ctree: Conditional Inference Trees

Torsten Hothorn
Universität Zürich

Kurt Hornik
Wirtschaftsuniversität Wien

Achim Zeileis
Universität Innsbruck

Abstract

This vignette describes the new reimplementation of conditional inference trees (CTree) in the R package partykit. CTree is a non-parametric class of regression trees embedding tree-structured regression models into a well defined theory of conditional inference procedures. It is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. The vignette comprises a practical guide to exploiting the flexible and extensible computational tools in partykit for fitting and visualizing conditional inference trees.

Keywords: conditional inference, non-parametric models, recursive partitioning.

1. Overview

This vignette describes conditional inference trees (Hothorn, Hornik, and Zeileis 2006) along with its new and improved reimplementation in package partykit. Originally, the method was implemented in the package party almost entirely in C while the new implementation is now almost entirely in R. In particular, this has the advantage that all the generic infrastructure from partykit can be reused, making many computations more modular and easily extensible. Hence, partykit::ctree is the new reference implementation that will be improved and developed further in the future.

In almost all cases, the two implementations will produce identical trees. In exceptional cases, additional parameters have to be specified in order to ensure backward compatibility. These and novel features in ctree:partykit are introduced in Section 7.

2. Introduction

The majority of recursive partitioning algorithms are special cases of a simple two-stage algorithm: First partition the observations by univariate splits in a recursive way and second fit a constant model in each cell of the resulting partition. The most popular implementations of such algorithms are ‘CART’ (Breiman, Friedman, Olshen, and Stone 1984) and ‘C4.5’ (Quinlan 1993). Not unlike AID, both perform an exhaustive search over all possible splits maximizing an information measure of node impurity selecting the covariate showing the best split. This approach has two fundamental problems: overfitting and a selection bias towards covariates with many possible splits. With respect to the overfitting problem Mingers (1987) notes that the algorithm
[...] has no concept of statistical significance, and so cannot distinguish between a significant and an insignificant improvement in the information measure.

With conditional inference trees (see Hothorn et al. 2006, for a full description of its methodological foundations) we enter at the point where White and Liu (1994) demand for [...] a statistical approach [to recursive partitioning] which takes into account the distributional properties of the measures.

We present a unified framework embedding recursive binary partitioning into the well defined theory of permutation tests developed by Strasser and Weber (1999). The conditional distribution of statistics measuring the association between responses and covariates is the basis for an unbiased selection among covariates measured at different scales. Moreover, multiple test procedures are applied to determine whether no significant association between any of the covariates and the response can be stated and the recursion needs to stop.

3. Recursive binary partitioning

We focus on regression models describing the conditional distribution of a response variable Y given the status of m covariates by means of tree-structured recursive partitioning. The response Y from some sample space Y may be multivariate as well. The m-dimensional covariate vector $X = (X_1, \ldots, X_m)$ is taken from a sample space $X = X_1 \times \cdots \times X_m$. Both response variable and covariates may be measured at arbitrary scales. We assume that the conditional distribution $D(Y|X)$ of the response Y given the covariates X depends on a function f of the covariates

$$D(Y|X) = D(Y|X_1, \ldots, X_m) = D(Y|f(X_1, \ldots, X_m)),$$

where we restrict ourselves to partition based regression relationships, i.e., r disjoint cells B_1, \ldots, B_r partitioning the covariate space $X = \bigcup_{k=1}^r B_k$. A model of the regression relationship is to be fitted based on a learning sample L_n, i.e., a random sample of n independent and identically distributed observations, possibly with some covariates X_{ji} missing,

$$L_n = \{(Y_i, X_{i1}, \ldots, X_{im}); i = 1, \ldots, n\}.$$

A generic algorithm for recursive binary partitioning for a given learning sample L_n can be formulated using non-negative integer valued case weights $w = (w_1, \ldots, w_n)$. Each node of a tree is represented by a vector of case weights having non-zero elements when the corresponding observations are elements of the node and are zero otherwise. The following algorithm implements recursive binary partitioning:

1. For case weights w test the global null hypothesis of independence between any of the m covariates and the response. Stop if this hypothesis cannot be rejected. Otherwise select the covariate X_{j^*} with strongest association to Y.

