library(parameters)
if (require("rstanarm")) {
 model <- suppressWarnings(stan_glM(Sepal.Length ~ Petal.Length * Species,
 data = iris, iter = 500, refresh = 0
))
 model_parameters(model)
}
End(Not run)
```

---

model_parameters.mipo  Parameters from multiply imputed repeated analyses

Description

Format models of class mira, obtained from mice::width.mids(), or of class mipo.

Usage

```r
S3 method for class 'mipo'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...,
)
```

```r
S3 method for class 'mira'
model_parameters(
 model,
)```
ci = 0.95,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...)

Arguments

model An object of class mira or mipo.

.ci Confidence Interval (CI) level. Default to 0.95 (95%).

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use `exponentiate = TRUE` for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.

\[p\text{-}adjust \] Character vector, if not NULL, indicates the method to adjust p-values. See `stats::p.adjust()` for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for `emmGrid` objects (from `emmeans`).

keep Character containing a regular expression pattern that describes the parameters that should be included (for `keep`) or excluded (for `drop`) in the returned data frame. `keep` may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If `keep` is a character vector, every parameter name in the "Parameter" column that matches the regular expression in `keep` will be selected from the returned data frame (and vice versa, all parameter names matching `drop` will be excluded). Furthermore, if `keep` has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If `keep` is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where `model_parameters()` returns multiple columns with parameter components, like in `model_parameters.lavaan()`. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See `keep`.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods.
Details

`model_parameters()` for objects of class `mira` works similar to `summary(mice::pool())`, i.e. it generates the pooled summary of multiple imputed repeated regression analyses.

Examples

```r
library(parameters)
if (require("mice", quietly = TRUE)) {
  data(nhanes2)
  imp <- mice(nhanes2)
  fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
  model_parameters(fit)
}
## Not run:
# model_parameters() also works for models that have no "tidy"-method in mice
if (require("mice", quietly = TRUE) && require("gee", quietly = TRUE)) {
  data(warpbreaks)
  set.seed(1234)
  warpbreaks$tension[sample(1:nrow(warpbreaks), size = 10)] <- NA
  imp <- mice(warpbreaks)
  fit <- with(data = imp, expr = gee(breaks ~ tension, id = wool))

  # does not work:
  # summary(pool(fit))

  model_parameters(fit)
}
## End(Not run)

# and it works with pooled results
if (require("mice")) {
  data("nhanes2")
  imp <- mice(nhanes2)
  fit <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
  pooled <- pool(fit)

  model_parameters(pooled)
}
```

model_parameters.PCA
Parameters from PCA, FA, CFA, SEM

Description

Format structural models from the `psych` or `FactoMineR` packages.
model_parameters.PCA

Usage

```r
## S3 method for class 'PCA'
model_parameters(
  model,
  sort = FALSE,
  threshold = NULL,
  labels = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'FAMD'
model_parameters(
  model,
  sort = FALSE,
  threshold = NULL,
  labels = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'lavaan'
model_parameters(
  model,
  ci = 0.95,
  standardize = FALSE,
  component = c("regression", "correlation", "loading", "defined"),
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'principal'
model_parameters(
  model,
  sort = FALSE,
  threshold = NULL,
  labels = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'omega'
model_parameters(model, verbose = TRUE, ...)

## S3 method for class 'sem'
model_parameters(
```
model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 vcov = NULL,
 vcov_args = NULL,
 ...
)

Arguments

model Model object.
sort Sort the loadings.
threshold A value between 0 and 1 indicates which (absolute) values from the loadings
 should be removed. An integer higher than 1 indicates the n strongest loadings
to retain. Can also be "max", in which case it will only display the maximum
 loading per variable (the most simple structure).
labels A character vector containing labels to be added to the loadings data. Usually,
 the question related to the item.
verbose Toggle warnings and messages.
... Arguments passed to or from other methods.
... Arguments passed to or from other methods.
 ci Confidence Interval (CI) level. Default to 0.95 (95%).
standardize Return standardized parameters (standardized coefficients). Can be TRUE (or
 "all" or "std.all") for standardized estimates based on both the variances of
 observed and latent variables; "latent" (or "std.lv") for standardized esti-
 mates based on the variances of the latent variables only; or "no_exogenous"
 (or "std.nox") for standardized estimates based on both the variances of ob-
 served and latent variables, but not the variances of exogenous covariates. See
 lavaan::standardizedsolution for details.
component What type of links to return. Can be "all" or some of c("regression",
 "correlation", "loading", "variance", "mean").
keep Character containing a regular expression pattern that describes the parameters
 that should be included (for keep) or excluded (for drop) in the returned data
 frame. keep may also be a named list of regular expressions. All non-matching
 parameters will be removed from the output. If keep is a character vector, ev-
 ery parameter name in the "Parameter" column that matches the regular ex-
 pression in keep will be selected from the returned data frame (and vice versa,
 all parameter names matching drop will be excluded). Furthermore, if keep
has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where \texttt{model_parameters()} returns multiple columns with parameter components, like in \texttt{model_parameters.lavaan()}. Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

\textbf{drop}

See keep.

\textbf{ci_method}

Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section \textit{Confidence intervals and approximation of degrees of freedom} in \texttt{model_parameters()} for further details. When \texttt{ci_method=NULL}, in most cases "wald" is used then.

\textbf{bootstrap}

Should estimates be based on bootstrapped model? If \texttt{TRUE}, then arguments of \texttt{Bayesian regressions} apply (see also \texttt{bootstrap_parameters()}).

\textbf{iterations}

The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

\textbf{exponentiate}

Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use \texttt{exponentiate = TRUE} for models with log-transformed response values. \textbf{Note}: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For \texttt{compare_parameters()}, \texttt{exponentiate = "nongaussian"} will only exponentiate coefficients from non-Gaussian families.

\textbf{p_adjust}

Character vector, if not \texttt{NULL}, indicates the method to adjust p-values. See \texttt{stats::p.adjust()} for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for \texttt{emmGrid} objects (from \texttt{emmeans}).

\textbf{summary}

Logical, if \texttt{TRUE}, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

\textbf{vcov}

Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., \texttt{stats::vcov()})
- A string which indicates the kind of uncertainty estimates to return.
model_parameters.PCA

- Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See \texttt{?sandwich::vcovHC}.
- Cluster-robust: "vcovCR", "CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3". See \texttt{?clubSandwich::vcovCR}.
- Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See \texttt{?sandwich::vcovBS}.
- Other \texttt{sandwich} package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

\texttt{vcov_args} List of arguments to be passed to the function identified by the \texttt{vcov} argument. This function is typically supplied by the \texttt{sandwich} or \texttt{clubSandwich} packages. Please refer to their documentation (e.g., \texttt{?sandwich::vcovHAC}) to see the list of available arguments.

Details

For the structural models obtained with \texttt{psych}, the following indices are present:

- **Complexity** (Hoffman’s, 1978; Pettersson and Turkheimer, 2010) represents the number of latent components needed to account for the observed variables. Whereas a perfect simple structure solution has a complexity of 1 in that each item would only load on one factor, a solution with evenly distributed items has a complexity greater than 1.

- **Uniqueness** represents the variance that is ‘unique’ to the variable and not shared with other variables. It is equal to 1 minus communality (variance that is shared with other variables). A uniqueness of 0.20 suggests that 20% of that variable’s variance is not shared with other variables in the overall factor model. The greater ‘uniqueness’ the lower the relevance of the variable in the factor model.

- **MSA** represents the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser and Rice, 1974) for each item. It indicates whether there is enough data for each factor give reliable results for the PCA. The value should be > 0.6, and desirable values are > 0.8 (Tabachnick and Fidell, 2013).

Value

A data frame of indices or loadings.

Note

There is also a \texttt{plot()}-method for lavaan models implemented in the \texttt{see}-package.

References

Examples

```r
library(parameters)
if (require("psych", quietly = TRUE)) {
  # Principal Component Analysis (PCA) -----------
  pca <- psych::principal(attitude)
  model_parameters(pca)

  pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
  model_parameters(pca, sort = TRUE, threshold = 0.2)

  principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)

  # Exploratory Factor Analysis (EFA) -----------
  efa <- psych::fa(attitude, nfactors = 3)
  model_parameters(efa,
    threshold = "max", sort = TRUE,
    labels = as.character(1:ncol(attitude))
  )

  # Omega -----------
  omega <- psych::omega(mtcars, nfactors = 3)
  params <- model_parameters(omega)
  params
  summary(params)
}

# lavaan

library(parameters)

# lavaan -------------------------------------
if (require("lavaan", quietly = TRUE)) {
  # Confirmatory Factor Analysis (CFA) -----------
  structure <- " visual = x1 + x2 + x3 
    textual = x4 + x5 + x6 
    speed = x7 + x8 + x9 "
  model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
  model_parameters(model)
  model_parameters(model, standardize = TRUE)

  # filter parameters
```
model_parameters(
 model,
 parameters = list(
 To = "^(?!visual)",
 From = "^((?!x7|x8))"
)
)

Structural Equation Model (SEM) ------------
structure <- "
latent variable definitions
 ind60 =~ x1 + x2 + x3
 dem60 =~ y1 + a*y2 + b*y3 + c*y4
 dem65 =~ y5 + a*y6 + b*y7 + c*y8
regressions
 dem60 ~ ind60
 dem65 ~ ind60 + dem60
residual correlations
 y1 ~~ y5
 y2 ~~ y4 + y6
 y3 ~~ y7
 y4 ~~ y8
 y6 ~~ y8"
model <- lavaan::sem(structure, data = PoliticalDemocracy)
model_parameters(model)
model_parameters(model, standardize = TRUE)
}

model_parameters.PMCMR

Parameters from special models

Description
Parameters from special regression models not listed under one of the previous categories yet. Parameters from Hypothesis Testing.

Usage
S3 method for class 'PMCMR'
model_parameters(model, ...)

S3 method for class 'glimML'
model_parameters(
 model,
 ci = 0.95,
model_parameters.PMCMR

```r
bootstrap = FALSE,
iterations = 1000,
component = c("conditional", "random", "dispersion", "all"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

## S3 method for class 'averaging'
model_parameters(
  model,
  ci = 0.95,
  component = c("conditional", "full"),
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

## S3 method for class 'mle2'
model_parameters(
  model,
  ci = 0.95,
  ci_method = NULL,
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
vcov = NULL,
vcov_args = NULL,
verbose = TRUE,
...
)

## S3 method for class 'betareg'
model_parameters(

```
model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("conditional", "precision", "all"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'bfsl'
model_parameters(model,
 ci = 0.95,
 ci_method = "residual",
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'deltaMethod'
model_parameters(model, p_adjust = NULL, verbose = TRUE, ...)

S3 method for class 'emmGrid'
model_parameters(model,
 ci = 0.95,
 centrality = "median",
 dispersion = FALSE,
 ci_method = "eti",
 test = "pd",
 rope_range = "default",
 rope_ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)
S3 method for class 'emm_list'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'epi.2by2'
model_parameters(model, verbose = TRUE, ...)

S3 method for class 'fitdistr'
model_parameters(model, exponentiate = FALSE, verbose = TRUE, ...)

S3 method for class 'ggeffects'
model_parameters(model, keep = NULL, drop = NULL, verbose = TRUE, ...)

S3 method for class 'SemiParBIV'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'glmm'
model_parameters(
 model,
 ci = 0.95,
 effects = c("all", "fixed", "random"),
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
S3 method for class 'glmx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "extra"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'ivFixed'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "wald",
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'ivprobit'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "wald",
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'lmodel2'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
S3 method for class 'logistf'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 vcov = NULL,
 vcov_args = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'lqmm'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'marginaleffects'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'comparisons'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'marginalmeans'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'hypotheses'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'slopes'
model_parameters(model, ci = 0.95, ...)
S3 method for class 'predictions'
model_parameters(model, ci = 0.95, ...)

S3 method for class 'margins'
model_parameters(
 model,
 ci = 0.95,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'maxLik'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 vcov = NULL,
 vcov_args = NULL,
 ...
)

S3 method for class 'maxim'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 vcov = NULL,
vcov_args = NULL,
...
)

S3 method for class 'mediate'
model_parameters(model, ci = 0.95, exponentiate = FALSE, verbose = TRUE, ...)

