Package ‘parmigene’

August 3, 2020

Version 1.1.0

Date 2020-07-28

Title Parallel Mutual Information Estimation for Gene Network Reconstruction

Author Gabriele Sales <gabriele.sales@unipd.it>, Chiara Romualdi <chiara.romualdi@unipd.it>

Maintainer Gabriele Sales <gabriele.sales@unipd.it>

Description Parallel estimation of the mutual information based on entropy estimates from k-nearest neighbors distances and algorithms for the reconstruction of gene regulatory networks (Sales et al, 2011 <doi:10.1093/bioinformatics/btr274>).

License AGPL-3

URL https://github.com/sales-lab/parmigene

BugReports https://github.com/sales-lab/parmigene/issues

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-08-03 09:50:03 UTC

R topics documented:

aracne.a .. 2
aracne.m .. 3
clr ... 4
knnmi ... 5
knnmi.all .. 6
knnmi.cross .. 7
mrnet .. 8

Index 10
Description

A function that implements the ARACNE algorithm for the reconstruction of gene interaction networks (additive model).

Usage

aracne.a(mi, eps=0.05)

Arguments

- mi: matrix of the mutual information.
- eps: a positive numeric value used to remove the weakest edge of each triple of nodes.

Details

This algorithm considers each triple of edges independently and removes the weakest one if

\[MI(i; j) < MI(j; k) - \varepsilon \]

and

\[MI(i; j) < MI(i; k) - \varepsilon \]

By default, the function uses all the available cores. You can set the actual number of threads used to \(N \) by exporting the environment variable \(\text{OMP}_\text{NUM}_\text{THREADS} = N \).

Value

A square weighted adjacency matrix of the inferred network.

References

See Also

aracne.m
clr
mrnet
Examples

```r
mat <- matrix(rnorm(1000), nrow=10)
m <- knnmi.all(mat)
grn <- aracne.a(mi, 0.05)
```

Description

A function that implements the ARACNE algorithm for the reconstruction of gene interaction networks (multiplicative model).

Usage

```r
aracne.m(mi, tau=0.15)
```

Arguments

- **mi**: matrix of the mutual information.
- **tau**: a positive numeric value used to remove the weakest edge of each triple of nodes.

Details

This algorithm considers each triple of edges independently and removes the weakest one if

\[MI(i;j) < MI(j;k) \times (1 - \tau) \]

and

\[MI(i;j) < MI(i;k) \times (1 - \tau) \]

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable `OMP_NUM_THREADS=N`.

Value

A square weighted adjacency matrix of the inferred network.

References

Context Likelihood or Relatedness Network

A function that infers the interaction network using the CLR algorithm.

Usage

clr(mi)

Arguments

mi matrix of the mutual information.

Details

CLR computes the score

$$\sqrt{z_i^2 + z_j^2}$$

for each pair of variables i, j, where

$$z_i = \max(0, (I(X_i; X_j) - \text{mean}(X_i))/\text{sd}(X_i))$$

and $\text{mean}(X_i)$ and $\text{sd}(X_i)$ are the mean and the standard deviation of the mutual information values $I(X_i; X_k)$ for all $k = 1, \ldots, n$.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

Value

A square weighted adjacency matrix of the inferred network.
knnmi

References

See Also
aracne.a
aracne.m
mrnet

Examples
mat <- matrix(rnorm(1000), nrow=10)
mi <- knnmi.all(mat)
grn <- clr(mi)

knnmi

Parallel Mutual Information Estimation

Description
A function to perform a parallel estimation of the mutual information of vectors x and y using entropy estimates from K-nearest neighbor distances.

Usage
knnmi(x, y, k=3, noise=1e-12)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a numeric vector.</td>
</tr>
<tr>
<td>y</td>
<td>a numeric vector with the same length of x.</td>
</tr>
<tr>
<td>k</td>
<td>the number of nearest neighbors to be considered to estimate the mutual information. Must be less than the number of elements of x.</td>
</tr>
<tr>
<td>noise</td>
<td>the magnitude of the random noise added to break ties.</td>
</tr>
</tbody>
</table>

Details
The function adds a small random noise to the data in order to break ties due to limited numerical precision.

By default, the function uses all available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.
knnmi.all

Parallel Mutual Information Estimation Between All Matrix Rows

Description

A function that computes the mutual information between all pairs of rows of matrix `mat` using entropy estimates from K-nearest neighbor distances.

Usage

```r
knnmi.all(mat, k=3, noise=1e-12)
```

Arguments

- `mat`: a numeric matrix (for the reconstruction of gene regulatory networks, genes on rows and samples on columns).
- `k`: the number of nearest neighbors to consider to estimate the mutual information. Must be less than the number of columns of `mat`.
- `noise`: the magnitude of the random noise added to break ties.

Details

The function adds a small random noise to the data in order to break ties due to limited numerical precision.

By default, the function uses all the available cores. You can set the actual number of threads used to `N` by exporting the environment variable `OMP_NUM_THREADS=N`.

References

knnmi.cross

See Also

knnmi
knnmi.cross

Examples

mat <- matrix(rnorm(1000), nrow=10)
knnmi.all(mat, 5)

knnmi.cross
Parallel Mutual Information Estimation Between the Rows of Two Matrices

Description

A function that estimates the mutual information between all pairs of rows of matrices mat1 and mat2 using entropy estimates from K-nearest neighbor distances.

Usage

knnmi.cross(mat1, mat2, k=3, noise=1e-12)

Arguments

mat1
a numeric matrix (for the reconstruction of gene regulatory networks, genes on rows and samples on columns).

mat2
a numeric matrix with the same number of columns as mat1.

k
the number of nearest neighbors to consider to estimate the mutual information. Must be less than the number of columns of mat1.

noise
the magnitude of the random noise added to break ties.

Details

The function adds a small random noise to the data in order to break ties due to limited numerical precision.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

References

See Also

knnmi
knnmi.all
Examples

```r
mat1 <- matrix(rnorm(1000), nrow=10)
mat2 <- matrix(rnorm(1000), nrow=10)
knnmi.cross(mat1, mat2, 5)
```

mrnet

Maximum Relevance Minimum Redundancy

Description

A function that infers the interaction network using the MRNET algorithm.

Usage

```r
mrnet(mi)
```

Arguments

- `mi`: matrix of the mutual information.

Details

The MRNET approach starts by selecting the variable X_i having the highest mutual information with the target Y.

Then, it repeatedly enlarges the set of selected variables S by taking the X_k that maximizes

$$I(X_k; Y) - \text{mean}(I(X_k; X_i))$$

for all X_i already in S.

The procedure stops when the score becomes negative.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable `OMP_NUM_THREADS=N`.

Value

A square weighted adjacency matrix of the inferred network.

References

mrnet

See Also

aracne.a
aracne.m
c1r

Examples

mat <- matrix(rnorm(1000), nrow=10)
mi <- knnmi.all(mat)
grn <- mrnet(mi)
Index

aracne.a, 2, 4, 5, 9
aracne.m, 2, 3, 5, 9

clr, 2, 4, 4, 9

knnmi, 5, 7
knnmi.all, 6, 6, 7
knnmi.cross, 6, 7, 7

mrnet, 2, 4, 5, 8