2. Choose a set $A^* \subset X_{j^*}$ in order to split X_{j^*} into two disjoint sets A^* and $X_{j^*} \setminus A^*$. The case weights w_{left} and w_{right} determine the two subgroups with $w_{\text{left},i} = w_i I(X_{j^*i} \in A^*)$ and $w_{\text{right},i} = w_i I(X_{j^*i} \notin A^*)$ for all $i = 1, \ldots, n$ ($I(\cdot)$ denotes the indicator function).
3. Recursively repeat steps 1 and 2 with modified case weights w_{left} and w_{right}, respectively.

The separation of variable selection and splitting procedure into steps 1 and 2 of the algorithm is the key for the construction of interpretable tree structures not suffering a systematic tendency towards covariates with many possible splits or many missing values. In addition, a statistically motivated and intuitive stopping criterion can be implemented: We stop when the global null hypothesis of independence between the response and any of the m covariates cannot be rejected at a pre-specified nominal level α. The algorithm induces a partition \{\(B_1, \ldots, B_r\)\} of the covariate space X, where each cell $B \in \{B_1, \ldots, B_r\}$ is associated with a vector of case weights.

4. Recursive partitioning by conditional inference

In the main part of this section we focus on step 1 of the generic algorithm. Unified tests for independence are constructed by means of the conditional distribution of linear statistics in the permutation test framework developed by Strasser and Weber (1999). The determination of the best binary split in one selected covariate and the handling of missing values is performed based on standardized linear statistics within the same framework as well.

4.1. Variable selection and stopping criteria

At step 1 of the generic algorithm given in Section 3 we face an independence problem. We need to decide whether there is any information about the response variable covered by any of the m covariates. In each node identified by case weights w, the global hypothesis of independence is formulated in terms of the m partial hypotheses $H_{0j}^\delta : D(Y|X_j) = D(Y)$ with global null hypothesis $H_0 = \bigcap_{j=1}^m H_{0j}^\delta$. When we are not able to reject H_0 at a pre-specified level α, we stop the recursion. If the global hypothesis can be rejected, we measure the association between Y and each of the covariates X_j, $j = 1, \ldots, m$, by test statistics or P-values indicating the deviation from the partial hypotheses H_{0j}^δ.

For notational convenience and without loss of generality we assume that the case weights w_i are either zero or one. The symmetric group of all permutations of the elements of \((1, \ldots, n)\) with corresponding case weights $w_i = 1$ is denoted by $S(\mathcal{L}_n, w)$. A more general notation is given in the Appendix. We measure the association between Y and X_j, $j = 1, \ldots, m$, by linear statistics of the form

$$T_j(\mathcal{L}_n, w) = \text{vec} \left(\sum_{i=1}^n w_i g_j(X_{ji}) h(Y_i, (Y_1, \ldots, Y_n)) \right) \in \mathbb{R}^{pq}$$

(1)

where $g_j : X_j \to \mathbb{R}^{p_j}$ is a non-random transformation of the covariate X_j. The transformation may be specified using the \texttt{xtrafo} argument (Note: this argument is currently not implemented in \texttt{partykit::ctree} but is available from \texttt{party::ctree}). The influence function $h : Y \times Y^n \to \mathbb{R}^q$ depends on the responses (Y_1, \ldots, Y_n) in a permutation symmetric way. Section 5 explains how to choose g_j and h in different practical settings. A $p_j \times q$ matrix is converted into a p_jq column vector by column-wise combination using the ‘vec’ operator.

The distribution of $T_j(\mathcal{L}_n, w)$ under H_0^δ depends on the joint distribution of Y and X_j, which is unknown under almost all practical circumstances. At least under the null hypothesis
one can dispense with this dependency by fixing the covariates and conditioning on all possible
permutations of the responses. This principle leads to test procedures known as permutation
tests. The conditional expectation \(\mu_j \in \mathbb{R}^{p_j} \) and covariance \(\Sigma_j \in \mathbb{R}^{p_j \times p_j} \) of \(T_j(\mathcal{L}_n, w) \) under \(H_0 \) given all permutations \(\sigma \in S(\mathcal{L}_n, w) \) of the responses are derived by Strasser and Weber (1999):