S3 method for class 'metaplus'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 include_studies = TRUE,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'meta_random'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "eti",
 exponentiate = FALSE,
 include_studies = TRUE,
 verbose = TRUE,
 ...
)

S3 method for class 'meta_fixed'
model_parameters(
 model,
 ci = 0.95,
 ci_method = "eti",
 exponentiate = FALSE,
 include_studies = TRUE,
 verbose = TRUE,
 ...
)

S3 method for class 'meta_bma'
model_parameters(
 model,
 ci = 0.95,
ci_method = "eti",
 exponentiate = FALSE,
 include_studies = TRUE,
 verbose = TRUE,
 ...
)

S3 method for class 'logitor'

model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = TRUE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'poissonirr'

model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = TRUE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'negbinirr'

model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = TRUE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'poissonmfx'

model_parameters(
model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
...
)

S3 method for class 'logitmfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
...
)

S3 method for class 'probitmfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
...
)

S3 method for class 'negbinmfx'
model_parameters(

model_parameters.PMCMR

model,
ci = 0.95,
bootstrap = FALSE,
iterations = 1000,
component = c("all", "conditional", "marginal"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

S3 method for class 'betaor'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("conditional", "precision", "all"),
 standardize = NULL,
 exponentiate = FALSE,
p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'betamfx'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 component = c("all", "conditional", "precision", "marginal"),
 standardize = NULL,
 exponentiate = FALSE,
p_adjust = NULL,
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'mjoint'
model_parameters(
 model,
 ci = 0.95,
effects = "fixed",
component = c("all", "conditional", "survival"),
exponentiate = FALSE,
p_adjust = NULL,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

S3 method for class 'model_fit'
model_parameters(
 model,
 ci = 0.95,
effects = "fixed",
component = "conditional",
ci_method = "profile",
bootstrap = FALSE,
iterations = 1000,
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
verbose = TRUE,
...
)

S3 method for class 'glht'
model_parameters(
 model,
 ci = 0.95,
exponentiate = FALSE,
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)

S3 method for class 'mvord'
model_parameters(
 model,
 ci = 0.95,
component = c("all", "conditional", "thresholds", "correlation"),
standardize = NULL,
exponentiate = FALSE,
p_adjust = NULL,
summary = getOption("parameters_summary", FALSE),
keep = NULL,
drop = NULL,
model_parameters.PMCMR

```r
verbose = TRUE,
...

## S3 method for class 'pgmm'
model_parameters(
  model,
  ci = 0.95,
  component = c("conditional", "all"),
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'rqss'
model_parameters(
  model,
  ci = 0.95,
  ci_method = "residual",
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'rqs'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
```
S3 method for class 'selection'
model_parameters(
 model,
 ci = 0.95,
 component = c("all", "selection", "outcome", "auxiliary"),
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'mle'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = getOption("parameters_summary", FALSE),
 keep = NULL,
 drop = NULL,
 vcov = NULL,
 vcov_args = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'systemfit'
model_parameters(
 model,
 ci = 0.95,
 ci_method = NULL,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 summary = FALSE,
 keep = NULL,
drop = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'varest'
model_parameters(
 model,
 ci = 0.95,
 bootstrap = FALSE,
 iterations = 1000,
 standardize = NULL,
 exponentiate = FALSE,
 p_adjust = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 't1way'
model_parameters(model, keep = NULL, verbose = TRUE, ...)

S3 method for class 'med1way'
model_parameters(model, verbose = TRUE, ...)

S3 method for class 'dep.effect'
model_parameters(model, keep = NULL, verbose = TRUE, ...)

S3 method for class 'yuen'
model_parameters(model, verbose = TRUE, ...)

Arguments

model Object from WRS2 package.

... Arguments passed to or from other methods.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

component Model component for which parameters should be shown. May be one of "conditional", "precision" (betareg), "scale" (ordinal), "extra" (glmx), "marginal" (mfx), "conditional" or "full" (for MuMIn::model.avg()) or "all".

standardize The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Importantly:
The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.

- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponentiate</td>
<td>Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.</td>
</tr>
<tr>
<td>p_adjust</td>
<td>Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).</td>
</tr>
<tr>
<td>summary</td>
<td>Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).</td>
</tr>
<tr>
<td>keep</td>
<td>Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one</td>
</tr>
<tr>
<td>drop</td>
<td>See keep.</td>
</tr>
<tr>
<td>verbose</td>
<td>Toggle warnings and messages.</td>
</tr>
</tbody>
</table>
| ci_method | Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on
the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uninorm", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in model_parameters() for further details. When ci_method=NULL, in most cases "wald" is used then.

vcov

Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., stats::vcov())
- A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See ?sandwich::vcovBS.
 - Other sandwich package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

vcov_args

List of arguments to be passed to the function identified by the vcov argument. This function is typically supplied by the sandwich or clubSandwich packages. Please refer to their documentation (e.g., ?sandwich::vcovHAC) to see the list of available arguments.

centrality

The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".

dispersion

Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).

test

The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or p_direction()) and its results included in the summary output.

rope_range

ROPE's lower and higher bounds. Should be a list of two values (e.g., c(-0.1, 0.1)) or "default". If "default", the bounds are set to x ± 0.1×SD(response).

rope_ci

The Credible Interval (CI) probability, corresponding to the proportion of HDI, to use for the percentage in ROPE.

effects

Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.

include_studies

Logical, if TRUE (default), includes parameters for all studies. Else, only parameters for overall-effects are shown.
Value

A data frame of indices related to the model's parameters.
A data frame of indices related to the model's parameters.
A data frame of indices related to the model's parameters.

See Also

`insight::standardize_names()` to rename columns into a consistent, standardized naming scheme.

Examples

```r
library(parameters)
if (require("brglm2", quietly = TRUE)) {
  data("stemcell")
  model <- bracl(
    research ~ as.numeric(religion) + gender,
    weights = frequency,
    data = stemcell,
    type = "ML"
  )
  model_parameters(model)
}

if (require("multcomp", quietly = TRUE)) {
  # multiple linear model, swiss data
  lmod <- lm(Fertility ~ ., data = swiss)
  mod <- glht(
    model = lmod,
    linfct = c(
      "Agriculture = 0",
      "Examination = 0",
      "Education = 0",
      "Catholic = 0",
      "Infant.Mortality = 0"
    )
  )
  model_parameters(mod)
}

if (require("PMCMRplus", quietly = TRUE)) {
  model <- suppressWarnings(
    kwAllPairsConoverTest(count ~ spray, data = InsectSprays)
  )
  model_parameters(model)
}

if (require("WRS2") && packageVersion("WRS2") >= "1.1.3") {
  model <- t1way(libido ~ dose, data = viagra)
  model_parameters(model)
}
```
Parameters from Meta-Analysis

Description

Extract and compute indices and measures to describe parameters of meta-analysis models.

Usage

```r
## S3 method for class 'rma'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  standardize = NULL,
  exponentiate = FALSE,
  include_studies = TRUE,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)
```

Arguments

- `model`: Model object.
- `ci`: Confidence Interval (CI) level. Default to 0.95 (95%).
- `bootstrap`: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also `bootstrap_parameters()`).
- `iterations`: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.
- `standardize`: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `standardize_parameters()`.

Importantly:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as `lm.beta`) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
- For mixed models, when using methods other than "refit", only the fixed effects will be standardized.
- Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".
exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

include_studies Logical, if TRUE (default), includes parameters for all studies. Else, only parameters for overall-effects are shown.

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See keep.

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value A data frame of indices related to the model’s parameters.

Examples

library(parameters)
mydat <- data.frame(
 effectsize = c(-0.393, 0.675, 0.282, -1.398),
 stderr = c(0.317, 0.317, 0.13, 0.36)
)
if (require("metafor", quietly = TRUE)) {
 model <- rma(yi = effectsize, sei = stderr, method = "REML", data = mydat)
model_parameters(model)

Not run:
with subgroups
if (require("metafor", quietly = TRUE)) {
 data(dat.bcg)
 dat <- escalc(
 measure = "RR",
 ai = tpos,
 bi = tneg,
 ci = cpos,
 di = cneg,
 data = dat.bcg
)
 dat$alloc <- ifelse(dat$alloc == "random", "random", "other")
 d <<- dat
 model <- rma(yi, vi, mods = ~ alloc, data = d, digits = 3, slab = author)
 model_parameters(model)
}

if (require("metaBMA", quietly = TRUE)) {
 data(towels)
 m <- suppressWarnings(meta_random(logOR, SE, study, data = towels))
 model_parameters(m)
}

End(Not run)

model_parameters.zcpglm

Parameters from Zero-Inflated Models

Description

Parameters from zero-inflated models (from packages like **pscl**, **cplm** or **countreg**).

Usage

```r
## S3 method for class 'zcpglm'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
)```
keep = NULL,
drop = NULL,
summary = getOption("parameters_summary", FALSE),
verbose = TRUE,
... )

## S3 method for class 'mhurdle'
model_parameters(
  model,
  ci = 0.95,
  component = c("all", "conditional", "zi", "zero_inflated", "infrequent_purchase", "ip", "auxiliary"),
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

## S3 method for class 'zeroinfl'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  summary = getOption("parameters_summary", FALSE),
  verbose = TRUE,
  ...
)

## S3 method for class 'hurdle'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
## S3 method for class 'zerocount'
model_parameters(
  model,
  ci = 0.95,
  bootstrap = FALSE,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated"),
  standardize = NULL,
  exponentiate = FALSE,
  p_adjust = NULL,
  keep = NULL,
  drop = NULL,
  summary = getOption("parameters_summary", FALSE),
  verbose = TRUE,
  ...
)

Arguments

model: A model with zero-inflation component.

CI: Confidence Interval (CI) level. Default to 0.95 (95%).

bootstrap: Should estimates be based on bootstrapped model? If TRUE, then arguments of Bayesian regressions apply (see also bootstrap_parameters()).

iterations: The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

component: Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. component may be one of "conditional", "zi", "zero_inflated", "dispersion" or "all" (default). May be abbreviated.

standardize: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in standardize_parameters().

Importantly:

- The "refit" method does not standardize categorical predictors (i.e. factors), which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize="basic" or standardize the data with datawizard::standardize(force=TRUE) before fitting the model.
For mixed models, when using methods other than "refit", only the fixed effects will be standardized.

Robust estimation (i.e., vcov set to a value other than NULL) of standardized parameters only works when standardize="refit".

exponentiate Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

p_adjust Character vector, if not NULL, indicates the method to adjust p-values. See stats::p.adjust() for details. Further possible adjustment methods are "tukey", "scheffe", "sidak" and "none" to explicitly disable adjustment for emmGrid objects (from emmeans).

keep Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

drop See keep.

summary Logical, if TRUE, prints summary information about the model (model formula, number of observations, residual standard deviation and more).

verbose Toggle warnings and messages.

... Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

Value

A data frame of indices related to the model’s parameters.
See Also

insight::standardize_names() to rename columns into a consistent, standardized naming scheme.

Examples

library(parameters)
if (require("pscl")) {
  data("bioChemists")
  model <- zeroinfl(art ~ fem + mar + kid5 + ment | kid5 + phd, data = bioChemists)
  model_parameters(model)
}

n_clusters

Find number of clusters in your data

Description

Similarly to n_factors() for factor / principal component analysis, n_clusters() is the main function to find out the optimal numbers of clusters present in the data based on the maximum consensus of a large number of methods.

Essentially, there exist many methods to determine the optimal number of clusters, each with pros and cons, benefits and limitations. The main n_clusters function proposes to run all of them, and find out the number of clusters that is suggested by the majority of methods (in case of ties, it will select the most parsimonious solution with fewer clusters).

Note that we also implement some specific, commonly used methods, like the Elbow or the Gap method, with their own visualization functionalities. See the examples below for more details.

Usage

n_clusters(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  package = c("easystats", "NbClust", "mclust"),
  fast = TRUE,
  nbclust_method = "kmeans",
  n_max = 10,
  ...
)

n_clusters_elbow(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
n_clusters

...)

n_clusters_gap(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  gap_method = "firstSEmax",
  ...
)

n_clusters_silhouette(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  clustering_function = stats::kmeans,
  n_max = 10,
  ...
)

n_clusters_dbscan(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  method = c("kNN", "SS"),
  min_size = 0.1,
  eps_n = 50,
  eps_range = c(0.1, 3),
  ...
)

n_clusters_hclust(
  x,
  standardize = TRUE,
  include_factors = FALSE,
  distance_method = "correlation",
  hclust_method = "average",
  ci = 0.95,
  iterations = 100,
  ...
)

Arguments

  x A data frame.
  standardize Standardize the dataframe before clustering (default).
include_factors  Logical, if TRUE, factors are converted to numerical values in order to be included in the data for determining the number of clusters. By default, factors are removed, because most methods that determine the number of clusters need numeric input only.

package  Package from which methods are to be called to determine the number of clusters. Can be "all" or a vector containing "easystats", "NbClust", "mclust", and "M3C".

fast  If FALSE, will compute 4 more indices (sets index = "allong" in NbClust). This has been deactivated by default as it is computationally heavy.

nbclust_method  The clustering method (passed to NbClust::NbClust() as method).

n_max  Maximal number of clusters to test.

...  Arguments passed to or from other methods. For instance, when bootstrap = TRUE, arguments like type or parallel are passed down to bootstrap_model().

clustering_function, gap_method  Other arguments passed to other functions. clustering_function is used by fviz_nbclust() and can be kmeans, cluster::pam, cluster::clara, cluster::fanny, and more. gap_method is used by cluster::maxSE to extract the optimal numbers of clusters (see its method argument).

method, min_size, eps_n, eps_range  Arguments for DBSCAN algorithm.

distance_method  The distance method (passed to dist()). Used by algorithms relying on the distance matrix, such as hclust or dbscan.

hclust_method  The hierarchical clustering method (passed to hclust()).

ci  Confidence Interval (CI) level. Default to 0.95 (95%).

iterations  The number of bootstrap replicates. This only apply in the case of bootstrapped frequentist models.

Note
There is also a plot()-method implemented in the see-package.

Examples

