Package ‘partialAR’

April 14, 2020

Type Package
Title Partial Autoregression
Version 1.0.12
Date 2020-04-12
Description A time series is said to be partially autoregressive if it can be represented as a sum of a random walk and an autoregressive sequence without unit roots. This package fits partially autoregressive time series, where the autoregressive component is AR(1). This may be of use in modeling certain financial time series.
License GPL-2 | GPL-3
Imports Rcpp (>= 0.11.2), zoo, parallel, ggplot2, MASS, tseries, data.table, KFAS, urca, plot3D, methods
Suggests egcm, TTR
LinkingTo Rcpp
NeedsCompilation yes
Author Matthew Clegg [aut, cre, cph]
Maintainer Matthew Clegg <matthewcleggphd@gmail.com>
Repository CRAN
Date/Publication 2020-04-14 09:10:02 UTC

R topics documented:

partialAR-package .. 2
as.data.frame.par.fit ... 4
estimate.par .. 6
fit.par ... 7
kalman.gain.par .. 11
likelihood_ratio.par ... 13
loglik.par ... 14
pvmr.par .. 15
rpar ... 16
sample.likelihood_ratio.par 18
Description

Fits time series models which consist of a sum of a permanent and a transient component. The permanent component is modeled as a random walk, while the transient component is modeled as an autoregressive series of order one.

Details

Package: partialAR
Type: Package
Version: 1.0
Date: 2015-01-12
License: GPL-2 | GPL-3

This package fits time series models which consist of a sum of a permanent and a transient component. In other words, the model fitted is:

\[X_t = M_t + R_t \]
\[M_t = \rho M_{t-1} + \epsilon_{M,t} \]
\[R_t = R_{t-1} + \epsilon_{R,t} \]

\[-1 < \rho < 1 \]

\[\epsilon_{M,t} \sim N(0, \sigma_M^2) \]
\[\epsilon_{R,t} \sim N(0, \sigma_R^2) \]

This model may be useful when modeling a time series that is thought to be primarily mean-reverting but which may also contain some random drift.

Disclaimer

DISCLAIMER: The software in this package is for general information purposes only. It is hoped that it will be useful, but it is provided WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. It is not intended to form the basis of any investment decision. USE AT YOUR OWN RISK!
Author(s)
Matthew Clegg
Maintainer: Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also
arima ARIMA modeling of time series
egcm Engle-Granger cointegration model

Examples

```r
set.seed(1)
x <- rpar(1000, 0.8, 1, 0.5) # Generate a random PAR sequence
fit.par(x) # Estimate its parameters
plot(fit.par(x)) # Plot the estimate
test.par(x) # Test the goodness of fit
```

An example involving European stock market data
data(EuStockMarkets) # European Stock Markets 1991-1998

Check for cointegration between German DAX and Swiss SMI
library(egcm)
egcm(log(EuStockMarkets[,c("DAX", "SMI")]))

The series are not found to be cointegrated.
Perhaps they are partially cointegrated? Check the residuals
of the cointegration fit for partial autoregression:
fit.par(egcm(EuStockMarkets[,c("DAX", "SMI")])$residuals)

A plot of the model looks promising:
Not run: plot(fit.par(egcm(EuStockMarkets[,c("DAX", "SMI")])$residuals))

74% of the variance is attributed to a mean-reverting
AR(1) process. However, it is important to check whether this is
a better explanation than a simple random walk:
test.par(egcm(EuStockMarkets[,c("DAX", "SMI")])$residuals)

The p-value is found to be 0.36, so the random walk hypothesis
cannot be rejected.
Another example involving a potential pairs trade between
Coca-Cola and Pepsi.

Fetch the price series for Coca-Cola (KO) and Pepsi (PEP) in 2014
library(TTR)
KO <- getYahooData("KO", 20140101, 20141231)$Close
PEP <- getYahooData("PEP", 20140101, 20141231)$Close

Check whether they were cointegrated
egcm(KO,PEP)

It turns out that they are not cointegrated. Perhaps a better
fit can be obtained with the partially autoregressive model:
fit.par(egcm(KO,PEP)$residuals)

The mean-reverting component of the above fit explains 90% of
the variance of the daily returns. Thus, it appears that the
two series are close to being cointegrated. A plot further
confirms this:
plot(fit.par(egcm(KO,PEP)$residuals))

Still, it is important to check whether or not the residual
series is simply a random walk:
test.par(egcm(KO,PEP)$residuals)

In this case, the p-value associated with the hypothesis that
the series is partially autoregressive is 0.12. Thus, the
evidence of partial autoregression is marginal. The random walk
may be a better explanation.