\[
\begin{align*}
\mu_j & = E(T_j(\mathcal{L}_n, w)|S(\mathcal{L}_n, w)) = \text{vec} \left(\sum_{i=1}^{n} w_i g_j(X_{ji}) \right) \left(E(h|S(\mathcal{L}_n, w)) \right)^\top, \\
\Sigma_j & = V(T_j(\mathcal{L}_n, w)|S(\mathcal{L}_n, w)) \\
& = \frac{w}{w - 1} V(h|S(\mathcal{L}_n, w)) \otimes \left(\sum_{i} w_i g_j(X_{ji}) \otimes w_i g_j(X_{ji})^\top \right) \\
& \quad - \frac{1}{w - 1} V(h|S(\mathcal{L}_n, w)) \otimes \left(\sum_{i} w_i g_j(X_{ji}) \right) \otimes \left(\sum_{i} w_i g_j(X_{ji}) \right)^\top
\end{align*}
\]

where \(w = \sum_{i=1}^{n} w_i \) denotes the sum of the case weights, \(\otimes \) is the Kronecker product and the conditional expectation of the influence function is

\[
E(h|S(\mathcal{L}_n, w)) = w^{-1} \sum_{i} w_i h(Y_i, (Y_1, \ldots, Y_n)) \in \mathbb{R}^q
\]

with corresponding \(q \times q \) covariance matrix

\[
V(h|S(\mathcal{L}_n, w)) = w^{-1} \sum_{i} w_i (h(Y_i, (Y_1, \ldots, Y_n)) - E(h|S(\mathcal{L}_n, w))) \\
\quad (h(Y_i, (Y_1, \ldots, Y_n)) - E(h|S(\mathcal{L}_n, w)))^\top.
\]

Having the conditional expectation and covariance at hand we are able to standardize a linear statistic \(T \in \mathbb{R}^{pq} \) of the form (1) for some \(p \in \{p_1, \ldots, p_m\} \). Univariate test statistics \(c \) mapping an observed multivariate linear statistic \(t \in \mathbb{R}^{pq} \) into the real line can be of arbitrary form. An obvious choice is the maximum of the absolute values of the standardized linear statistic

\[
c_{\text{max}}(t, \mu, \Sigma) = \max_{k=1, \ldots, pq} \frac{|(t - \mu)_k|}{\sqrt{(\Sigma)_{kk}}}
\]

utilizing the conditional expectation \(\mu \) and covariance matrix \(\Sigma \). The application of a quadratic form \(c_{\text{quad}}(t, \mu, \Sigma) = (t - \mu)\Sigma^+(t - \mu)^\top \) is one alternative, although computationally more expensive because the Moore-Penrose inverse \(\Sigma^+ \) of \(\Sigma \) is involved.

The type of test statistic to be used can be specified by means of the \texttt{ctree_control} function, for example

\[
> \texttt{ctree_control(teststat = "max")}
\]

uses \(c_{\text{max}} \) and

\[
> \texttt{ctree_control(teststat = "quad")}
\]
takes c_{quad} (the default).

It is important to note that the test statistics $c(t_j, \mu_j, \Sigma_j)$, $j = 1, \ldots, m$, cannot be directly compared in an unbiased way unless all of the covariates are measured at the same scale, i.e., $p_1 = p_j, j = 2, \ldots, m$. In order to allow for an unbiased variable selection we need to switch to the P-value scale because P-values for the conditional distribution of test statistics $c(T_j(L_n, w), \mu_j, \Sigma_j)$ can be directly compared among covariates measured at different scales. In step 1 of the generic algorithm we select the covariate with minimum P-value, i.e., the covariate X_j^* with $j^* = \arg\min_{j = 1, \ldots, m} P_j$, where

$$P_j = P_{H_j^0}(c(T_j(L_n, w), \mu_j, \Sigma_j) \geq c(t_j, \mu_j, \Sigma_j)|S(L_n, w))$$

denotes the P-value of the conditional test for H_j^0. So far, we have only addressed testing each partial hypothesis H_j^0, which is sufficient for an unbiased variable selection. A global test for H_0 required in step 1 can be constructed via an aggregation of the transformations $g_j, j = 1, \ldots, m$, i.e., using a linear statistic of the form

$$T(L_n, w) = \text{vec} \left(\sum_{i=1}^n w_i \left(g_1(X_{1i})^\top, \ldots, g_m(X_{mi})^\top \right)^\top h(Y_i, (Y_1, \ldots, Y_n))^\top \right).$$

However, this approach is less attractive for learning samples with missing values. Universally applicable approaches are multiple test procedures based on P_1, \ldots, P_m. Simple Bonferroni-adjusted P-values (the adjustment $1 - (1 - P_j)^m$ is used), available via

```r
> ctree_control(testtype = "Bonferroni")
```

or a min-P-value resampling approach (Note: resampling is currently not implemented in `partykit::ctree`) are just examples and we refer to the multiple testing literature (e.g., Westfall and Young 1993) for more advanced methods. We reject H_0 when the minimum of the adjusted P-values is less than a pre-specified nominal level α and otherwise stop the algorithm. In this sense, α may be seen as a unique parameter determining the size of the resulting trees.