```r
Not run:
library(parameters)

The main 'n_clusters' function ===============
if (require("mclust", quietly = TRUE) && require("NbClust", quietly = TRUE) && require("cluster", quietly = TRUE) && require("see", quietly = TRUE)) {
 n <- n_clusters(iris[, 1:4], package = c("NbClust", "mclust")) # package can be "all"
 summary(n)
 as.data.frame(n) # Duration is the time elapsed for each method in seconds
 plot(n)
```
# The following runs all the method but it significantly slower
# n_clusters(iris[1:4], standardize = FALSE, package = "all", fast = FALSE)
}

## End(Not run)
x <- n_clusters_elbow(iris[1:4])
x
as.data.frame(x)
plot(x)

# Gap method ---------------------
if (require("see", quietly = TRUE) && require("cluster", quietly = TRUE) && require("factoextra", quietly = TRUE)) {
x <- n_clusters_gap(iris[1:4])
x
as.data.frame(x)
plot(x)
}

# Silhouette method -------------------
if (require("factoextra", quietly = TRUE)) {
x <- n_clusters_silhouette(iris[1:4])
x
as.data.frame(x)
plot(x)
}

# DBSCAN method -------------------------
if (require("dbscan", quietly = TRUE)) {
    # NOTE: This actually primarily estimates the 'eps' parameter, the number of
    # clusters is a side effect (it's the number of clusters corresponding to
    # this 'optimal' EPS parameter).
    x <- n_clusters_dbscan(iris[1:4], method = "kNN", min_size = 0.05) # 5 percent
    x
    head(as.data.frame(x))
    plot(x)

    x <- n_clusters_dbscan(iris[1:4], method = "SS", eps_n = 100, eps_range = c(0.1, 2))
    x
    head(as.data.frame(x))
    plot(x)
}
n_factors

Number of components/factors to retain in PCA/FA

Description

This function runs many existing procedures for determining how many factors to retain/extract from factor analysis (FA) or dimension reduction (PCA). It returns the number of factors based on the maximum consensus between methods. In case of ties, it will keep the simplest model and select the solution with the fewer factors.

Usage

n_factors(
  x,
  type = "FA",
  rotation = "varimax",
  algorithm = "default",
  package = c("nFactors", "psych"),
  cor = NULL,
  safe = TRUE,
  n_max = NULL,
  ...
)

n_components(
  x,
  type = "PCA",
  rotation = "varimax",
  algorithm = "default",
  package = c("nFactors", "psych"),
  cor = NULL,
  safe = TRUE,
  ...
)
Arguments

x             A data frame.
type          Can be "FA" or "PCA", depending on what you want to do.
rotation      Only used for VSS (Very Simple Structure criterion, see psych::VSS()). The rotation to apply. Can be "none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT" and "bifactor" for orthogonal rotations, and "promax", "oblimin", "simplimax", "bentlerQ", "geominQ", "biquartimin" and "cluster" for oblique transformations.
algorithm     Factoring method used by VSS. Can be "pa" for Principal Axis Factor Analysis, "minres" for minimum residual (OLS) factoring, "mle" for Maximum Likelihood FA and "pc" for Principal Components. "default" will select "minres" if type = "FA" and "pc" if type = "PCA".
package       Package from which respective methods are used. Can be "all" or a vector containing "nFactors", "psych", "PCDimension", "fit" or "EGAnet". Note that "fit" (which actually also relies on the psych package) and "EGAnet" can be very slow for bigger datasets. Thus, the default is c("nFactors", "psych"). You must have the respective packages installed for the methods to be used.

Details

n_components() is actually an alias for n_factors(), with different defaults for the function arguments.

Value

A data frame.

Note

There is also a plot() method implemented in the see-package. n_components() is a convenient short for n_factors(type = "PCA").

References


Examples

library(parameters)
n_factors(mtcars, type = "PCA")

result <- n_factors(mtcars[1:5], type = "FA")
as.data.frame(result)
summary(result)
## Not run:
# Setting package = 'all' will increase the number of methods (but is slow)
n_factors(mtcars, type = "PCA", package = "all")
n_factors(mtcars, type = "FA", algorithm = "mle", package = "all")

## End(Not run)
parameters_type

Type of model parameters

Description

In a regression model, the parameters do not all have the meaning. For instance, the intercept has to be interpreted as theoretical outcome value under some conditions (when predictors are set to 0), whereas other coefficients are to be interpreted as amounts of change. Others, such as interactions, represent changes in another of the parameter. The parameters_type function attempts to retrieve information and meaning of parameters. It outputs a dataframe of information for each parameters, such as the Type (whether the parameter corresponds to a factor or a numeric predictor, or whether it is a (regular) interaction or a nested one), the Link (whether the parameter can be interpreted as a mean value, the slope of an association or a difference between two levels) and, in the case of interactions, which other parameters is impacted by which parameter.

Usage

parameters_type(model, ...)  

Arguments

model A statistical model.
...
Arguments passed to or from other methods.

Value

A data frame.

Examples

library(parameters)

model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2), data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species + poly(Sepal.Width, 2, raw = TRUE), data = iris)
parameters_type(model)

# Interactions
model <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Sepal.Width * Species * Petal.Length, data = iris)
parameters_type(model)

model <- lm(Sepal.Length ~ Species * Sepal.Width, data = iris)
parameters_type(model)
model <- lm(Sepal.Length ~ Species / Sepal.Width, data = iris)
parameters_type(model)

# Complex interactions
data <- iris
data$fac2 <- ifelse(data$Sepal.Width > mean(data$Sepal.Width), "A", "B")
model <- lm(Sepal.Length ~ Species / fac2 / Petal.Length, data = data)
parameters_type(model)
model <- lm(Sepal.Length ~ Species / fac2 * Petal.Length, data = data)
parameters_type(model)

---

## pool_parameters

### Pool Model Parameters

**Description**

This function “pools” (i.e. combines) model parameters in a similar fashion as `mice::pool()`. However, this function pools parameters from `parameters_model` objects, as returned by `model_parameters()`.

**Usage**

```r
pool_parameters(
 x,
 exponentiate = FALSE,
 effects = "fixed",
 component = "conditional",
 verbose = TRUE,
 ...
)
```

**Arguments**

- `x`: A list of `parameters_model` objects, as returned by `model_parameters()`, or a list of model-objects that is supported by `model_parameters()`.
- `exponentiate`: Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use `exponentiate = TRUE` for models with log-transformed response values. **Note:** Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For `compare_parameters()`, `exponentiate = "nongaussian"` will only exponentiate coefficients from non-Gaussian families.
### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>effects</strong></td>
<td>Should parameters for fixed effects (&quot;fixed&quot;), random effects (&quot;random&quot;), or both (&quot;all&quot;) be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use <code>effects = &quot;fixed&quot;</code>.</td>
</tr>
<tr>
<td><strong>component</strong></td>
<td>Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. Component may be one of &quot;conditional&quot;, &quot;zi&quot;, &quot;zero-inflated&quot;, &quot;dispersion&quot; or &quot;all&quot; (default). May be abbreviated.</td>
</tr>
<tr>
<td><strong>verbose</strong></td>
<td>Toggle warnings and messages.</td>
</tr>
</tbody>
</table>

### Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76). The pooled degrees of freedom is based on the Barnard-Rubin adjustment for small samples (Barnard and Rubin, 1999).

### Value

A data frame of indices related to the model’s parameters.

### Note

Models with multiple components, (for instance, models with zero-inflation, where predictors appear in the count and zero-inflation part) may fail in case of identical names for coefficients in the different model components, since the coefficient table is grouped by coefficient names for pooling. In such cases, coefficients of count and zero-inflation model parts would be combined. Therefore, the `component` argument defaults to "conditional" to avoid this.

Some model objects do not return standard errors (e.g. objects of class `htest`). For these models, no pooled confidence intervals nor p-values are returned.

### References


### Examples