`as.data.frame.par.fit`
Convert a fit of the PAR model to a single row data.frame

Description
Convert a fit of the PAR model to a single row data.frame

Usage
```r
## S3 method for class 'par.fit'
as.data.frame(x, row.names, optional, ...)
```

Arguments
- `x`
 An object of class `par.fit`. See `fit.par`
- `row.names`
 Not used
- `optional`
 Not used
- `...`
 Not used
as.data.frame.par.fit

Value

Returns a single row data.frame, with the following columns:

- **robust** TRUE if robust estimation was used.
- **nu** If robust is TRUE, then this is the degrees-of-freedom parameter used in the t-distribution for the robust estimation.
- **opt_method** The optimization method that was used for finding these parameters.
- **n** Length of the vector that was fit to the PAR model.
- **rho** Estimate of the coefficient of mean reversion.
- **sigma_M** Estimate of the standard deviation of the innovations of the transient (mean-reverting) component.
- **sigma_R** Estimate of the standard deviation of the innovations of the permanent (random walk) component.
- **M0** Estimate of the initial value of the transient component.
- **R0** Estimate of the initial value of the permanent component.
- **rho.se** Standard error of the estimate of rho.
- **sigma_M.se** Standard error of the estimate of sigma_M.
- **sigma_R.se** Standard error of the estimate of sigma_R.
- **M0.se** Standard error of the estimate of M0.
- **R0.se** Standard error of the estimate of R0.
- **lambda** Value of the penalty factor lambda that was used in computing the estimates.
- **pvmr** Proportion of variance attributable to mean reversion.
- **negloglik** Negative log-likelihood of the model given these parameters.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

See Also

- fit.par

Examples

```r
require(TTR)
L <- getYahooData("L", 20120101, 20131231)$Close
fit.par(L)
as.data.frame(fit.par(L))
```
estimate.par

Estimates the parameters of a partially autoregressive fit using lagged variances

Description

Estimates the parameters of a partially autoregressive fit using lagged variances

Usage

estimate.par(X, useR = FALSE, rho.max = 1)

Arguments

X
A numeric vector or zoo vector representing the time series whose parameters are to be estimated

useR
If TRUE, the estimation is performed using R code. If FALSE, the estimation is performed using a faster C++ implementation. Default: FALSE.

rho.max
An artificial upper bound to be imposed on the value of rho.

Details

The method of lagged variances provides an analytical formula for the parameter estimates in terms of the variances of the lags $X[t+1] - X[t]$, $X[t+2] - X[t]$ and $X[t+3] - X[t]$. Let

$$V[k] = \text{var}(X[t+k] - X[t]).$$

Then, the estimated parameter values are given by the following formulas:

$$\sigma_M^2 = (1/2)((\rho + 1)/(\rho - 1))(V[2] - 2V[1])$$

$$\sigma_R^2 = (1/2)(V[2] - 2\sigma_M^2)$$

Value

Returns a numeric vector containing three named components

rho
The estimated value of rho

sigma_M
The estimated value of sigma_M

sigma_R
The estimated value of sigma_R

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>
References

See Also
fit.par

Examples
set.seed(1)
x <- rpar(1000, 0.5, 1, 2) # Generate a random PAR sequence
estimate.par(x)
fit.par(x) # For comparison

fit.par
Fit a partially autoregressive model

Description
Fit a partially autoregressive model

Usage
fit.par(Y,
 robust = FALSE,
 model = c("par", "ar1", "rw"),
 lambda = 0,
 opt_method = c("css", "kfas", "ss"),
 rho.max = 1,
 nu = par.nu.default())

Arguments
Y A numeric vector or zoo vector representing the time series whose parameters are to be estimated
robust If TRUE, then the error terms in the fit are assumed to follow a Student’s t-distribution with degrees of freedom parameter given by nu. Otherwise, the error terms are assumed to be normally distributed. Default: FALSE.
model Specifies the model that is to be fit. Possible values are
 • "par" The partially autoregressive model is fit.
 • "ar1" An autoregressive model of order one is fit.
 • "rw" A random walk is fit.
Default: par
lambda A penalty term $\lambda \sigma^2$ is added to the likelihood function. Default: $\lambda = 0$.

opt_method Specifies the Kalman filter that will be used for optimization:
- "ss" Steady-state Kalman filter
- "css" Steady-state Kalman filter coded in C++
- "kfas" Kalman filter implementation of the KFAS package
Default: css

rho.max Specifies an upper limit on the value of rho that will be returned.

nu If robust is TRUE, this specifies the value of the degrees-of-freedom parameter used by the t-distribution. Default: 5

Details
This routine determines the maximum likelihood fit of a time series to the partially autoregressive model, which is given by the specification:

\[X_t = M_t + R_t \]
\[M_t = \rho M_{t-1} + \epsilon_{M,t} \]
\[R_t = R_{t-1} + \epsilon_{R,t} \]
\[-1 < \rho < 1 \]
\[\epsilon_{M,t} \sim N(0, \sigma_M^2) \]
\[\epsilon_{R,t} \sim N(0, \sigma_R^2) \]

The partially autoregressive model is a candidate for working with time series having both permanent and transient components.