4.2. Splitting criteria

Once we have selected a covariate in step 1 of the algorithm, the split itself can be established by any split criterion, including those established by Breiman et al. (1984) or Shih (1999). Instead of simple binary splits, multiway splits can be implemented as well, for example utilizing the work of O’Brien (2004). However, most splitting criteria are not applicable to response variables measured at arbitrary scales and we therefore utilize the permutation test framework described above to find the optimal binary split in one selected covariate X_j^* in step 2 of the generic algorithm. The goodness of a split is evaluated by two-sample linear statistics which are special cases of the linear statistic (1). For all possible subsets A of the sample space X_j^*, the linear statistic

$$T_{j^*}^A(L_n, w) = \text{vec} \left(\sum_{i=1}^n w_i I(X_{j^*i} \in A) h(Y_i, (Y_1, \ldots, Y_n))^\top \right) \in \mathbb{R}^q$$
induces a two-sample statistic measuring the discrepancy between the samples \(\{ Y_i | w_i > 0 \text{ and } X_{ji} \in A; i = 1, \ldots, n \} \) and \(\{ Y_i | w_i > 0 \text{ and } X_{ji} \notin A; i = 1, \ldots, n \} \). The conditional expectation \(\mu_{A,j}^* \) and covariance \(\Sigma_{A,j}^* \) can be computed by (2). The split \(A^* \) with a test statistic maximized over all possible subsets \(A \) is established:

\[
A^* = \arg\max_A c(t_{A,j}^*, \mu_{A,j}^*, \Sigma_{A,j}^*).
\]

The statistics \(c(t_{A,j}^*, \mu_{A,j}^*, \Sigma_{A,j}^*) \) are available for each node with and can be used to depict a scatter plot of the covariate \(X_{j,*} \) against the statistics (Note: this feature is currently not implemented in partykit).

Note that we do not need to compute the distribution of \(c(t_{A,j}^*, \mu_{A,j}^*, \Sigma_{A,j}^*) \) in step 2. In order to anticipate pathological splits one can restrict the number of possible subsets that are evaluated, for example by introducing restrictions on the sample size or the sum of the case weights in each of the two groups of observations induced by a possible split. For example,

\[
> \text{ctree_control(minsplit = 20)}
\]

requires the sum of the weights in both the left and right daughter node to exceed the value of 20.

4.3. Missing values and surrogate splits

If an observation \(X_{ji} \) in covariate \(X_j \) is missing, we set the corresponding case weight \(w_i \) to zero for the computation of \(T_j(L_n, w) \) and, if we would like to split in \(X_j \), in \(T_j^A(L_n, w) \) as well. Once a split \(A^* \) in \(X_j \) has been implemented, surrogate splits can be established by searching for a split leading to roughly the same division of the observations as the original split. One simply replaces the original response variable by a binary variable \(I(X_{ji} \in A^*) \) coding the split and proceeds as described in the previous part. The number of surrogate splits can be controlled using

\[
> \text{ctree_control(maxsurrogate = 3)}
\]

4.4. Fitting and inspecting a tree

For the sake of simplicity, we use a learning sample

\[
> \text{ls <- data.frame(y = gl(3, 50, labels = c("A", "B", "C")),}
+ \text{x1 = rnorm(150) + rep(c(1, 0, 0), c(50, 50, 50)),}
+ \text{x2 = runif(150))}
\]

in the following illustrations. In partykit::ctree, the dependency structure and the variables may be specified in a traditional formula based way

\[
> \text{library("partykit")}
> \text{ctree(y ~ x1 + x2, data = ls)}
\]

Case counts \(w \) may be specified using the \texttt{weights} argument. Once we have fitted a conditional tree via
> plot(ct)

![Classification Tree Diagram]

Figure 1: A graphical representation of a classification tree.