```r
example for multiple imputed datasets
if (require("mice")) {
 data("nhanes2")
 imp <- mice(nhanes2, printFlag = FALSE)
 models <- lapply(1:5, function(i) {
 lm(bmi ~ age + hyp + chl, data = complete(imp, action = i))
 })
 pool_parameters(models)
 # should be identical to:
```
m <- with(data = imp, exp = lm(bmi ~ age + hyp + chl))
summary(pool(m))

predict.parameters_clusters

Predict method for parameters_clusters objects

Description

Predict method for parameters_clusters objects

Usage

## S3 method for class 'parameters_clusters'
predict(object, newdata = NULL, names = NULL, ...)

Arguments

object a model object for which prediction is desired.
newdata data.frame
names character vector or list
... additional arguments affecting the predictions produced.

print.parameters_model

Print model parameters

Description

A print()-method for objects from model_parameters().

Usage

## S3 method for class 'parameters_model'
print(
  x,
  pretty_names = TRUE,
  split_components = TRUE,
  select = NULL,
  caption = NULL,
  footer = NULL,
  digits = 2,
  ci_digits = 2,
  p_digits = 3,
print.parameters_model

footer_digits = 3,
show_sigma = FALSE,
show_formula = FALSE,
zap_small = FALSE,
groups = NULL,
column_width = NULL,
ci_brackets = c("[", "]"),
...
)

## S3 method for class 'parameters_model'
summary(object, ...)

Arguments

x, object An object returned by `model_parameters()`.

pretty_names Can be TRUE, which will return "pretty" (i.e. more human readable) parameter names. Or "labels", in which case value and variable labels will be used as parameters names. The latter only works for "labelled" data, i.e. if the data used to fit the model had "label" and "labels" attributes. See also section Global Options to Customize Messages when Printing.

split_components Logical, if TRUE (default), For models with multiple components (zero-inflation, smooth terms, ...), each component is printed in a separate table. If FALSE, model parameters are printed in a single table and a Component column is added to the output.

select Determines which columns and and which layout columns are printed. There are three options for this argument:

1. Selecting columns by name or index
   select can be a character vector (or numeric index) of column names that should be printed. There are two pre-defined options for selecting columns:
   select = "minimal" prints coefficients, confidence intervals and p-values, while select = "short" prints coefficients, standard errors and p-values.

2. A string expression with layout pattern
   select is a string with "tokens" enclosed in braces. These tokens will be replaced by their associated columns, where the selected columns will be collapsed into one column. However, it is possible to create multiple columns as well. Following tokens are replaced by the related coefficients or statistics: \{estimate\}, \{se\}, \{ci\} (or \{ci_low\} and \{ci_high\}), \{p\} and \{stars\}. The token \{ci\} will be replaced by \{ci_low\}, \{ci_high\}. Furthermore, a | separates values into new cells/columns. If format = "html", a <br> inserts a line break inside a cell. See 'Examples'.

3. A string indicating a pre-defined layout
   select can be one of the following string values, to create one of the following pre-defined column layouts:
   - "ci": Estimates and confidence intervals, no asterisks for p-values.
     This is equivalent to select = "{estimate}\{ci\}".
• "se": Estimates and standard errors, no asterisks for p-values. This is equivalent to select = "\{estimate\} \{se\}".
• "ci_p": Estimates, confidence intervals and asterisks for p-values. This is equivalent to select = "\{estimate\} \{stars\} \{ci\}".
• "se_p": Estimates, standard errors and asterisks for p-values. This is equivalent to select = "\{estimate\} \{stars\} \{se\}".
• "ci_p2": Estimates, confidence intervals and numeric p-values, in two columns. This is equivalent to select = "\{estimate\} \{ci\} \{p\}".
• "se_p2": Estimate, standard errors and numeric p-values, in two columns. This is equivalent to select = "\{estimate\} \{se\} \{p\}".

For `model_parameters()`, glue-like syntax is still experimental in the case of more complex models (like mixed models) and may not return expected results.

caption Table caption as string. If NULL, depending on the model, either a default caption or no table caption is printed. Use caption = "" to suppress the table caption.
footer Can either be FALSE or an empty string (i.e. "") to suppress the footer, NULL to print the default footer, or a string. The latter will combine the string value with the default footer.
digits, ci_digits, p_digits Number of digits for rounding or significant figures. May also be "signif" to return significant figures or "scientific" to return scientific notation. Control the number of digits by adding the value as suffix, e.g. digits = "scientific4" to have scientific notation with 4 decimal places, or digits = "signif5" for 5 significant figures (see also `signif()`).
footer_digits Number of decimal places for values in the footer summary.
show_sigma Logical, if TRUE, adds information about the residual standard deviation.
show_formula Logical, if TRUE, adds the model formula to the output.
zap_small Logical, if TRUE, small values are rounded after digits decimal places. If FALSE, values with more decimal places than digits are printed in scientific notation.
groups Named list, can be used to group parameters in the printed output. List elements may either be character vectors that match the name of those parameters that belong to one group, or list elements can be row numbers of those parameter rows that should belong to one group. The names of the list elements will be used as group names, which will be inserted as 'header row'. A possible use case might be to emphasize focal predictors and control variables, see 'Examples'. Parameters will be re-ordered according to the order used in groups, while all non-matching parameters will be added to the end.
column_width Width of table columns. Can be either NULL, a named numeric vector, or "fixed". If NULL, the width for each table column is adjusted to the minimum required width. If a named numeric vector, value names are matched against column names, and for each match, the specified width is used. If "fixed", and table is split into multiple components, columns across all table components are adjusted to have the same width.

... Arguments passed to or from other methods.
Details

`summary()` is a convenient shortcut for `print(object, select = "minimal", show_sigma = TRUE, show_formula = TRUE)`.

Value

Invisibly returns the original input object.

Global Options to Customize Messages and Tables when Printing

The `verbose` argument can be used to display or silence messages and warnings for the different functions in the `parameters` package. However, some messages providing additional information can be displayed or suppressed using `options()`:

- `parameters_summary`: `options(parameters_summary = TRUE)` will override the summary argument in `model_parameters()` and always show the model summary for non-mixed models.
- `parameters_mixed_summary`: `options(parameters_mixed_summary = TRUE)` will override the summary argument in `model_parameters()` for mixed models, and will then always show the model summary.
- `parameters_cimethod`: `options(parameters_cimethod = TRUE)` will show the additional information about the approximation method used to calculate confidence intervals and p-values. Set to `FALSE` to hide this message when printing `model_parameters()` objects.
- `parameters_exponentiate`: `options(parameters_exponentiate = TRUE)` will show the additional information on how to interpret coefficients of models with log-transformed response variables or with log-/logit-links when the exponentiate argument in `model_parameters()` is not `TRUE`. Set this option to `FALSE` to hide this message when printing `model_parameters()` objects.

There are further options that can be used to modify the default behaviour for printed outputs:

- `parameters_labels`: `options(parameters_labels = TRUE)` will use variable and value labels for pretty names, if data is labelled. If no labels available, default pretty names are used.
- `parameters_interaction`: `options(parameters_interaction = <character>)` will replace the interaction mark (by default, `*`) with the related character.
- `parameters_select`: `options(parameters_select = <value>)` will set the default for the `select` argument. See argument’s documentation for available options.

Interpretation of Interaction Terms

Note that the interpretation of interaction terms depends on many characteristics of the model. The number of parameters, and overall performance of the model, can differ or not between `a * b` a : b, and `a / b`, suggesting that sometimes interaction terms give different parameterizations of the same model, but other times it gives completely different models (depending on `a` or `b` being factors of covariates, included as main effects or not, etc.). Their interpretation depends of the full context of the model, which should not be inferred from the parameters table alone - rather, we recommend to use packages that calculate estimated marginal means or marginal effects, such as `modelbased`, `emmeans`, `ggeffects`, or `marginaleffects`. To raise awareness for this issue, you may
use `print(..., show_formula=TRUE)` to add the model-specification to the output of the `print()` method for `model_parameters()`.

**Labeling the Degrees of Freedom**

Throughout the `parameters` package, we decided to label the residual degrees of freedom `df_error`. The reason for this is that these degrees of freedom not always refer to the residuals. For certain models, they refer to the estimate error - in a linear model these are the same, but in - for instance - any mixed effects model, this isn’t strictly true. Hence, we think that `df_error` is the most generic label for these degrees of freedom.

**See Also**

There is a dedicated method to use inside rmarkdown files, `print_md()`. See also `display()`.

**Examples**

```r
library(parameters)
if (require("glmmTMB", quietly = TRUE)) {
 model <- glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = ~mined,
 family = poisson(),
 data = Salamanders
)
 mp <- model_parameters(model)

 print(mp, pretty_names = FALSE)
 print(mp, split_components = FALSE)
 print(mp, select = c("Parameter", "Coefficient", "SE"))
 print(mp, select = "minimal")
}

group parameters -----
data(iris)
model <- lm(
 Sepal.Width ~ Sepal.Length + Species + Petal.Length,
 data = iris
)
don't select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\(Intercept\))")
groups <- list(
 "Focal Predictors" = c("Speciesversicolor", "Speciesvirginica"),
 "Controls" = c("Sepal.Length", "Petal.Length")
)
print(mp, groups = groups)
```
# or use row indices
print(mp, groups = list(
  "Focal Predictors" = c(1, 4),
  "Controls" = c(2, 3)
))

# only show coefficients, CI and p, 
# put non-matched parameters to the end

data(mtcars)
mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$gear <- as.factor(mtcars$gear)
model <- lm(mpg ~ hp + gear * vs + cyl + drat, data = mtcars)

# don’t select "Intercept" parameter
mp <- model_parameters(model, parameters = "^(?!\((Intercept)\)"
print(mp, groups = list(
  "Engine" = c("cyl6", "cyl8", "vs", "hp"),
  "Interactions" = c("gear4:vs", "gear5:vs")
))

# custom column layouts -------

data(iris)
lm1 <- lm(Sepal.Length ~ Species, data = iris)
lm2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)

# custom style
result <- compare_parameters(lm1, lm2, select = "\{estimate\}{stars} \{se\}"
print(result)

## Not run:
# custom style, in HTML
result <- compare_parameters(lm1, lm2, select = "\{estimate\}<br>\{se\}\{p\}"
print_html(result)

## End(Not run)

---

**p_calibrate**  
*Calculate calibrated p-values.*

**Description**

Compute calibrated p-values that can be interpreted probabilistically, i.e. as posterior probability of H0 (given that H0 and H1 have equal prior probabilities).
Usage

p_calibrate(x, ...)

## Default S3 method:
p_calibrate(x, type = "frequentist", verbose = TRUE, ...)

Arguments

- **x**
  A numeric vector of p-values, or a regression model object.
- **...**
  Currently not used.
- **type**
  Type of calibration. Can be "frequentist" or "bayesian". See 'Details'.
- **verbose**
  Toggle warnings.

Details

The Bayesian calibration, i.e. when type = "bayesian", can be interpreted as the lower bound of the Bayes factor for H0 to H1, based on the data. The full Bayes factor would then require multiplying by the prior odds of H0 to H1. The frequentist calibration also has a Bayesian interpretation; it is the posterior probability of H0, assuming that H0 and H1 have equal prior probabilities of 0.5 each (Sellke et al. 2001).

The calibration only works for p-values lower than or equal to \(1/e\).

Value

A data frame with p-values and calibrated p-values.

References


Examples

```r
model <- lm(mpg ~ wt + as.factor(gear) + am, data = mtcars)
p_calibrate(model, verbose = FALSE)
```

---

**Description**

Compute p-values and compatibility (confidence) intervals for statistical models, at different levels. This function is also called consonance function. It allows to see which estimates are compatible with the model at various compatibility levels. Use `plot()` to generate plots of the `p` resp. `consonance` function and compatibility intervals at different levels.
Usage

p_function(
  model,
  ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
  exponentiate = FALSE,
  effects = "fixed",
  component = "all",
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

consonance_function(
  model,
  ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
  exponentiate = FALSE,
  effects = "fixed",
  component = "all",
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

confidence_curve(
  model,
  ci_levels = c(0.25, 0.5, 0.75, emph = 0.95),
  exponentiate = FALSE,
  effects = "fixed",
  component = "all",
  keep = NULL,
  drop = NULL,
  verbose = TRUE,
  ...
)

Arguments

model  Statistical Model.

ci_levels  Vector of scalars, indicating the different levels at which compatibility intervals should be printed or plotted. In plots, these levels are highlighted by vertical lines. It is possible to increase thickness for one or more of these lines by providing a names vector, where the to be highlighted values should be named "emph", e.g. ci_levels = c(0.25, 0.5, emph = 0.95).

exponentiate  Logical, indicating whether or not to exponentiate the coefficients (and related confidence intervals). This is typical for logistic regression, or more generally speaking, for models with log or logit links. It is also recommended to use
exponentiate = TRUE for models with log-transformed response values. Note: Delta-method standard errors are also computed (by multiplying the standard errors by the transformed coefficients). This is to mimic behaviour of other software packages, such as Stata, but these standard errors poorly estimate uncertainty for the transformed coefficient. The transformed confidence interval more clearly captures this uncertainty. For compare_parameters(), exponentiate = "nongaussian" will only exponentiate coefficients from non-Gaussian families.

**effects**
Should parameters for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. If the calculation of random effects parameters takes too long, you may use effects = "fixed".

**component**
Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or for the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

**keep**
Character containing a regular expression pattern that describes the parameters that should be included (for keep) or excluded (for drop) in the returned data frame. keep may also be a named list of regular expressions. All non-matching parameters will be removed from the output. If keep is a character vector, every parameter name in the "Parameter" column that matches the regular expression in keep will be selected from the returned data frame (and vice versa, all parameter names matching drop will be excluded). Furthermore, if keep has more than one element, these will be merged with an OR operator into a regular expression pattern like this: "(one|two|three)". If keep is a named list of regular expression patterns, the names of the list-element should equal the column name where selection should be applied. This is useful for model objects where model_parameters() returns multiple columns with parameter components, like in model_parameters.lavaan(). Note that the regular expression pattern should match the parameter names as they are stored in the returned data frame, which can be different from how they are printed. Inspect the $Parameter column of the parameters table to get the exact parameter names.

**drop**
See keep.

**verbose**
Toggle warnings and messages.

... Arguments passed to or from other methods. Non-documented arguments are digits, p_digits, ci_digits and footer_digits to set the number of digits for the output. If s_value = TRUE, the p-value will be replaced by the S-value in the output (cf. Rafi and Greenland 2020). pd adds an additional column with the probability of direction (see bayestestR::p_direction() for details). groups can be used to group coefficients. It will be passed to the print-method, or can directly be used in print(), see documentation in print.parameters_model(). Furthermore, see 'Examples' in model_parameters.default(). For developers, whose interest mainly is to get a "tidy" data frame of model summaries, it is recommended to set pretty_names = FALSE to speed up computation of the summary table.
Details

Compatibility intervals and continuous p-values for different estimate values:

`p_function()` only returns the compatibility interval estimates, not the related p-values. The reason for this is because the p-value for a given estimate value is just $1 - \text{CI\_level}$. The values indicating the lower and upper limits of the intervals are the related estimates associated with the p-value. E.g., if a parameter $x$ has a 75% compatibility interval of $(0.81, 1.05)$, then the p-value for the estimate value of $0.81$ would be $1 - 0.75$, which is $0.25$. This relationship is more intuitive and better to understand when looking at the plots (using `plot()`).

Conditional versus unconditional interpretation of p-values and intervals:

`p_function()`, and in particular its `plot()` method, aims at re-interpreting p-values and confidence intervals (better named: compatibility intervals) in unconditional terms. Instead of referring to the long-term property and repeated trials when interpreting interval estimates (so-called "aleatory probability", Schweder 2018), and assuming that all underlying assumptions are correct and met, `p_function()` interprets p-values in a Fisherian way as "continuous measure of evidence against the very test hypothesis and entire model (all assumptions) used to compute it" (P-Values Are Tough and S-Values Can Help, lesslikely.com/statistics/s-values).

This interpretation as a continuous measure of evidence against the test hypothesis and the entire model used to compute it can be seen in the figure below (taken from P-Values Are Tough and S-Values Can Help, lesslikely.com/statistics/s-values). The "conditional" interpretation of p-values and interval estimates (A) implicitly assumes certain assumptions to be true, thus the interpretation is "conditioned" on these assumptions (i.e. assumptions are taken as given). The unconditional interpretation (B), however, questions all these assumptions.

"Emphasizing unconditional interpretations helps avoid overconfident and misleading inferences in light of uncertainties about the assumptions used to arrive at the statistical results." (Greenland et al. 2022).

Note: The term "conditional" as used by Rafi and Greenland probably has a slightly different meaning than normally. "Conditional" in this notion means that all model assumptions are taken as given - it should not be confused with terms like "conditional probability".

In other words, the term compatibility interval emphasizes "the dependence of the p-value on the assumptions as well as on the data, recognizing that $p<0.05$ can arise from assumption violations even if the effect under study is null" (Gelman/Greenland 2019).

Probabilistic interpretation of compatibility intervals:

Schweder (2018) resp. Schweder and Hjort (2016) (and others) argue that confidence curves (as produced by `p_function()`) have a valid probabilistic interpretation. They distinguish between aleatory probability, which describes the aleatory stochastic element of a distribution ex ante, i.e. before the data are obtained. This is the classical interpretation of confidence intervals following the Neyman-Pearson school of statistics. However, there is also an ex post probability, called epistemic probability, for confidence curves. The shift in terminology from confidence intervals to compatibility intervals may help emphasizing this interpretation.

In this sense, the probabilistic interpretation of p-values and compatibility intervals is "conditional" - on the data and model assumptions (which is in line with the "unconditional" interpretation in the sense of Rafi and Greenland).

"The realized confidence distribution is clearly an epistemic probability distribution" (Schweder 2018). In Bayesian words, compatibility intervals (or confidence distributions, or consonance curves) are "posteriors without priors" (Schweder, Hjort, 2003). In this regard, interpretation of p-values might be guided using `bayestestR::p_to_pd()`.
Compatibility intervals - is their interpretation conditional or not?:

The fact that the term "conditional" is used in different meanings, is confusing and unfortunate. Thus, we would summarize the probabilistic interpretation of compatibility intervals as follows: the intervals are built from the data and our modeling assumptions. The accuracy of the intervals depends on our model assumptions. If a value is outside the interval, that might be because (1) that parameter value isn’t supported by the data, or (2) the modeling assumptions are a poor fit for the situation. When we make bad assumptions, the compatibility interval might be too wide or (more commonly and seriously) too narrow, making us think we know more about the parameter than is warranted.

Value

A data frame with p-values and compatibility intervals.

Note

Currently, p_function() computes intervals based on Wald t- or z-statistic. For certain models (like mixed models), profiled intervals may be more accurate, however, this is currently not supported.

References


Examples