If robust is TRUE, then a form of robust estimation is used. The error term is assumed to follow a Student’s t-distribution with nu degrees of freedom.

The model parameter is used to alter the model that is fit. If model is "par", then the partially autoregressive model is fit. If model is "ar1", then an AR(1) model is fit. This is performed by fitting the partially autoregressive model with the restriction that \(\sigma_R = 0 \). If model is "rw", then a random walk model is fit. This is performed by fitting the partially autoregressive model with the restriction that \(\sigma_M = 0 \).

The parameter lambda specifies the weighting of a penalty term that is added to the likelihood function. When lambda > 0, this drives the optimizer towards a solution that places a greater weight on the transient (mean-reverting) component, and when lambda < 0, this drives the optimizer towards a solution that places a greater weight on the permanent (random walk) component.

The fit is performed using maximum likelihood estimation for a Kalman filter representation of the model. When opt_method is "ss" or "css", a steady-state Kalman filter is used. These two methods should give the same result, although "css" is to be preferred because the implementation is much faster. When opt_method is "kfas", the KFAS Kalman Filter package KFAS is used. Because the Kalman gain matrix takes some time to converge to its steady state value, the "kfas" implementation will yield values that are close to but not the same as those of "ss" and "css".

This routine prints the model that is found. The following is an example of the output obtained in one particular run:
Fitted model:
\[X[t] = M[t] + R[t] \]
\[M[t] = 0.9427 M[t-1] + \varepsilon_M,t, \quad \varepsilon_M,t \sim N(0, 0.8843^2) \]
\[(0.0302) \quad (0.0685) \]
\[R[t] = R[t-1] + \varepsilon_R,t, \quad \varepsilon_R,t \sim N(0, 0.2907^2) \]
\[(0.1710) \]
\[M_0 = 0.0000, \quad R_0 = -5.2574 \]
\[(NA) \quad (0.9625) \]

Proportion of variance attributable to mean reversion (\(pvmr\)) = 0.9050

Negative log likelihood = 339.51

In this output, the coefficient of mean reversion \(\rho\) is found to be 0.9427 with a standard error of 0.0302. This corresponds to a half-life of mean reversion of \(\log(0.5)/\log(0.9427) = 11.7\) days. The parameter \(\sigma_M\) is found to be 0.8843 with a standard error 0.0685. The parameter \(\sigma_R\) is found to be 0.2907 with a standard error of 0.1710. The parameters \(M[0]\) and \(R[0]\) are 0.0 and -5.2574, respectively.

An important measure of the quality of fit of the partially autoregressive model is the proportion of variance attributable to mean reversion. This is a number between zero and one. When it is zero, the best fit is a pure random walk, and when it is one, the best fit is a pure mean-reverting series. In this case, it is found to be 0.9050, indicating that the mean-reverting component dominates.

The negative log likelihood of this particular fit is 339.51.

A plot method is available for plotting the fit, and the \texttt{test.par} method is available for testing the null hypotheses that an adequate fit can be obtained with a pure random walk or pure autoregressive series.

\textbf{Value}

An S3 object of class \texttt{fit.par} is returned. The object contains the following values:

- \texttt{data} The input vector \(Y\)
- \texttt{robust} The input parameter \(\text{robust}\)
- \texttt{nu} The input parameter \(\nu\)
- \texttt{model} The input parameter \(\text{model}\)
- \texttt{lambda} The input parameter \(\lambda\)
- \texttt{opt_method} The input parameter \(\text{opt_method}\)
- \texttt{rho.max} The input parameter \(\rho_{\text{max}}\)
- \texttt{rho} The estimate of the parameter \(\rho\)
- \texttt{sigma_M} The estimate of the parameter \(\sigma_M\)
- \texttt{sigma_R} The estimate of the parameter \(\sigma_R\)
- \texttt{M0} The estimate of the parameter \(M[0]\)
- \texttt{R0} The estimate of the parameter \(R[0]\)
- \texttt{par} The vector \((\rho, \sigma_M, \sigma_R, M_0, R_0)\)
- \texttt{stderr} The vector of standard errors
- \texttt{negloglik} The negative of the log likelihood score for these parameters
- \texttt{pvmr} The proportion of variance attributable to mean reversion (see \texttt{pvmr.par})
Disclaimer

DISCLAIMER: The software in this package is for general information purposes only. It is hoped that it will be useful, but it is provided WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. It is not intended to form the basis of any investment decision. USE AT YOUR OWN RISK!