> ct <- ctree(y ~ x1 + x2, data = ls)

we can inspect the results via a `print` method

> ct

Model formula:
y ~ x1 + x2

Fitted party:
[1] root
 | [2] x1 <= 0.82552: C (n = 96, err = 57.3%)
 | [3] x1 > 0.82552: A (n = 54, err = 42.6%)

Number of inner nodes: 1
Number of terminal nodes: 2

or by looking at a graphical representation as in Figure 1.
Each node can be extracted by its node number, i.e., the root node is

> ct[1]
Model formula:
y ~ x1 + x2

Fitted party:
[1] root
 | [2] x1 <= 0.82552: C (n = 96, err = 57.3%)
 | [3] x1 > 0.82552: A (n = 54, err = 42.6%)

Number of inner nodes: 1
Number of terminal nodes: 2

This object is an object of class

> class(ct[1])

[1] "constparty" "party"

and we refer to the manual pages for a description of those elements. The predict function computes predictions in the space of the response variable, in our case a factor

> predict(ct, newdata = ls)

A A A A C A C A C A C A A A A
A 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
C A C A A C A A A C C A A C A A
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
C A A C C C A A C C C C A A A A
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
A C C C C A C A C C C C A A A
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
A A A C C A C A C C C C A C C
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
C C C A A C A C C C C C C C
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
C C C A C C A C C C C C C C
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
C C C C C C C C C C C C C C
137 138 139 140 141 142 143 144 145 146 147 148 149 150
C A C C C A C C A C A C A
Levels: A B C

When we are interested in properties of the conditional distribution of the response given the covariates, we use

> predict(ct, newdata = ls[c(1, 51, 101),], type = "prob")
which, in our case, is a data frame with conditional class probabilities. We can determine the
node numbers of nodes some new observations are falling into by

```
> predict(ct, newdata = ls[c(1,51,101),], type = "node")
   1   51  101
   3   3   2
```

Finally, the `sctest` method can be used to extract the test statistics and p-values computed
in each node. The function `sctest` is used because for the `mob` algorithm such a method
(for structural change tests) is also provided. To make the generic available, the `strucchange`
package needs to be loaded (otherwise `sctest.constparty` would have to be called directly).

```
> library("strucchange")
> sctest(ct)

$'1'

  x1     x2
statistic 2.299131e+01 4.0971294
p.value   2.034833e-05 0.2412193

$'2'

  x1     x2
statistic 2.6647107 4.3628130
p.value   0.4580906 0.2130228

$'3'

  x1     x2
statistic 2.1170497 2.8275567
p.value   0.5735483 0.4272879
```

Here, we see that x_1 leads to a significant test result in the root node and is hence used for
splitting. In the kid nodes, no more significant results are found and hence splitting stops. For
other data sets, other stopping criteria might also be relevant (e.g., the sample size restrictions
`minsplit`, `minbucket`, etc.). In case, splitting stops due to these, the test results may also be
`NULL`.

5. Examples

5.1. Univariate continuous or discrete regression

For a univariate numeric response $Y \in \mathbb{R}$, the most natural influence function is the identity
$h(Y_i, (Y_1, \ldots, Y_n)) = Y_i$. In case some observations with extremely large or small values
have been observed, a ranking of the observations may be appropriate: \(h(Y_i, (Y_1, \ldots, Y_n)) = \sum_{k=1}^n w_k I(Y_k \leq Y_i) \) for \(i = 1, \ldots, n \). Numeric covariates can be handled by the identity transformation \(g_{ji}(x) = x \) (ranks are possible, too). Nominal covariates at levels 1, \ldots, K are represented by \(g_{ji}(k) = e_K(k) \), the unit vector of length \(K \) with \(k \)th element being equal to one. Due to this flexibility, special test procedures like the Spearman test, the Wilcoxon-Mann-Whitney test or the Kruskal-Wallis test and permutation tests based on ANOVA statistics or correlation coefficients are covered by this framework. Splits obtained from (3) maximize the absolute value of the standardized difference between two means of the influence functions. For prediction, one is usually interested in an estimate of the expectation of the response \(\hat{E}(Y|X = x) \) in each cell, an estimate can be obtained by

\[
\hat{E}(Y|X = x) = \left(\sum_{i=1}^n w_i(x) \right)^{-1} \sum_{i=1}^n w_i(x) Y_i.
\]

5.2. Censored regression

The influence function \(h \) may be chosen as Logrank or Savage scores taking censoring into account and one can proceed as for univariate continuous regression. This is essentially the approach first published by Segal (1988). An alternative is the weighting scheme suggested by Molinaro, Dudoi, and van der Laan (2004). A weighted Kaplan-Meier curve for the case weights \(w(x) \) can serve as prediction.