```r
model <- lm(Sepal.Length ~ Species, data = iris)
p_function(model)

if (requireNamespace("see") && packageVersion("see") > "0.7.3") {
```
```
model <- lm(mpg ~ wt + as.factor(gear) + am, data = mtcars)
result <- p_function(model)

single panels
plot(result, n_columns = 2)

integrated plot, the default
plot(result)
```

---

### Description

This function attempts to return, or compute, p-values of a model’s parameters. See the documentation for your object’s class:

- **Bayesian models** (`rstanarm`, `brms`, `MCMCglmm`, ...)
- **Zero-inflated models** (`hurdle`, `zeroinfl`, `zerocount`, ...)
- **Marginal effects models** (`mfx`)
- **Models with special components** (`DirichletRegModel`, `clm2`, `cgam`, ...)

### Usage

```
p_value(model, ...)
```

#### Default S3 method:
```
p_value(
 model,
 dof = NULL,
 method = NULL,
 component = "all",
 vcov = NULL,
 vcov_args = NULL,
 verbose = TRUE,
 ...
)
```

#### S3 method for class 'emmGrid'
```
p_value(model, ci = 0.95, adjust = "none", ...)
```

### Arguments

- **model**: A statistical model.
- **...**: Additional arguments
p_value

**dof** Number of degrees of freedom to be used when calculating confidence intervals. If NULL (default), the degrees of freedom are retrieved by calling `degrees_of_freedom()` with approximation method defined in method. If not NULL, use this argument to override the default degrees of freedom used to compute confidence intervals.

**method** Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details.

**component** Model component for which parameters should be shown. See the documentation for your object's class in `model_parameters()` or `p_value()` for further details.

**vcov** Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.

- A covariance matrix
- A function which returns a covariance matrix (e.g., `stats::vcov()`)
- A string which indicates the kind of uncertainty estimates to return.
  - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `?sandwich::vcovHC`.
  - Other `sandwich` package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".

**vcov_args** List of arguments to be passed to the function identified by the `vcov` argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., `?sandwich::vcovHAC`) to see the list of available arguments.

**verbose** Toggle warnings and messages.

**ci** Confidence Interval (CI) level. Default to 0.95 (95%).

**adjust** Character value naming the method used to adjust p-values or confidence intervals. See `?emmeans::summary.emmGrid` for details.

**Value**

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.
Confidence intervals and approximation of degrees of freedom

There are different ways of approximating the degrees of freedom depending on different assumptions about the nature of the model and its sampling distribution. The ci_method argument modulates the method for computing degrees of freedom (df) that are used to calculate confidence intervals (CI) and the related p-values. Following options are allowed, depending on the model class:

**Classical methods:**

Classical inference is generally based on the **Wald method**. The Wald approach to inference computes a test statistic by dividing the parameter estimate by its standard error (Coefficient / SE), then comparing this statistic against a t- or normal distribution. This approach can be used to compute CIs and p-values.

- "wald":
  - Applies to non-Bayesian models. For linear models, CIs computed using the Wald method (SE and a t-distribution with residual df); p-values computed using the Wald method with a t-distribution with residual df. For other models, CIs computed using the Wald method (SE and a normal distribution); p-values computed using the Wald method with a normal distribution.

- "normal"
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a normal distribution.

- "residual"
  - Applies to non-Bayesian models. Compute Wald CIs and p-values, but always use a t-distribution with residual df when possible. If the residual df for a model cannot be determined, a normal distribution is used instead.

**Methods for mixed models:**

Compared to fixed effects (or single-level) models, determining appropriate df for Wald-based inference in mixed models is more difficult. See the R GLMM FAQ for a discussion.

Several approximate methods for computing df are available, but you should also consider instead using profile likelihood ("profile") or bootstrap ("boot") CIs and p-values instead.

- "satterthwaite"
  - Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with Satterthwaite df); p-values computed using the Wald method with a t-distribution with Satterthwaite df.

- "kenward"
  - Applies to linear mixed models. CIs computed using the Wald method (Kenward-Roger SE and a t-distribution with Kenward-Roger df); p-values computed using the Wald method with Kenward-Roger SE and t-distribution with Kenward-Roger df.

- "ml1"
  - Applies to linear mixed models. CIs computed using the Wald method (SE and a t-distribution with m-l-1 approximated df); p-values computed using the Wald method with a t-distribution with m-l-1 approximated df. See ci_ml1().
"betwithin"

- Applies to linear mixed models and generalized linear mixed models. CIs computed using the Wald method (SE and a t-distribution with between-within df); p-values computed using the Wald method with a t-distribution with between-within df. See `ci_betwithin()`.

Likelihood-based methods:

Likelihood-based inference is based on comparing the likelihood for the maximum-likelihood estimate to the likelihood for models with one or more parameter values changed (e.g., set to zero or a range of alternative values). Likelihood ratios for the maximum-likelihood and alternative models are compared to a $\chi^2$-squared distribution to compute CIs and p-values.

"profile"

- Applies to non-Bayesian models of class `glm`, `polr`, `merMod` or `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using linear interpolation to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

"uniroot"

- Applies to non-Bayesian models of class `glmmTMB`. CIs computed by profiling the likelihood curve for a parameter, using root finding to find where likelihood ratio equals a critical value; p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!)

Methods for bootstrapped or Bayesian models:

Bootstrap-based inference is based on resampling and refitting the model to the resampled datasets. The distribution of parameter estimates across resampled datasets is used to approximate the parameter’s sampling distribution. Depending on the type of model, several different methods for bootstrapping and constructing CIs and p-values from the bootstrap distribution are available.

For Bayesian models, inference is based on drawing samples from the model posterior distribution.

"quantile" (or "eti")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as equal tailed intervals using the quantiles of the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::eti()`.

"hdi"

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as highest density intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::hdi()`.

"bci" (or "bcai")

- Applies to all models (including Bayesian models). For non-Bayesian models, only applies if `bootstrap = TRUE`. CIs computed as bias corrected and accelerated intervals for the bootstrap or posterior samples; p-values are based on the probability of direction. See `bayestestR::bci()`.
"si"
  • Applies to Bayesian models with proper priors. CIs computed as support intervals comparing the posterior samples against the prior samples; p-values are based on the probability of direction. See bayestestR::si().

"boot"
  • Applies to non-Bayesian models of class merMod. CIs computed using parametric bootstrapping (simulating data from the fitted model); p-values computed using the Wald method with a normal-distribution (note: this might change in a future update!).

For all iteration-based methods other than "boot" ("hdi", "quantile", "ci", "eti", "si", "bci", "bcai"), p-values are based on the probability of direction (bayestestR::p_direction()), which is converted into a p-value using bayestestR::pd_to_p().

Examples

data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)
Examples

```r
data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)
```

Description

This function attempts to return, or compute, p-values of models with special model components.

Usage

```r
S3 method for class 'DirichletRegModel'
p_value(model, component = c("all", "conditional", "precision"), ...)

S3 method for class 'averaging'
p_value(model, component = c("conditional", "full"), ...)

S3 method for class 'betareg'
p_value(model, component = c("all", "conditional", "precision"),
 verbose = TRUE,
 ...
)

S3 method for class 'cgam'
p_value(model, component = c("all", "conditional", "smooth_terms"), ...)

S3 method for class 'clm2'
p_value(model, component = c("all", "conditional", "scale"), ...)
```

Arguments

- `model` A statistical model.
- `component` Should all parameters, parameters for the conditional model, precision- or scale-component or smooth_terms be returned? component may be one of "conditional", "precision", "scale", "smooth_terms", "full" or "all" (default).
- `...` Additional arguments
- `verbose` Toggle warnings and messages.

Value

The p-values.
p_value.poissonmfx

p-values for Marginal Effects Models

Description
This function attempts to return, or compute, p-values of marginal effects models from package mfx.

Usage
## S3 method for class 'poissonmfx'

p_value(model, component = c("all", "conditional", "marginal"), ...)

## S3 method for class 'betaor'

p_value(model, component = c("all", "conditional", "precision"), ...)

## S3 method for class 'betamfx'

p_value(model,
  component = c("all", "conditional", "precision", "marginal"),
  ...
)

Arguments
model A statistical model.
component Should all parameters, parameters for the conditional model, precision-component or marginal effects be returned? component may be one of "conditional", "precision", "marginal" or "all" (default).
...

Value
A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.

Examples
if (require("mfx", quietly = TRUE)) {
  set.seed(12345)
  n <- 1000
  x <- rnorm(n)
  y <- rnegbin(n, mu = exp(1 + 0.5 * x), theta = 0.5)
  d <- data.frame(y, x)
  model <- poissonmfx(y ~ x, data = d)
  p_value(model)
p_value.zcpglm

p_value(model, component = "marginal")

---

p_value.zcpglm  p-values for Models with Zero-Inflation

Description

This function attempts to return, or compute, p-values of hurdle and zero-inflated models.

Usage

```r
S3 method for class 'zcpglm'
p_value(model, component = c("all", "conditional", "zi", "zero_inflated"), ...)
```

```r
S3 method for class 'zeroinfl'
p_value(
 model,
 component = c("all", "conditional", "zi", "zero_inflated"),
 method = NULL,
 verbose = TRUE,
 ...
)
```

Arguments

- **model**: A statistical model.
- **component**: Model component for which parameters should be shown. See the documentation for your object's class in `model_parameters()` or `p_value()` for further details.
- **...**: Additional arguments
- **method**: Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "uniroot", "ml1", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in `model_parameters()` for further details.
- **verbose**: Toggle warnings and messages.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.
Examples

```r
if (require("pscl", quietly = TRUE)) {
 data("bioChemists")
 model <- zeroinfl(art ~ fem + mar + kid5 | kid5 + phd, data = bioChemists)
 p_value(model)
 p_value(model, component = "zi")
}
```

Sample data set

A sample data set with longitudinal data, used in the vignette describing the `datawizard::demean()` function. Health-related quality of life from cancer-patients was measured at three time points (pre-surgery, 6 and 12 months after surgery).

Format

A data frame with 564 rows and 7 variables:

- **ID**: Patient ID
- **QoL**: Quality of Life Score
- **time**: Timepoint of measurement
- **age**: Age in years
- **phq4**: Patients’ Health Questionnaire, 4-item version
- **hospital**: Hospital ID, where patient was treated
- **education**: Patients’ educational level

Summary information from random effects

This function extracts the different variance components of a mixed model and returns the result as a data frame.

Usage

