A generating function for restricted partitions

Robin K. S. Hankin
Auckland University of Technology

Abstract

A generating function for restricted partitions (originally due, as far as I can tell, to Wilf (2000)) is presented and R idiom using the spray package given. The generating function approach is shown to be not particularly efficient compared to the direct enumeration used in the partitions package.

Keywords: Restricted partitions, generating function, R.

1. Introduction

The partitions package gives functionality for various integer partition enumeration problems including that of restricted partitions, function restrictedparts():

```r
> library("partitions")

> jj <- restrictedparts(7,3)

[1,] 7 6 5 4 5 4 3 3
[2,] 0 1 2 3 1 2 3 2
[3,] 0 0 0 0 1 1 1 2

> ncol(jj)

[1] 8
```

Here I will consider function \texttt{R()}, which calculates the size of the matrix required:

```r
> R(3,7,include.zero=TRUE)

[1] 8
```

Function \texttt{R()} is very basic; all it does is to go through all the restricted partitions, counting them one by one until the recursion bottoms out:

```c
unsigned int numrestrictedparts(int *x, const int m){
    unsigned int count=1;
```
A generating function for restricted partitions

while(c_nextrestrictedpart(x, &m)==0){
 count++;
} return count;

To implement a potentially more efficient method, we can use generating functions. Here we follow Wilf and, using his terminology, define an infinite polynomial \(P(x, y) \) as follows:

\[
P(x, y) = \prod_{r=0}^{\infty} \frac{1}{1 - x^r y}
\]

(1)

Or, expanding:

\[
P(x, y) = (1 + y + y^2 + y^3 + \cdots)(1 + xy + x^2 y^2 + x^3 y^3 + \cdots)(1 + x^r y + x^{2r} y^2 + x^{3r} y^3 + \cdots) \cdots
\]

(2)

The power of \(x \) counts the total of the chosen integers (the size of the partition), and the power of \(y \) counts the number of integers chosen (the length of the partition). Thus the number of partitions of \(k \) into at most \(n \) parts is the coefficient of \(x^k y^n \) in \(P(x, y) \).

In numerical work it is convenient and efficient to ignore terms with a power of \(x \) higher than \(n \) (sum of integers chosen exceeds \(n \)), or with power of \(y \) higher than \(k \) (number of integers chosen exceeds \(k \))

Taking \(R(3,7,\text{include.zero}=\text{TRUE}) \) as an example we would truncate equation (2) as follows:

\[
P(x, y) = \left(1 + y + y^2 + y^3\right) \left(1 + xy + x^2 y^2 + x^3 y^3\right) \cdots \left(1 + x^r y + x^{2r} y^2 + x^{3r} y^3\right) \cdots
\]

(3)

and the coefficients of \(P(x, y) \) up to \(x^7 y^3 \) would correctly count the restricted partitions.

Note that we need consider only at most four terms in each bracket (powers of \(y \) above three being irrelevant) and we may stop the continued product at the \(x^7 \) term as further brackets contain only one and powers of \(x \) above the eighth.

The R implementation uses the \texttt{spray} package, in particular function \texttt{ooom(x)} which returns \(\frac{1}{1-x} \).

```r
> library("spray")
> R_gf <- function(k,n){ # version 1
+     x <- spray(cbind(1,0))
+     y <- spray(cbind(0,1))
+     P <- ooom(y,k) # term x^0; number of zeros chosen
+     for(i in seq_len(k)){ # starts at 1
+         P <- P*ooom(x^i*y,n)
+     }
+     return(value(P[k,n]))
+ }
```
Thus

\[R_\text{gf}(7,3) \]

\[\{1\} \ 8 \]

We can do slightly better in terms of efficiency by ruthlessly cutting out powers higher than needed:

\[\text{strip} \leftarrow \text{function}(P,k,n) \{ \ # \text{strips out powers higher than needed} \]
\[+ \ \text{ind} \leftarrow \text{index}(P) \]
\[+ \ \text{val} \leftarrow \text{value}(P) \]
\[+ \ \text{wanted} \leftarrow (\text{ind}[1,1] \leq k) \ \& \ (\text{ind}[1,2] \leq n) \]
\[+ \ \text{spray} (\text{ind}[\text{wanted},:], \text{val}[\text{wanted}]) \]
\[\} \]

which is used here:

\[R_\text{gf2} \leftarrow \text{function}(k,n,\text{give_poly}=\text{FALSE}) \{ \]
\[+ \ x \leftarrow \text{spray}(\text{cbind}(x=1,y=0)) \]
\[+ \ y \leftarrow \text{spray}(\text{cbind}(x=0,y=1)) \]
\[+ \ P \leftarrow \text{oom}(y,k) \ # \text{term } x^0 \]
\[+ \ \text{for}(i \text{ in seq_len}(k)) \{ \ # \text{starts at } 1 \]
\[+ \ \ P \leftarrow \text{strip}(P*\text{oom}(\text{spray}(\text{cbind}(i,0))*y, \ \text{min}(n,\text{ceiling}(k/i))),k,n) \]
\[+ \} \]
\[+ \ \text{if}(\text{give_poly}) \{ \]
\[+ \ \text{return}(P) \]
\[+ \} \ \text{else} \{ \]
\[+ \ \text{return}(\text{value}(P[k,n])) \]
\[+ \} \]

then

\[R_\text{gf2}(7,3) \]

\[\{1\} \ 8 \]

2. Computational efficiency

We can test the computational efficiency of the generating function approach using larger values of \(k \) and \(n \):

\[k \leftarrow 140 \]
\[n \leftarrow 4 \]
A generating function for restricted partitions

```r
> system.time(jj1 <- R(n,k,include.zero=TRUE))

  user  system elapsed
  0     0       0

> system.time(jj2 <- R_gf2(k,n))

  user  system elapsed
  0.897  0.008   0.905

> jj1==jj2

[1] TRUE
```

So the generating function approach is not particularly efficient, at least not in this sort of use-case with the `spray` package. It might be better with the `skimpy` package; I don’t know. Of course, `R_gf2()` calculates the generating polynomial which gives very much more information than is returned. Perhaps this is why it is so slow compared to function `R()`, although it is surprising to see direct enumeration so heavily outperforming a generating function.

References

Affiliation:

Robin K. S. Hankin
Auckland University of Technology
AUT Tower
Wakefield Street
Auckland, New Zealand
E-mail: hankin.robin@gmail.com