5.3. J-class classification

The nominal response variable at levels 1, \ldots, J is handled by influence functions \(h(Y_i, (Y_1, \ldots, Y_n)) = e_J(Y_i) \). Note that for a nominal covariate \(X_j \) at levels 1, \ldots, K with \(g_{ji}(k) = e_K(k) \) the corresponding linear statistic \(T_j \) is a vectorized contingency table. The conditional class probabilities can be estimated via

\[
\hat{P}(Y = y|X = x) = \left(\sum_{i=1}^n w_i(x) \right)^{-1} \sum_{i=1}^n w_i(x) I(Y_i = y), \quad y = 1, \ldots, J.
\]

5.4. Ordinal regression

Ordinal response variables measured at J levels, and ordinal covariates measured at K levels, are associated with score vectors \(\xi \in \mathbb{R}^J \) and \(\gamma \in \mathbb{R}^K \), respectively. Those scores reflect the ‘distances’ between the levels: If the variable is derived from an underlying continuous variable, the scores can be chosen as the midpoints of the intervals defining the levels. The linear statistic is now a linear combination of the linear statistic \(T_j \) of the form

\[
MT_j(C_n, w) = \text{vec} \left(\sum_{i=1}^n w_i(x) g_j(X_{ji}) \left(\xi^\top h(Y_i, (Y_1, \ldots, Y_n))^\top \right) \right)
\]

with \(g_j(x) = e_K(x) \) and \(h(Y_i, (Y_1, \ldots, Y_n)) = e_J(Y_i) \). If both response and covariate are ordinal, the matrix of coefficients is given by the Kronecker product of both score vectors.
\[M = \xi \otimes \gamma \in \mathbb{R}^{1 \times K^J} \]. In case the response is ordinal only, the matrix of coefficients \(M \) is a block matrix

\[
M = \begin{pmatrix}
\xi_1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \xi_1 & \cdots & 0 \\
\end{pmatrix}
\]
or

\[M = \text{diag} (\gamma) \]

when one covariate is ordered but the response is not. For both \(Y \) and \(X_j \) being ordinal, the corresponding test is known as linear-by-linear association test (Agresti 2002). Scores can be supplied to \texttt{ctree} using the \texttt{scores} argument, see Section 6 for an example.

5.5. Multivariate regression

For multivariate responses, the influence function is a combination of influence functions appropriate for any of the univariate response variables discussed in the previous paragraphs, e.g., indicators for multiple binary responses (Zhang 1998; Noh, Song, and Park 2004), Logrank or Savage scores for multiple failure times and the original observations or a rank transformation for multivariate regression (De’ath 2002).

6. Illustrations and applications

In this section, we present regression problems which illustrate the potential fields of application of the methodology. Conditional inference trees based on \texttt{cquad}-type test statistics using the identity influence function for numeric responses and asymptotic \(\chi^2 \) distribution are applied. For the stopping criterion a simple Bonferroni correction is used and we follow the usual convention by choosing the nominal level of the conditional independence tests as \(\alpha = 0.05 \).

6.1. Tree pipit abundance

\[
> \text{data(“treepipit”, package = ”coin”)}
> \text{tptree <- ctree(counts ~ ., data = treepipit)}
\]

The impact of certain environmental factors on the population density of the tree pipit \textit{Anthus trivialis} is investigated by Müller and Hothorn (2004). The occurrence of tree pipits was recorded several times at \(n = 86 \) stands which were established on a long environmental gradient. Among nine environmental factors, the covariate showing the largest association to the number of tree pipits is the canopy overstorey (\(P = 0.002 \)). Two groups of stands can be distinguished: Sunny stands with less than 40% canopy overstorey (\(n = 24 \)) show a significantly higher density of tree pipits compared to darker stands with more than 40% canopy overstorey (\(n = 62 \)). This result is important for management decisions in forestry enterprises: Cutting the overstorey with release of old oaks creates a perfect habitat for this indicator species of near natural forest environments.