```r
random_parameters(model, component = "conditional")
```
Arguments

model     A mixed effects model (including stanreg models).
component Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.

Details

The variance components are obtained from `insight::get_variance()` and are denoted as following:

**Within-group (or residual) variance:**
The residual variance, $\sigma^2$, is the sum of the distribution-specific variance and the variance due to additive dispersion. It indicates the within-group variance.

**Between-group random intercept variance:**
The random intercept variance, or between-group variance for the intercept ($\tau_{00}$), is obtained from `VarCorr()`. It indicates how much groups or subjects differ from each other.

**Between-group random slope variance:**
The random slope variance, or between-group variance for the slopes ($\tau_{11}$) is obtained from `VarCorr()`. This measure is only available for mixed models with random slopes. It indicates how much groups or subjects differ from each other according to their slopes.

**Random slope-intercept correlation:**
The random slope-intercept correlation ($\rho_{01}$) is obtained from `VarCorr()`. This measure is only available for mixed models with random intercepts and slopes.

*Note:* For the within-group and between-group variance, variance and standard deviations (which are simply the square root of the variance) are shown.

Value

A data frame with random effects statistics for the variance components, including number of levels per random effect group, as well as complete observations in the model.

Examples

```r
if (require("lme4")) {
 data(sleepstudy)
 model <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
 random_parameters(model)
}
```
reduce_parameters

Dimensionality reduction (DR) / Features Reduction

Description

This function performs a reduction in the parameter space (the number of variables). It starts by creating a new set of variables, based on the given method (the default method is "PCA", but other are available via the method argument, such as "cMDS", "DRR" or "ICA"). Then, it names this new dimensions using the original variables that correlates the most with it. For instance, a variable named 'V1_0.97/V4_-0.88' means that the V1 and the V4 variables correlate maximally (with respective coefficients of .97 and -.88) with this dimension. Although this function can be useful in exploratory data analysis, it's best to perform the dimension reduction step in a separate and dedicated stage, as this is a very important process in the data analysis workflow. reduce_data() is an alias for reduce_parameters.data.frame().

Usage

reduce_parameters(x, method = "PCA", n = "max", distance = "euclidean", ...)

reduce_data(x, method = "PCA", n = "max", distance = "euclidean", ...)

Arguments

x A data frame or a statistical model.
method The feature reduction method. Can be one of "PCA", "cMDS", "DRR", "ICA" (see the 'Details' section).
n Number of components to extract. If n="all", then n is set as the number of variables minus 1 (ncol(x)-1). If n="auto" (default) or n=NULL, the number of components is selected through n_factors() resp. n_components(). In reduce_parameters(), can also be "max", in which case it will select all the components that are maximally pseudo-loaded (i.e., correlated) by at least one variable.
distance The distance measure to be used. Only applies when method = "cMDS". This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given.
... Arguments passed to or from other methods.

Details

The different methods available are described below:

Supervised Methods:

• PCA: See principal_components().
• cMDS / PCoA: Classical Multidimensional Scaling (cMDS) takes a set of dissimilarities (i.e., a distance matrix) and returns a set of points such that the distances between the points are approximately equal to the dissimilarities.
• **DRR**: Dimensionality Reduction via Regression (DRR) is a very recent technique extending PCA (Laparra et al., 2015). Starting from a rotated PCA, it predicts redundant information from the remaining components using non-linear regression. Some of the most notable advantages of performing DRR are avoidance of multicollinearity between predictors and overfitting mitigation. DRR tends to perform well when the first principal component is enough to explain most of the variation in the predictors. Requires the **DRR** package to be installed.

• **ICA**: Performs an Independent Component Analysis using the FastICA algorithm. Contrary to PCA, which attempts to find uncorrelated sources (through least squares minimization), ICA attempts to find independent sources, i.e., the source space that maximizes the "non-gaussianity" of all sources. Contrary to PCA, ICA does not rank each source, which makes it a poor tool for dimensionality reduction. Requires the **fastICA** package to be installed. See also package vignette.

**References**


**Examples**

```r
data(iris)
model <- lm(Sepal.Width ~ Species * Sepal.Length + Petal.Width, data = iris)
reduce_parameters(model)

out <- reduce_data(iris, method = "PCA", n = "max")
head(out)
```

---

**reshape_loadings**  
*Reshape loadings between wide/long formats*

**Description**

Reshape loadings between wide/long formats.

**Usage**

```r
reshape_loadings(x, ...)
```

- **S3 method for class 'parameters_efa'**
  ```r
 reshape_loadings(x, threshold = NULL, ...)
  ```

- **S3 method for class 'data.frame'**
  ```r
 reshape_loadings(x, threshold = NULL, loadings_columns = NULL, ...)
  ```
**select_parameters**

**Automated selection of model parameters**

**Arguments**

- `x` A data frame or a statistical model.
- `...` Arguments passed to or from other methods.
- `threshold` A value between 0 and 1 indicates which (absolute) values from the loadings should be removed. An integer higher than 1 indicates the n strongest loadings to retain. Can also be "max", in which case it will only display the maximum loading per variable (the most simple structure).
- `loadings_columns` Vector indicating the columns corresponding to loadings.

**Examples**

```r
if (require("psych")) {
 pca <- model_parameters(psych::fa(attitude, nfactors = 3))
 loadings <- reshape_loadings(pca)

 loadings
 reshape_loadings(loadings)
}
```

**Description**

This function performs an automated selection of the 'best' parameters, updating and returning the "best" model.

**Usage**

```r
select_parameters(model, ...)
```

```r
S3 method for class 'lm'
sellect_parameters(model, direction = "both", steps = 1000, k = 2, ...)
```

```r
S3 method for class 'merMod'
sellect_parameters(model, direction = "backward", steps = 1000, ...)
```

**Arguments**

- `model` A statistical model (of class `lm`, `glm`, or `merMod`).
- `...` Arguments passed to or from other methods.
- `direction` the mode of stepwise search, can be one of "both", "backward", or "forward", with a default of "both". If the scope argument is missing the default for direction is "backward". Values can be abbreviated.
simulate_model

__steps__ the maximum number of steps to be considered. The default is 1000 (essentially as many as required). It is typically used to stop the process early.

__k__ the multiple of the number of degrees of freedom used for the penalty. Only $k = 2$ gives the genuine AIC: $k = \log(n)$ is sometimes referred to as BIC or SBC.

Details

**Classical lm and glm:** For frequentist GLMs, `select_parameters()` performs an AIC-based stepwise selection.

**Mixed models:** For mixed-effects models of class `merMod`, stepwise selection is based on `cAIC4::stepcAIC()`. This step function only searches the "best" model based on the random-effects structure, i.e. `select_parameters()` adds or excludes random-effects until the cAIC can’t be improved further.

Value

The model refitted with optimal number of parameters.

Examples

```r
model <- lm(mpg ~ ., data = mtcars)
select_parameters(model)

model <- lm(mpg ~ cyl * disp * hp * wt, data = mtcars)
select_parameters(model)

lme4 ---
if (require("lme4")) {
 model <- lmer(
 Sepal.Width ~ Sepal.Length * Petal.Width * Petal.Length + (1 | Species),
 data = iris
)
 select_parameters(model)
}
```

---

**simulate_model** Simulated draws from model coefficients

Description

Simulate draws from a statistical model to return a data frame of estimates.
Usage

simulate_model(model, iterations = 1000, ...)

## S3 method for class 'glmmTMB'
simulate_model(
  model,
  iterations = 1000,
  component = c("all", "conditional", "zi", "zero_inflated", "dispersion"),
  verbose = FALSE,
  ...
)

Arguments

model  Statistical model (no Bayesian models).
iterations The number of draws to simulate/bootstrap.
... Arguments passed to insight::get_varcov(), e.g. to allow simulated draws to be based on heteroscedasticity consistent variance covariance matrices.
component Should all parameters, parameters for the conditional model, for the zero-inflation part of the model, or the dispersion model be returned? Applies to models with zero-inflation and/or dispersion component. component may be one of "conditional", "zi", "zero-inflated", "dispersion" or "all" (default). May be abbreviated.
verbose Toggle warnings and messages.

Details

Technical Details:
simulate_model() is a computationally faster alternative to bootstrap_model(). Simulated draws for coefficients are based on a multivariate normal distribution (MASS::mvrnorm()) with mean mu = coef(model) and variance Sigma = vcov(model).

Models with Zero-Inflation Component:
For models from packages glmmTMB, pscl, GLMMadaptive and countreg, the component argument can be used to specify which parameters should be simulated. For all other models, parameters from the conditional component (fixed effects) are simulated. This may include smooth terms, but not random effects.

Value

A data frame.

See Also

simulate_parameters(), bootstrap_model(), bootstrap_parameters()
Examples

```r
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
head(simulate_model(model))

if (require("glmmTMB", quietly = TRUE)) {
 model <- glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = ~mined,
 family = poisson(),
 data = Salamanders
)
 head(simulate_model(model))
 head(simulate_model(model, component = "zero_inflated"))
}
```

---

**simulate_parameters.glmmTMB**

*Simulate Model Parameters*

**Description**

Compute simulated draws of parameters and their related indices such as Confidence Intervals (CI) and p-values. Simulating parameter draws can be seen as a (computationally faster) alternative to bootstrapping.

**Usage**

```r
S3 method for class 'glmmTMB'
simulate_parameters(
 model,
 iterations = 1000,
 centrality = "median",
 ci = 0.95,
 ci_method = "quantile",
 test = "p-value",
 ...
)
```

```r
Default S3 method:
simulate_parameters(
 model,
 iterations = 1000,
 centrality = "median",
 ci = 0.95,
 ci_method = "quantile",
 ...
)
```
simulate_parameters.glmmTMB

```r
test = "p-value",
...
```

### Arguments

- **model**: Statistical model (no Bayesian models).
- **iterations**: The number of draws to simulate/bootstrap.
- **centrality**: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- **ci**: Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).
- **ci_method**: The type of index used for Credible Interval. Can be "ETI" (default, see `eti()`), "HDI" (see `hdi()`), "BCI" (see `bci()`), "SPI" (see `spi()`), or "SI" (see `si()`).
- **test**: The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding `bayestestR` function is called (e.g. `rope()` or `p_direction()`) and its results included in the summary output.
- **...**: Arguments passed to `insight::get_varcov()`, e.g. to allow simulated draws to be based on heteroscedasticity consistent variance covariance matrices.

### Details

**Technical Details:**

`simulate_parameters()` is a computationally faster alternative to `bootstrap_parameters()`. Simulated draws for coefficients are based on a multivariate normal distribution (`MASS::mvrnorm()`) with mean `mu = coef(model)` and variance `Sigma = vcov(model)`.

**Models with Zero-Inflation Component:**

For models from packages `glmmTMB`, `pscl`, `GLMMadaptive` and `countreg`, the component argument can be used to specify which parameters should be simulated. For all other models, parameters from the conditional component (fixed effects) are simulated. This may include smooth terms, but not random effects.

### Value

A data frame with simulated parameters.

### Note

There is also a `plot()`-method implemented in the `see-package`.

### References

sort_parameters

Sort parameters by coefficient values

Description

Sort parameters by coefficient values

Usage

sort_parameters(x, ...)

## Default S3 method:
sort_parameters(x, sort = "none", column = "Coefficient", ...)

Arguments

- x: A data frame or a parameters_model object.
- ...: Arguments passed to or from other methods.
- sort: If "none" (default) do not sort, "ascending" sort by increasing coefficient value, or "descending" sort by decreasing coefficient value.
- column: The column containing model parameter estimates. This will be "Coefficient" (default) in easystats packages, "estimate" in broom package, etc.

Value

A sorted data frame or original object.

See Also

bootstrap_model(), bootstrap_parameters(), simulate_model()

Examples

```r
model <- lm(Sepal.Length ~ Species * Petal.Width + Petal.Length, data = iris)
simulate_parameters(model)

Not run:
if (require("glmmTMB", quietly = TRUE)) {
 model <- glmmTMB(
 count ~ spp + mined + (1 | site),
 ziformula = ~mined,
 family = poisson(),
 data = Salamanders
)
 simulate_parameters(model, centrality = "mean")
 simulate_parameters(model, ci = c(.8, .95), component = "zero_inflated")
}
End(Not run)
```
Examples

# creating object to sort (can also be a regular data frame)
mod <- model_parameters(stats::lm(wt ~ am * cyl, data = mtcars))

# original output
mod

# sorted outputs
sort_parameters(mod, sort = "ascending")
sort_parameters(mod, sort = "descending")

standardize_info    Get Standardization Information

Description

This function extracts information, such as the deviations (SD or MAD) from parent variables, that are necessary for post-hoc standardization of parameters. This function gives a window on how standardized are obtained, i.e., by what they are divided. The "basic" method of standardization uses.

Usage

standardize_info(model, ...)

## Default S3 method:
standardize_info(
  model,
  robust = FALSE,
  two_sd = FALSE,
  include_pseudo = FALSE,
  verbose = TRUE,
  ...
)

Arguments

model          A statistical model.
...            Arguments passed to or from other methods.
robust         Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).
two_sd          If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).
include_pseudo  (For (G)LMMs) Should Pseudo-standardized information be included?
verbose          Toggle warnings and messages on or off.

Value

A data frame with information on each parameter (see `parameters_type()`), and various standard-
ization coefficients for the post-hoc methods (see `standardize_parameters()`) for the predictor
and the response.

See Also

Other standardize: `standardize_parameters()`

Examples

model <- lm(mpg ~ ., data = mtcars)
standardize_info(model)
standardize_info(model, robust = TRUE)
standardize_info(model, two_sd = TRUE)

---

**standardize_parameters**

*Parameters standardization*

Description

Compute standardized model parameters (coefficients).

Usage

```r
standardize_parameters(
 model,
 method = "refit",
 ci = 0.95,
 robust = FALSE,
 two_sd = FALSE,
 include_response = TRUE,
 verbose = TRUE,
 ...
)
```

```r
standardize_posteriors(
 model,
 method = "refit",
 robust = FALSE,
 two_sd = FALSE,
 include_response = TRUE,
 verbose = TRUE,
)```
standardize_parameters

...)