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also

`arima` ARIMA modeling of time series

`egcm` Engle-Granger cointegration model

Examples

```r
set.seed(1)
x <- rpar(1000, 0.8, 1, 0.5) # Generate a random PAR sequence
fit.par(x) # Estimate its parameters
# Not run: plot(fit.par(x)) # Plot the estimate
test.par(x) # Test the goodness of fit

# An example involving European stock market data
data(EuStockMarkets) # European Stock Markets 1991-1998

# Check for cointegration between German DAX and Swiss SMI
library(egcm)
egcm(log(EuStockMarkets[,c("DAX", "SMI")]))

# The series are not found to be cointegrated. Perhaps they are partially cointegrated? Check the residuals
# of the cointegration fit for partial autoregression:
fit.par(eegcm(EuStockMarkets[,c("DAX", "SMI")])$residuals)

# A plot of the model looks promising:
# Not run: plot(fit.par(eegcm(EuStockMarkets[,c("DAX", "SMI")])$residuals))

# 74% of the variance is attributed to a mean-reverting
```
AR(1) process. However, it is important to check whether this is
a better explanation than a simple random walk:

```
> test.par(egcm(EuStockMarkets[,c("DAX", "SMI")])$residuals)
```

The p-value is found to be 0.36, so the random walk hypothesis
cannot be rejected.

Another example involving a potential pairs trade between
Coca-Cola and Pepsi.

Fetch the price series for Coca-Cola (KO) and Pepsi (PEP) in 2014
library(TTR)
KO <- getYahooData("KO", 20140101, 20141231)$Close
PEP <- getYahooData("PEP", 20140101, 20141231)$Close

Check whether they were cointegrated
library(egcm)
egcm(KO, PEP)

It turns out that they are not cointegrated. Perhaps a better
fit can be obtained with the partially autoregressive model:
```r
> fit.par(egcm(KO, PEP)$residuals)
```

The mean-reverting component of the above fit explains 90% of
the variance of the daily returns. Thus, it appears that the
two series are close to being cointegrated. A plot further
confirms this:
```r
> plot(fit.par(egcm(KO, PEP)$residuals))
```

Still, it is important to check whether or not the residual
series is simply a random walk:

```
> test.par(egcm(KO, PEP)$residuals)
```

In this case, the p-value associated with the hypothesis that
the series is partially autoregressive is 0.12. Thus, the
evidence of partial autoregression is marginal. The random walk
may be a better explanation.

kalman.gain.par
Kalman gain matrix of the partially autoregressive model

Description

Kalman gain matrix of the partially autoregressive model

Usage

```r
kalman.gain.par(rho, sigma_M, sigma_R)
```
Arguments

- **rho**: The coefficient of mean reversion
- **sigma_M**: The standard deviation of the innovations of the mean-reverting component
- **sigma_R**: The standard deviation of the innovations of the random walk component

Details

The state space representation of the partially autoregressive model is given as

\[
\begin{bmatrix}
M[t] \\
R[t]
\end{bmatrix}
= \begin{bmatrix}
rho & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
M[t-1] \\
R[t-1]
\end{bmatrix}
+ \begin{bmatrix}
epsilon_M[t] \\
epsilon_R[t]
\end{bmatrix}
\]

where the innovations \(\epsilon_M[t] \) and \(\epsilon_R[t] \) have the covariance matrix

\[
\begin{bmatrix}
\epsilon_M[t] \\
\epsilon_R[t]
\end{bmatrix}
\sim \begin{bmatrix}
sigma_M^2 & 0 \\
0 & sigma_R^2
\end{bmatrix}
\]

The steady state Kalman gain matrix is given by the matrix

\[
\begin{bmatrix}
K_M \\
K_R
\end{bmatrix}
\]

where

\[
K_M = \frac{2\sigma_M^2}{\sigma_R \cdot \sqrt{(\rho+1)^2\sigma_R^2+4\sigma_M^2}+(\rho+1)\sigma_R+2\sigma_M^2}
\]

and \(K_R = 1 - K_M \).