6.2. Glaucoma and laser scanning images
Laser scanning images taken from the eye background are expected to serve as the basis of an automated system for glaucoma diagnosis. Although prediction is more important in this application (Mardin, Hothorn, Peters, Jüinemann, Nguyen, and Lausen 2003), a simple visualization of the regression relationship is useful for comparing the structures inherent in the learning sample with subject matter knowledge. For 98 patients and 98 controls, matched by age and gender, 62 covariates describing the eye morphology are available. The data is part of the TH.data package, http://CRAN.R-project.org). The first split in Figure 3 separates eyes with a volume above reference less than \(\text{mm}^3 \) in the inferior part of the optic nerve head (\text{vari}). Observations with larger volume are mostly controls, a finding which corresponds to subject matter knowledge: The volume above reference measures the thickness of the nerve layer, expected to decrease with a glaucomatous damage of the optic nerve. Further separation is achieved by the volume above surface global (\text{vasg}) and the volume above reference in the temporal part of the optic nerve head (\text{vart}).

The plot in Figure 3 is generated by

```r
> plot(gtree)
```

and shows the distribution of the classes in the terminal nodes. This distribution can be shown for the inner nodes as well, namely by specifying the appropriate panel generating
Figure 3: Conditional inference tree for the glaucoma data. For each inner node, the Bonferroni-adjusted P-values are given, the fraction of glaucomatous eyes is displayed for each terminal node.

Figure 4: Conditional inference tree for the glaucoma data with the fraction of glaucomatous eyes displayed for both inner and terminal nodes.
> prob <- predict(gtree, type = "prob"), [1] +
+ runif(nrow(GlaucomaM), min = -0.01, max = 0.01)
> splitvar <- character_split(split_node(node_party(gtree)),
+ data = data_party(gtree))$name
> plot(GlaucomaM[[splitvar]], prob,
+ pch = as.numeric(GlaucomaM$Class), ylab = "Conditional Class Prob.",
+ xlab = splitvar)
> abline(v = split_node(node_party(gtree))$breaks, lty = 2)
> legend(0.15, 0.7, pch = 1:2, legend = levels(GlaucomaM$Class), bty = "n")

Figure 5: Estimated conditional class probabilities (slightly jittered) for the Glaucoma data depending on the first split variable. The vertical line denotes the first split point.

function (node_barplot in our case), see Figure 4.

> plot(gtree, inner_panel = node_barplot,
+ edge_panel = function(...) invisible(), tnex = 1)

The class predictions of the tree for the learning sample (and for new observations as well) can be computed using the predict function. A comparison with the true class memberships is done by

> table(predict(gtree), GlaucomaM$Class)

<table>
<thead>
<tr>
<th></th>
<th>glaucoma</th>
<th>normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>glaucoma</td>
<td>74</td>
<td>5</td>
</tr>
<tr>
<td>normal</td>
<td>24</td>
<td>93</td>
</tr>
</tbody>
</table>

When we are interested in conditional class probabilities, the predict(, type = "prob") method must be used. A graphical representation is shown in Figure 5.

6.3. Node positive breast cancer

Recursive partitioning for censored responses has attracted a lot of interest (e.g., Segal 1988; LeBlanc and Crowley 1992). Survival trees using P-value adjusted Logrank statistics are used.
by Schumacher, Holländer, Schwarzer, and Sauerbrei (2001) for the evaluation of prognostic factors for the German Breast Cancer Study Group (GBSG2) data, a prospective controlled clinical trial on the treatment of node positive breast cancer patients. Here, we use Logrank scores as well. Complete data of seven prognostic factors of 686 women are used for prognostic modeling, the dataset is available within the \texttt{TH.data} package. The number of positive lymph nodes (\texttt{pnodes}) and the progesterone receptor (\texttt{progrec}) have been identified as prognostic factors in the survival tree analysis by Schumacher et al. (2001). Here, the binary variable coding whether a hormonal therapy was applied or not (\texttt{horTh}) additionally is part of the model depicted in Figure 6, which was fitted using the following code:

```r
> data("GBSG2", package = "TH.data")
> library("survival")
> (stree <- ctree(Surv(time, cens) ~ ., data = GBSG2))
```

Model formula:
\[\text{Surv}(\text{time, cens}) \sim \text{horTh} + \text{age} + \text{menostat} + \text{tsize} + \text{tgrade} + \text{pnodes} + \text{progrec} + \text{estrec} \]

Fitted party:

\begin{verbatim}
[1] root
 | [2] pnodes <= 3
 | | [3] horTh in no: 2093.000 (n = 248)
 | | [4] horTh in yes: Inf (n = 128)
 | [5] pnodes > 3
 | | [6] progrec <= 20: 624.000 (n = 144)
 | | [7] progrec > 20: 1701.000 (n = 166)
\end{verbatim}