Arguments

model A statistical model.
method The method used for standardizing the parameters. Can be "refit" (default), "posthoc", "smart", "basic", "pseudo" or "sdy". See Details.
ci Confidence Interval (CI) level
robust Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).
two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).
include_response If TRUE (default), the response value will also be standardized. If FALSE, only the predictors will be standardized. For GLMs the response value will never be standardized (see Generalized Linear Models section).
verbose Toggle warnings and messages on or off.

... For standardize_parameters(), arguments passed to model_parameters(), such as:
 • ci_method, centrality for Mixed models and Bayesian models...
 • exponentiate, ...
 • etc.

Details

Standardization Methods:

• refit: This method is based on a complete model re-fit with a standardized version of the data. Hence, this method is equal to standardizing the variables before fitting the model. It is the "purest" and the most accurate (Neter et al., 1989), but it is also the most computationally costly and long (especially for heavy models such as Bayesian models). This method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a robust standardization of data, i.e., based on the median and MAD instead of the mean and SD. See standardize() for more details.
 – Note that standardize_parameters(method = "refit") may not return the same results as fitting a model on data that has been standardized with standardize(); standardize_parameters() used the data used by the model fitting function, which might not be same data if there are missing values. see the remove_na argument in standardize().
• posthoc: Post-hoc standardization of the parameters, aiming at emulating the results obtained by "refit" without refitting the model. The coefficients are divided by the standard deviation (or MAD if robust) of the outcome (which becomes their expression 'unit'). Then, the
coefficients related to numeric variables are additionally multiplied by the standard deviation (or MAD if robust) of the related terms, so that they correspond to changes of 1 SD of the predictor (e.g., "A change in 1 SD of x is related to a change of 0.24 of the SD of y"). This does not apply to binary variables or factors, so the coefficients are still related to changes in levels. This method is not accurate and tend to give aberrant results when interactions are specified.

- **basic**: This method is similar to method = "posthoc", but treats all variables as continuous: it also scales the coefficient by the standard deviation of model's matrix' parameter of factors levels (transformed to integers) or binary predictors. Although being inappropriate for these cases, this method is the one implemented by default in other software packages, such as lm.beta::lm.beta().

- **smart** (Standardization of Model’s parameters with Adjustment, Reconnaissance and Transformation - experimental): Similar to method = "posthoc" in that it does not involve model refitting. The difference is that the SD (or MAD if robust) of the response is computed on the relevant section of the data. For instance, if a factor with 3 levels A (the intercept), B and C is entered as a predictor, the effect corresponding to B vs. A will be scaled by the variance of the response at the intercept only. As a result, the coefficients for effects of factors are similar to a Glass’ delta.

- **pseudo** (for 2-level (G)LMMs only): In this (post-hoc) method, the response and the predictor are standardized based on the level of prediction (levels are detected with performance::check_heterogeneity_bias()). Predictors are standardized based on their SD at level of prediction (see also datawizard::demean()); The outcome (in linear LMMs) is standardized based on a fitted random-intercept-model, where $\sqrt{\text{random-intercept-variance}}$ is used for level 2 predictors, and $\sqrt{\text{residual-variance}}$ is used for level 1 predictors (Hoffman 2015, page 342). A warning is given when a within-group variable is found to have access between-group variance.

- **sdy** (for logistic regression models only): This y-standardization is useful when comparing coefficients of logistic regression models across models for the same sample. Unobserved heterogeneity varies across models with different independent variables, and thus, odds ratios from the same predictor of different models cannot be compared directly. The y-standardization makes coefficients "comparable across models by dividing them with the estimated standard deviation of the latent variable for each model" (Mood 2010). Thus, whenever one has multiple logistic regression models that are fit to the same data and share certain predictors (e.g. nested models), it can be useful to use this standardization approach to make log-odds or odds ratios comparable.

Transformed Variables:
When the model’s formula contains transformations (e.g. y ~ exp(X)) method = "refit" will give different results compared to method = "basic" ("posthoc" and "smart" do not support such transformations): While "refit" standardizes the data prior to the transformation (e.g. equivalent to exp(scale(X))), the "basic" method standardizes the transformed data (e.g. equivalent to scale(exp(X))).

See the Transformed Variables section in standardize.default() for more details on how different transformations are dealt with when method = "refit".

Confidence Intervals:
The returned confidence intervals are re-scaled versions of the unstandardized confidence intervals, and not "true" confidence intervals of the standardized coefficients (cf. Jones & Waller, 2015).
Generalized Linear Models:
Standardization for generalized linear models (GLM, GLMM, etc) is done only with respect to the predictors (while the outcome remains as-is, unstandardized) - maintaining the interpretability of the coefficients (e.g., in a binomial model: the exponent of the standardized parameter is the OR of a change of 1 SD in the predictor, etc.)

Dealing with Factors:
standardize(model) or standardize_parameters(model, method = "refit") do not standardize categorical predictors (i.e. factors)/their dummy-variables, which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize_parameters(model, method = "basic") to obtain post-hoc standardized parameters, or standardize the data with datawizard::standardize(data, force = TRUE) before fitting the model.

Value
A data frame with the standardized parameters (Std_*, depending on the model type) and their CIs (CI_low and CI_high). Where applicable, standard errors (SEs) are returned as an attribute (attr(x, "standard_error")).

References
• Mood C. Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do About It. European Sociological Review (2010) 26:67–82.

See Also
See also package vignette.
Other standardize: standardize_info()

Examples
model <- lm(len ~ supp * dose, data = ToothGrowth)
standardize_parameters(model, method = "refit")

standardize_parameters(model, method = "posthoc")
standardize_parameters(model, method = "smart")
standardize_parameters(model, method = "basic")

Robust and 2 SD
standardize_parameters(model,robust = TRUE)
standardize_parameters(model,two_sd = TRUE)

model <- glm(am ~ cyl * mpg, data = mtcars, family = "binomial")
standardize_parameters(model,method = "refit")
standardize_parameters(model,method = "posthoc")
standardize_parameters(model,method = "basic",exponentiate = TRUE)

m <- lme4::lmer(mpg ~ cyl + am + vs + (1 | cyl), mtcars)
standardize_parameters(m,method = "pseudo",ci_method = "satterthwaite")

model <- rstanarm::stan_glm(rating ~ critical + privileges, data = attitude, refresh = 0)
standardize_posteriors(model,method = "refit",verbose = FALSE)
standardize_posteriors(model,method = "posthoc",verbose = FALSE)
standardize_posteriors(model,method = "smart",verbose = FALSE)
head(standardize_posteriors(model,method = "basic",verbose = FALSE))

standard_error

Standard Errors

Description

`standard_error()` attempts to return standard errors of model parameters.

Usage

```r
standard_error(model, ...)
```

```
# Default S3 method:
standard_error(
  model,
  component = "all",
  vcov = NULL,
  vcov_args = NULL,
  verbose = TRUE,
  ...
)
```

```
# S3 method for class 'factor'
standard_error(model,force = FALSE,verbose = TRUE,...)
```
S3 method for class 'glmmTMB'
standard_error(
 model,
 effects = "fixed",
 component = "all",
 verbose = TRUE,
 ...
)

S3 method for class 'merMod'
standard_error(
 model,
 effects = "fixed",
 method = NULL,
 vcov = NULL,
 vcov_args = NULL,
 ...
)

Arguments

- **model**: A model.
- **...**: Arguments passed to or from other methods.
- **component**: Model component for which standard errors should be shown. See the documentation for your object’s class in `model_parameters()` or `p_value()` for further details.
- **vcov**: Variance-covariance matrix used to compute uncertainty estimates (e.g., for robust standard errors). This argument accepts a covariance matrix, a function which returns a covariance matrix, or a string which identifies the function to be used to compute the covariance matrix.
 - A covariance matrix
 - A function which returns a covariance matrix (e.g., `stats::vcov()`)
 - A string which indicates the kind of uncertainty estimates to return.
 - Heteroskedasticity-consistent: "vcovHC", "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See `sandwich::vcovHC`.
 - Bootstrap: "vcovBS", "xy", "residual", "wild", "mammen", "webb". See `sandwich::vcovBS`.
 - Other `sandwich` package functions: "vcovHAC", "vcovPC", "vcovCL", "vcovPL".
- **vcov_args**: List of arguments to be passed to the function identified by the `vcov` argument. This function is typically supplied by the `sandwich` or `clubSandwich` packages. Please refer to their documentation (e.g., `?sandwich::vcovHAC`) to see the list of available arguments.
- **verbose**: Toggle warnings and messages.
force Logical, if TRUE, factors are converted to numerical values to calculate the standard error, with the lowest level being the value 1 (unless the factor has numeric levels, which are converted to the corresponding numeric value). By default, NA is returned for factors or character vectors.

effects Should standard errors for fixed effects ("fixed"), random effects ("random"), or both ("all") be returned? Only applies to mixed models. May be abbreviated. When standard errors for random effects are requested, for each grouping factor a list of standard errors (per group level) for random intercepts and slopes is returned.

method Method for computing degrees of freedom for confidence intervals (CI) and the related p-values. Allowed are following options (which vary depending on the model class): "residual", "normal", "likelihood", "satterthwaite", "kenward", "wald", "profile", "boot", "unirroot", "mll", "betwithin", "hdi", "quantile", "ci", "eti", "si", "bci", or "bcai". See section Confidence intervals and approximation of degrees of freedom in \texttt{model_parameters()} for further details.

Value A data frame with at least two columns: the parameter names and the standard errors. Depending on the model, may also include columns for model components etc.

Note For Bayesian models (from \texttt{rstanarm} or \texttt{brms}), the standard error is the SD of the posterior samples.