Value

Returns a two-component vector \((K_M, K_R)\) representing the Kalman gain matrix.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also

- fit.par

Examples

- `kalman.gain.par(0, 1, 0)` # -> c(1, 0) (pure AR(1))
- `kalman.gain.par(0, 0, 1)` # -> c(0, 1) (pure random walk)
- `kalman.gain.par(0.5, 1, 1)` # -> c(0.3333, 0.6667)
likelihood_ratio.par computes log likelihood ratio for partial autoregressive model

Description

Computes the log likelihood ratio for the partially autoregressive model.

First, a fit is performed for the specified null model. Then, a fit is performed for the alternative model that the sequence is partially autoregressive. The likelihood scores are computed for both models, and the log likelihood ratio is returned.

Usage

likelihood_ratio.par(X, robust = FALSE, null_model = c("rw", "ar1"),
 opt_method = c("css", "kfas", "ss"), nu = par.nu.default())

Arguments

X The numeric vector or zoo vector to which the partially autoregressive model is being fit.

robust If TRUE, then errors are assumed to follow a t-distribution with nu degrees of freedom. If FALSE, then errors are assumed to follow a normal distribution. Default: FALSE

null_model Specifies the null hypothesis:
 • "rw" Pure random walk (e.g., sigma_M = 0)
 • "ar1" Pure autoregressive (e.g., sigma_R = 0)
Default: "rw"

opt_method The method to be used for calculating the negative log likelihood.
 • "ss" Steady-state Kalman filter with normally distributed errors
 • "css" Steady-state Kalman filter with normally distributed errors, coded in C++
 • "kfas" Traditional Kalman filter of the KFAS package
Default: "css"

nu If robust is TRUE, this specifies the number of degrees of freedom of the t-distribution. Default: 5

Value

A numeric value representing the log likelihood ratio

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>
References

See Also

fit.par

loglik.par

Negative log likelihood of a partially autoregressive fit

Description

Negative log likelihood of a partially autoregressive fit

Usage

```
loglik.par(Y, rho, sigma_M, sigma_R, M0 = 0, R0 = Y[1],
calc_method = c("css", "kfas", "ss", "sst", "csst"),
nu = par.nu.default())
```

Arguments

- `Y`: A numeric vector representing the time series to which the partially autoregressive model is being fit.
- `rho`: The coefficient of mean reversion.
- `sigma_M`: Standard deviation of the innovations of the mean-reverting process.
- `sigma_R`: Standard deviation of the innovations of the random walk process.
- `M0`: Initial value of the mean-reverting process.
- `R0`: Initial value of the random walk process.
- `calc_method`: The method to be used for calculating the negative log likelihood.
 - "ss": Steady-state Kalman filter with normally distributed errors.
 - "css": Steady-state Kalman filter with normally distributed errors, coded in C++
 - "kfas": Traditional Kalman filter of the KFAS package.
 - "sst": Steady-state Kalman filter with t-distributed errors.
 - "csst": Steady-state Kalman filter with t-distributed errors, coded in C++
 Default: "css"
- `nu`: If `calc_method` is "sst" or "csst", this specifies the number of degrees of freedom of the t-distribution.

Value

Returns the negative log likelihood of fitting the partially autoregressive model with parameters \((\rho, \sigma_M, \sigma_R, M_0, R_0)\) to the data series \(Y\).
Author(s)
Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also
fit.par

Examples
loglik.par(0, 0, 0, 1) # -> same as -log(dnorm(0))
loglik.par(0, 0, 1, 0) # -> same as -log(dnorm(0))
loglik.par(0, 0, 1, 1) # -> same as -log(dnorm(0, 0, sqrt(2)))

Description
Proportion of variance attributable to mean reversion of a partially autoregressive model

Usage
pvmr.par(rho, sigma_M, sigma_R)

Arguments
rho The coefficient of mean reversion
sigma_M The standard deviation of the innovations of the mean-reverting component
sigma_R The standard deviation of the innovations of the random walk component

Details
This routine determines the proportion of variance attributable to mean reversion for a partially autoregressive model. The partially autoregressive model is given by the specification:

\[
X_t = M_t + R_t \\
M_t = \rho M_{t-1} + \epsilon_{M,t} \\
R_t = R_{t-1} + \epsilon_{R,t} \\
-1 < \rho < 1
\]
The proportion of variance attributable to mean reversion is defined as

$$R^2[MR] = \frac{Var((1 - B)M[t])}{Var((1 - B)X[t])}$$

where $M[t]$ is the mean-reverting component of the system at time t, $X[t]$ is the state of the entire system at time t, and B is the backshift operator.