Examples

```r
model <- lm(Petal.Length ~ Sepal.Length * Species, data = iris)
standard_error(model)

if (require("sandwich") && require("clubSandwich")) {
  standard_error(model, vcov = "HC3")

  standard_error(model,
                 vcov = "vcovCL",
                 vcov_args = list(cluster = iris$Species))
}
```
Index

* data
 fish, 47
 qol_cancer, 171
* effect size indices
 standardize_parameters, 182
* standardize
 standardize_info, 181
 standardize_parameters, 182
... , 41

Additive models, 52
ANOVA, 52
anova(), 61
aov(), 61

BayesFactor::anovaBF(), 66
BayesFactor::correlationBF(), 66
BayesFactor::generalTestBF(), 66
BayesFactor::lmBF(), 66
BayesFactor::regressionBF(), 66
BayesFactor::ttestBF(), 66
Bayesian, 52
Bayesian models, 163
Bayesian regressions, 69, 77, 89, 95, 115, 132, 136, 140
bayestestR::bci(), 11, 56, 82, 92, 109, 166
bayestestR::ci(), 105
bayestestR::describe_posterior(), 7, 62, 100
bayestestR::equivalence_test(), 42
bayestestR::eti(), 10, 56, 82, 92, 109, 166
bayestestR::hdci(), 11, 56, 82, 92, 109, 166
bayestestR::p_direction(), 6, 11, 52, 56, 82, 93, 109, 160, 167
bayestestR::p_to_pd(), 161
bayestestR::pd_to_p(), 11, 56, 82, 93, 109, 167
bayestestR::rope(), 6
bayestestR::rope_range(), 42
bayestestR::si(), 11, 56, 82, 93, 109, 167

bci(), 6, 64, 66, 179
bootstrap_model, 4
bootstrap_model(), 7, 177, 180
bootstrap_parameters, 6
bootstrap_parameters(), 5, 69, 77, 89, 95, 115, 132, 136, 140, 177, 180

cAIC4::stepAIC(), 176
ci.default, 8
ci.glmmTMB(ci.default), 8
ci.merMod(ci.default), 8
ci_betwithin, 11
ci_betwithin(), 10, 55, 81, 92, 108, 166
ci_kinward, 13
ci_ml1, 14
ci_ml1(), 10, 55, 81, 91, 108, 165
ci_satterthwaite, 16
closest_component(factor_analysis), 43
closest_component(), 45
cluster_analysis, 17
cluster_analysis(), 21
cluster_centers, 20
cluster_discrimination, 21
cluster_discrimination(), 19
cluster_meta, 21
cluster_performance, 23
Clustering, 52
compare_models(compare_parameters), 24
compare_parameters, 24
confidence_curve(p_function), 158
consistance_function(p_function), 158
convert_efa_to_cfa, 28
Correlations, t-tests, etc., 52
datawizard::demean(), 54, 184
Default method, 52
degrees_of_freedom, 29
degrees_of_freedom(), 8, 164
display(), 156
INDEX

model_parameters.bifeAPEs
 (model_parameters.DirichletRegModel), 94
model_parameters.blrm
 (model_parameters.MCMCglmm), 101
model_parameters.bracl
 (model_parameters.DirichletRegModel), 94
model_parameters.brmsfit
 (model_parameters.MCMCglmm), 101
model_parameters.censReg
 (model_parameters.default), 86
model_parameters.cgam, 67
model_parameters.clm2
 (model_parameters.DirichletRegModel), 94
model_parameters.clmm
 (model_parameters.cpglmm), 72
model_parameters.clmm2
 (model_parameters.cpglmm), 72
model_parameters.coefTest
 (model_parameters.htest), 98
model_parameters.comparisons
 (model_parameters.PMCMR), 118
model_parameters.cpglmm, 72
model_parameters.data.frame
 (model_parameters.MCMCglmm), 101
model_parameters.dbscan, 83
model_parameters.default, 86
model_parameters.default(), 53, 160
model_parameters.deltaMethod
 (model_parameters.PMCMR), 118
model_parameters.dep.effect
 (model_parameters.PMCMR), 118
model_parameters.DirichletRegModel, 94
model_parameters.draws
 (model_parameters.MCMCglmm), 101
model_parameters.emm_list
 (model_parameters.PMCMR), 118
model_parameters.emmGrid
 (model_parameters.PMCMR), 118
model_parameters.epi.2by2
 (model_parameters.PMCMR), 118
model_parameters.FAMD
 (model_parameters.PCA), 112
model_parameters.fitdistr
 (model_parameters.PMCMR), 118
model_parameters.Gam
 (model_parameters.cgam), 67
model_parameters.gamm
 (model_parameters.cgam), 67
model_parameters.gamlmss
 (model_parameters.cgam), 67
model_parameters.gglm
 (model_parameters.cgam), 67
model_parameters.ggeffects
 (model_parameters.PMCMR), 118
model_parameters.glht
 (model_parameters.PMCMR), 118
model_parameters.glimML
 (model_parameters.PMCMR), 118
model_parameters.glmm
 (model_parameters.PMCMR), 118
model_parameters.glmmTMB
 (model_parameters.cpglmm), 72
model_parameters.glmx
 (model_parameters.PMCMR), 118
model_parameters.hclust
 (model_parameters.dbscan), 83
model_parameters.hkmeans
 (model_parameters.dbscan), 83
model_parameters.HLfit
 (model_parameters.cpglmm), 72
model_parameters.htest, 98
model_parameters.hurdle
 (model_parameters.zcpglm), 138
model_parameters.hypotheses
 (model_parameters.PMCMR), 118
model_parameters.ivFixed
 (model_parameters.PMCMR), 118
model_parameters.ivprobit
 (model_parameters.PMCMR), 118
model_parameters.kmeans
 (model_parameters.dbscan), 83
model_parameters.lavaan
 (model_parameters.PCA), 112
model_parameters.lavaan()
 (model_parameters.PMCMR), 27, 61, 70, 78, 90, 96, 99, 106, 111, 115, 133, 137, 141, 160
model_parameters.lme
(model_parameters.cpglmm), 72
model_parameters.lmodel2
(model_parameters.PMCMR), 118
model_parameters.logistf
(model_parameters.PMCMR), 118
model_parameters.logitmfx
(model_parameters.PMCMR), 118
model_parameters.logitor
(model_parameters.PMCMR), 118
model_parameters.lqmm
(model_parameters.PMCMR), 118
model_parameters.maov
(model_parameters.aov), 58
model_parameters.marginaleffects
(model_parameters.PMCMR), 118
model_parameters.marginalmeans
(model_parameters.PMCMR), 118
model_parameters.margins
(model_parameters.PMCMR), 118
model_parameters.maxim
(model_parameters.PMCMR), 118
model_parameters.maxLik
(model_parameters.PMCMR), 118
model_parameters.Mclust
(model_parameters.dbscan), 83
model_parameters.mcmc.list
(model_parameters.MCMCglmm), 101
model_parameters.MCMCglmm, 101
model_parameters.med1way
(model_parameters.PMCMR), 118
model_parameters.mediator
(model_parameters.PMCMR), 118
model_parameters.merMod
(model_parameters.cpglmm), 72
model_parameters.merModList
(model_parameters.cpglmm), 72
model_parameters.meta_bma
(model_parameters.PMCMR), 118
model_parameters.meta_fixed
(model_parameters.PMCMR), 118
model_parameters.meta_random
(model_parameters.PMCMR), 118
model_parameters.metaplus
(model_parameters.PMCMR), 118
model_parameters.mhurdle
(model_parameters.zcpglm), 138
model_parameters.mipo, 110
model_parameters.mira
(model_parameters.mipo), 110
model_parameters.mixed
(model_parameters.cpglmm), 72
model_parameters.MixMod
(model_parameters.cpglmm), 72
model_parameters.mixor
(model_parameters.cpglmm), 72
model_parameters.mjjoint
(model_parameters.PMCMR), 118
model_parameters.mle
(model_parameters.PMCMR), 118
model_parameters.mle2
(model_parameters.PMCMR), 118
model_parameters.mlmm
(model_parameters.DirichletRegModel), 94
model_parameters.model_fit
(model_parameters.PMCMR), 118
model_parameters.mvord
(model_parameters.PMCMR), 118
model_parameters.negbin
(model_parameters.default), 86
model_parameters.negbinirr
(model_parameters.PMCMR), 118
model_parameters.negbinmfx
(model_parameters.PMCMR), 118
model_parameters.omega
(model_parameters.PCA), 112
model_parameters.pairwise.htest
(model_parameters.PCA), 98
model_parameters.pam
(model_parameters.dbscan), 83
model_parameters.PCA, 112
model_parameters.pgmm
(model_parameters.PMCMR), 118
model_parameters.PMCMR, 118
model_parameters.poissonirr
(model_parameters.PMCMR), 118
model_parameters.poissonmfx
(model_parameters.PMCMR), 118
model_parameters.polr
(model_parameters.default), 86
model_parameters.predictions
(model_parameters.PMCMR), 118
model_parameters.principal
(model_parameters.PCA), 112
model_parameters.probimfx
(model_parameters.PMCMR), 118
model_parameters.pvclust
(model_parameters.dbscan), 83
model_parameters.ridgelm
(model_parameters.default), 86
model_parameters.rlmerMod
(model_parameters.cpglmm), 72
model_parameters.rma
136
model_parameters.rqs
(model_parameters.PMCMR), 118
model_parameters.rqs
(model_parameters.PMCMR), 118
model_parameters.scam
(model_parameters.cgam), 67
model_parameters.selection
(model_parameters.PMCMR), 118
model_parameters.sem
(model_parameters.PCA), 112
model_parameters.SemiParBIV
(model_parameters.PMCMR), 118
model_parameters.slopes
(model_parameters.PMCMR), 118
model_parameters.stanfit
(model_parameters.MCMCglmm), 101
model_parameters.stanreg
(model_parameters.MCMCglmm), 101
model_parameters.systemfit
(model_parameters.PMCMR), 118
model_parameters.t1way
(model_parameters.PMCMR), 118
model_parameters.varest
(model_parameters.PMCMR), 118
model_parameters.vgam
(model_parameters.cgam), 67
model_parameters.yuen
(model_parameters.PMCMR), 118
model_parameters.zcpglm, 138
model_parameters.zcpglm
(model_parameters.zcpglm), 138
model_parameters.zeroinfl
(model_parameters.zcpglm), 138
Models with special components, 163
Multinomial, ordinal and cumulative
link, 52
Multiple imputation, 52
n_clusters, 142

n_clusters(), 17, 19, 21
n_clusters_dbscan (n_clusters), 142
n_clusters_dbscan(), 18
n_clusters_elbow (n_clusters), 142
n_clusters_gap (n_clusters), 142
n_clusters_hclust (n_clusters), 142
n_clusters_silhouette (n_clusters), 142
n_components (n_factors), 146
n_components(), 44, 45, 173
n_factors, 146
n_factors(), 44, 45, 142, 173

Other models, 52
p_calibrate, 157
p_direction(), 64, 66, 106, 134, 179
p_function, 158
p_value, 163
p_value(), 8, 164, 170, 187
p_value.averaging
(p_value.DirichletRegModel), 168
p_value.betamfx (p_value.poissonmfx), 169
p_value.betaor (p_value.poissonmfx), 169
p_value.betareg
(p_value.DirichletRegModel), 168
p_value.BFBayesFactor, 167
p_value.cgam
(p_value.DirichletRegModel), 168
p_value.clm2
(p_value.DirichletRegModel), 168
p_value.DirichletRegModel, 168
p_value.poissonmfx, 169
p_value.zcpglm, 170
p_value.zeroinfl (p_value.zcpglm), 170
p_value_betwithin (ci_betwithin), 11
p_value_kenward (ci_kenward), 13
p_value_ml1 (ci_ml1), 14
p_value_satterthwaite (ci_satterthwaite), 16
parameters (model_parameters), 52
parameters::standardize_parameters(), 62, 100
parameters_type, 149
parameters_type(), 182
PCA, FA, CFA, SEM, 52
performance::check_clusterstructure(), 19, 21
performance::check_factorstructure(), 45
performance::check_heterogeneity_bias(), 54, 184
performance::check_itemscale(), 45
performance::check_kmo(), 45
performance::check_sphericity_bartlett(), 45
pool_parameters, 150
predict.parameters_clusters, 152
predict.parameters_efa (factor_analysis), 43
principal_components (factor_analysis), 43
principal_components(), 33, 51, 173
print(), 49, 56, 57, 156
print.parameters_efa (factor_analysis), 43
print.parameters_model, 152
print.parameters_model(), 36, 52, 160
print_html.parameters_model (display.parameters_model), 31
print_md(), 57, 156
print_md.parameters_model (display.parameters_model), 31
psych::fa(), 44
psych::VSS(), 147
qol_cancer, 171
random_parameters, 171
reduce_data (reduce_parameters), 173
reduce_parameters, 173
reduce_parameters(), 44, 173
reshape_loadings, 174
rope(), 64, 66, 106, 134, 179
rotated_data (factor_analysis), 43
rotated_data(), 45
se_kentward (ci_kentward), 13
se_satterthwaite (ci_satterthwaite), 16
select_parameters, 175
si(), 6, 64, 66, 179
signif(), 35, 154
simulate_model, 176
simulate_model(), 5, 7, 180
simulate_parameters (simulate_parameters.glmmTMB), 178
simulate_parameters(). 5, 7, 33, 177
simulate_parameters.glmmTMB, 178
sort.parameters_efa (factor_analysis), 43
sort_parameters, 180
sparsepca::robPCA(), 44
sparsepca::spca(), 44
spi(), 6, 64, 66, 179
standard_error, 186
standardise_info (standardize_info), 181
standardise_parameters (standardize_parameters), 182
standardise_posteriors (standardize_parameters), 182
standardize(), 53, 183
standardize.default(), 184
standardize_info, 181, 185
standardise_parameters, 182, 182
standardise_parameters(), 25, 53, 70, 77, 89, 96, 107, 132, 136, 140, 182
standardise_posteriors (standardize_parameters), 182
stats::p.adjust(), 26, 70, 78, 89, 96, 111, 115, 133, 141
summary.parameters_model (print.parameters_model), 152
Zero-Inflated and hurdle, 52
Zero-Inflated models, 163