It will be a value between zero and one, with zero indicating that none of the variance is attributable to the mean reverting component, and one indicating that all of the variance is attributable to the mean-reverting component.

In the case of the partially autoregressive model, the proportion of variance attributable to mean reversion is given by the following formula:

$$R^2[MR] = \frac{2\sigma_M^2}{2\sigma_M^2 + (1 + \rho)\sigma_R^2}$$

Value

Returns the proportion of variance attributable to mean reversion for the parameter values $(\rho, \sigma_M, \sigma_R)$.

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also

fit.par

Examples

```
pvmr.par(0,0,1) # -> 0
pvmr.par(0,1,0) # -> 1
pvmr.par(0,1,1) # -> 0.6667
pvmr.par(0.5,1,1) # -> 0.5714
pvmr.par(0.5,1,2) # -> 0.25
```
Usage

rpar(n, rho, sigma_M, sigma_R, M0 = 0, R0 = 0,
include.state = FALSE, robust = FALSE, nu = par.nu.default())

Arguments

n
Length of sequence to generate

rho
The coefficient of mean reversion

sigma_M
The standard deviation of the innovations of the mean-reverting component

sigma_R
The standard deviation of the innovations of the random walk component

M0
Initial state of mean-reverting component

R0
Initial state of random walk component

include.state
If TRUE, a data.frame is returned containing the states of the mean-reverting and random walk components. Otherwise, a numeric vector is returned containing the state of the system. Default: FALSE.

robust
If TRUE, innovations are t-distributed. Otherwise, they are normally distributed. Default: FALSE.

nu
If robust is TRUE, then this is the degrees of freedom parameter to be used in the t-distributed innovations.

Details

Generates a random sequence according to the specification of the partially autoregressive model. The partially autoregressive model is given as

\[X_t = M_t + R_t \]
\[M_t = \rho M_{t-1} + \epsilon_{M,t} \]
\[R_t = R_{t-1} + \epsilon_{R,t} \]
\[-1 < \rho < 1\]

To generate the random sequence, the sequences \(\epsilon_{M,t} \) and \(\epsilon_{R,t} \) are first generated. These are then used to build up the sequences \(M[t], R[t] \) and \(X[t] \).

Value

If include.state is FALSE, then returns the sequence \(X[t] \). Otherwise, returns a data.frame with the following columns:

- \(X \) State of the system
- \(M \) State of the mean-reverting component
- \(R \) State of the random walk component
- \(\epsilon_{M} \) Innovations in the mean-reverting component
- \(\epsilon_{R} \) Innovations in the random walk component
Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also

fit.par

Examples

set.seed(1)
x <- rpar(10000, 0.5, 2, 1)
library(tseries)
adf.test(x) # Seems to contain a unit root, as expected
estimate.par(x) # Estimate parameters using lagged variances
fit.par(x) # Maximum likelihood estimate

sample.likelihood_ratio.par

Generates random samples of the likelihood ratio for the partially autoregressive model

Description

Generates random samples of the likelihood ratio for the partially autoregressive model

Usage

sample.likelihood_ratio.par(n = 500, rho = 0.8, sigma_M = 1, sigma_R = 1, nrep = 1000, use.multicore = TRUE, robust = FALSE, nu = par.nu.default(), seed.start = 0)

Arguments

- `n`: Length of the randomly generated sequence. Possibly a vector.
- `rho`: The coefficient of mean reversion. Possibly a vector.
- `sigma_M`: Standard deviation of the innovations of the mean-reverting process. Possibly a vector.
- `sigma_R`: Standard deviation of the innovations of the random walk process. Possibly a vector.
- `nrep`: Number of repetitions to perform
- `use.multicore`: If TRUE, then the parallel package is used to speed up processing.
robust If TRUE, then sequences containing t-distributed errors are generated, and robust fits are performed. Possibly a vector.

nu If robust is TRUE, then this is the degrees-of-freedom parameter to be used. Possibly a vector.

seed.start Starting seed to use for the random number generator.

Details

The purpose of this function is to facilitate studying the behavior of the fit.par function by generating random partially autoregressive sequences and determining the maximum likelihood fits to them. For each combination of parameter values given by n, rho, sigma_M, sigma_R, robust and nu, generates nrep random partially autoregressive sequences with these parameters. Then, uses fit.par to fit the sequence using the partially autoregressive model, the pure random walk model and the pure mean reversion model. Returns a data.frame containing the results of the fits.

Value

A data.frame with the following columns:

- n The length of the sequence
- rho The value of rho that was used for generating the sequence
- sigma_M The value of sigma_M that was used for generating the sequence
- sigma_R The value of sigma_R that was used for generating the sequence
- robust 0 if normally distributed innovations, 1 if t-distributed innovations
- nu If t-distributed innovations, the value of the degrees of freedom parameter
- seed The value used for seeding the random number generator
- rw_rho The value of rho estimated using the pure random walk model (always 0)
- rw_sigma_M The value of sigma_M estimated using the pure random walk model (always 0)
- rw_sigma_R The value of sigma_R estimated using the pure random walk model
- rw_negloglik The negative log likelihood of the fit obtained with the pure random walk model
- mr_rho The value of rho estimated using the pure mean-reversion model
- mr_sigma_M The value of sigma_M estimated using the pure mean-reversion model
- mr_sigma_R The value of sigma_R estimated using the pure mean-reversion model (always 0)
- mr_negloglik The negative log likelihood of the fit obtained with the pure mean-reversion model
- par_rho The value of rho estimated using the PAR model
- par_sigma_M The value of sigma_M estimated using the PAR model
- par_sigma_R The value of sigma_R estimated using the PAR model
- par_negloglik The negative log likelihood of the fit obtained with the PAR model
- rw_lrt The log likelihood ratio of the random walk model vs. the PAR model
- mr_lrt The log likelihood ratio of the mean-reversion model vs. the PAR model
- kpss_stat Statistic computed by the KPSS test (see ur.kpss)
- kpss_p p-value associated with kpss_stat
- pvmr Proportion of variance attributable to mean reversion found for PAR fit
Author(s)
Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also
fit.par

Examples
sample.likelihood_ratio.par(500, c(0.5,0.75), 1, c(1,2), nrep=3)

statehistory.par Estimates hidden states of a partially autoregressive model

Description
Estimates hidden states of a partially autoregressive model

Usage
statehistory.par(A, data = A$data)

Arguments
A A par.fit object returned from a previous call to fit.par
data A sequence of observed states

Details
Based on the parameters of the model fitted by the previous call to fit.par, produces a data.frame containing the inferred hidden states of the process.

Value
A data.frame with one row for each observation in data. The columns in the data.frame are as follows:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Value of the observed state (data) at this time</td>
</tr>
<tr>
<td>M</td>
<td>Estimated value of the mean-reverting component at this time</td>
</tr>
<tr>
<td>R</td>
<td>Estimated value of the random walk component at this time</td>
</tr>
<tr>
<td>eps_M</td>
<td>Estimated innovation to the mean-reverting component</td>
</tr>
<tr>
<td>eps_R</td>
<td>Estimated innovation to the random walk component</td>
</tr>
</tbody>
</table>
Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also

fit.par

Examples

```r
# A simple example to compare the fitted values of the mean-reverting component with the actual data
set.seed(1)
xactual <- rpar(1000, 0.9, 2, 1, include.state=TRUE)
xfit <- fit.par(xactual$X)
xstates <- statehistory.par(xfit)
summary(lm(xstates$M ~ xactual$M))

## Not run:
require(ggplot)
xdf <- rbind(data.frame(data="actual", x=1:nrow(xactual), value=xactual$M),
data.frame(data="fitted", x=1:nrow(xstates), value=xstates$M))
ggplot(xdf, aes(x=x, y=value, colour=data)) + geom_line()
## End(Not run)
```

Description

Likelihood ratio test for partially autoregressive model

Usage

```r
test.par(Y, alpha = 0.05, null_hyp = c("rw", "ar1"),
ar1test = c("lr", "kpss"), robust = FALSE)
```

Arguments

- `Y` A numeric vector or a `par.fit` object produced by a previous call to `fit.par`
- `alpha` The critical value to be used in determining whether or not to reject the null hypothesis. See `which.hypothesis.partest`. Default: 0.05.
- `null_hyp` The null hypothesis. This can be one or both of the following:
- "rw" Includes the pure random walk as a null hypothesis
- "ar1" Includes a purely mean-reverting AR(1) series as a null hypothesis

Default: Both "rw" and "ar1"

ar1test

Specifies the type of test to be performed to reject the AR(1) null hypothesis. This can be one of the following:
- "lr" Likelihood ratio test
- "kpss" Unit root test of Kwiatkowski, Phillips, Schmidt and Shin, as implemented in the package urca.

Default: "lr"

robust

TRUE if robust estimation should be used when fitting the models

Details

The partially autoregressive model is fit to Y (or a previously fitted model is re-used if Y is an object of class par.fit), representing the alternative hypothesis. The null models specified by null_hyp are also fit. The likelihood ratio test is then used to determine whether or not the null model(s) should be rejected. Statistics are output containing the test results.

If "ar1" is included in null_hyp and ar1test = "kpss", then the unit root test of Kwiatkowski, Phillips, Schmidt and Shin is used in place of the likelihood ratio test to reject the null hypothesis that Y is a pure AR(1) sequence.

An example invocation of this function is as follows:

```r
> test.par(x)

Test of [Random Walk or AR(1)] vs Almost AR(1) [LR test for AR1]

data:  x

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk</td>
<td>-0.62</td>
<td>0.476</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-0.11</td>
<td>0.062</td>
</tr>
<tr>
<td>Combined</td>
<td>0.380</td>
<td></td>
</tr>
</tbody>
</table>
```

In this invocation, x is tested against the null hypothesis that it is either a pure random walk or a pure AR(1) series. The test of the random walk null hypothesis produces a likelihood ratio score of -0.62, which has a corresponding p-value of 0.476. The test of the AR(1) null hypothesis produces a likelihood ratio score of -0.11, which has a corresponding p-value of 0.062. The p-value for the combined test representing the union of these two conditions is 0.38. Thus, the null hypothesis cannot be rejected.

Value

An object of class "partest"

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>
which.hypothesis.partest

References

See Also

fit.par which.hypothesis.partest

Examples

```r
set.seed(1)
x <- rpar(1000, 0.8, 1, 1)
test.par(x)
```

which.hypothesis.partest

Returns the preferred hypothesis when testing for partial autoregression

Description
Returns the preferred hypothesis when testing for partial autoregression

Usage

which.hypothesis.partest(AT)

Arguments

AT An object of class "partest" returned from a previous call to test.par.

Details
Based upon the critical value alpha used in the call to test.par, and based upon the statistics computed by test.par, selects a preferred explanatory hypothesis for the data and returns a string representing the chosen hypothesis.

Value
One of the following strings:

"RW" The preferred hypothesis is a pure random walk
"AR1" The preferred hypothesis is a pure AR(1) series
"PAR" The preferred hypothesis is a partially autoregressive series
The preferred hypothesis is a random walk with t-distributed innovations

The preferred hypothesis is a pure AR(1) series with t-distributed innovations

The preferred hypothesis is a partially autoregressive model with t-distributed innovations

Author(s)

Matthew Clegg <matthewcleggphd@gmail.com>

References

See Also

fit.par test.par

Examples

```r
set.seed(1)
which.hypothesis.partest(test.par(rpar(1000, 0, 1, 0))) # -> "AR1"
which.hypothesis.partest(test.par(rpar(1000, 0, 0, 1))) # -> "RW"
which.hypothesis.partest(test.par(rpar(1000, 0, 1, 1))) # -> "PAR"
which.hypothesis.partest(test.par(rpar(1000, 0, 1, 0), robust=TRUE)) # -> "RAR1"
which.hypothesis.partest(test.par(rpar(1000, 0, 0, 1), robust=TRUE)) # -> "RRW"
which.hypothesis.partest(test.par(rpar(1000, 0.5, 1, 1), robust=TRUE)) # -> "RPAR"
```
Index

*Topic models
 as.data.frame.par.fit, 4
 estimate.par, 6
 fit.par, 7
 kalman.gain.par, 11
 likelihood_ratio.par, 13
 loglik.par, 14
 pvmr.par, 15
 rpar, 16
 samplelikelihood_ratio.par, 18
 statehistory.par, 20
 test.par, 21
 which.hypothesis.partest, 23

*Topic package
 partialAR-package, 2

*Topic ts
 arima, 3, 10
 as.data.frame.par.fit, 4
 estimate.par, 6
 fit.par, 7
 kalman.gain.par, 11
 likelihood_ratio.par, 13
 loglik.par, 14
 pvmr.par, 15
 rpar, 16
 samplelikelihood_ratio.par, 18
 statehistory.par, 20
 test.par, 21
 which.hypothesis.partest, 23

arima, 3, 10
as.data.frame.par.fit, 4

egcm, 3, 10
estimate.par, 6

fit.par, 4, 5, 7, 7, 12, 14–16, 18, 20, 21, 23, 24

kalman.gain.par, 11
KFAS, 8, 13, 14
likelihood_ratio.par, 13
loglik.par, 14
parallel, 18
partialAR(partialAR-package), 2
partialAR-package, 2
pvmr.par, 9, 15
rpar, 16
samplelikelihood_ratio.par, 18
statehistory.par, 20
test.par, 9, 21, 23, 24
ur.kpss, 19
which.hypothesis.partest, 21, 23, 23