Number of inner nodes: 3
Number of terminal nodes: 4

The estimated median survival time for new patients is less informative compared to the whole Kaplan-Meier curve estimated from the patients in the learning sample for each terminal node. We can compute those ‘predictions’ by means of the \texttt{treeresponse} method

```r
> pn <- predict(stree, newdata = GBSG2[1:2,, type = "node"]
> n <- predict(stree, type = "node")
> survfit(Surv(time, cens) ~ 1, data = GBSG2, subset = (n == pn[1]))
```

Call: \texttt{survfit(formula = Surv(time, cens) \sim 1, data = GBSG2, subset = (n == pn[1]))}

\begin{verbatim}
 n events median 0.95LCL 0.95UCL
248 88 2093 1814 NA
```

```r
> survfit(Surv(time, cens) ~ 1, data = GBSG2, subset = (n == pn[2]))
```

Call: \texttt{survfit(formula = Surv(time, cens) \sim 1, data = GBSG2, subset = (n == pn[2]))}

> plot(stree)

![Tree diagram](image)

**Figure 6**: Tree-structured survival model for the GBSG2 data and the distribution of survival times in the terminal nodes. The median survival time is displayed in each terminal node of the tree.

<table>
<thead>
<tr>
<th>n</th>
<th>events</th>
<th>median 0.95LCL</th>
<th>0.95UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>77</td>
<td>1701</td>
<td>1174</td>
</tr>
<tr>
<td>166</td>
<td>77</td>
<td>1701</td>
<td>2018</td>
</tr>
</tbody>
</table>

### 6.4. Mammography experience

> data("mammoexp", package = "TH.data")
> mtree <- ctree(ME ~ ., data = mammoexp)

Ordinal response variables are common in investigations where the response is a subjective human interpretation. We use an example given by Hosmer and Lemeshow (2000), p. 264, studying the relationship between the mammography experience (never, within a year, over one year) and opinions about mammography expressed in questionnaires answered by \( n = 412 \) women. The resulting partition based on scores \( \xi = (1, 2, 3) \) is given in Figure 7. Women who (strongly) agree with the question ‘You do not need a mammogram unless you develop symptoms’ seldomly have experienced a mammography. The variable **benefit** is a score with low values indicating a strong agreement with the benefits of the examination. For those women in (strong) disagreement with the first question above, low values of **benefit** identify persons being more likely to have experienced such an examination at all.
> plot(mtree)

**Figure 7:** Ordinal regression for the mammography experience data with the fractions of (never, within a year, over one year) given in the nodes. No admissible split was found for node 5 because only 5 of 91 women reported a family history of breast cancer and the sample size restrictions would require more than 5 observations in each daughter node.

### 6.5. Hunting spiders

Finally, we take a closer look at a challenging dataset on animal abundance first reported by Van der Aart and Smeenk-Enserink (1975) and re-analyzed by De’ath (2002) using regression trees dealing with multivariate responses. The abundance of 12 hunting spider species is regressed on six environmental variables (water, sand, moss, reft, twigs and herbs) for \( n = 28 \) observations. Because of the small sample size we allow for a split if at least 5 observations are element of a node. The prognostic factor water found by De’ath (2002) is confirmed by the model shown in Figures 8 and 9 which additionally identifies reft. The data are available in package mvpart (De’ath 2014).

```r
data("HuntingSpiders", package = "partykit")
sptree <- ctree(arct.lute + pard.lugu + zora.spin + pard.nigr +
 + pard.pull + aulo.albi + troc.terr + alop.cune + pard.mont + alop.acce +
 + alop.fabr + arct.peri ~ herbs + reft + moss + sand + twigs + water,
 + data = HuntingSpiders, teststat = "max", minsplit = 5,
 + pargs = GenzBretz(abseps = .1, releps = .1))
```

### 7. Backward compatibility and novel functionality

`partykit::ctree` is a complete reimplementation of `party::ctree`. The latter reference implementation is based on a monolithic C core and an S4-based R interface. The novel implementation of conditional inference trees in `partykit` is much more modular and was almost entirely written in R (package `partykit` does not contain any foreign language code as of version 1.2-0). Permutation tests are computed in the dedicated R add-on package `libcoin`. 
> plot(sptree, terminal_panel = node_barplot)

Figure 8: Regression tree for hunting spider abundance with bars for the mean of each response.

Nevertheless, both implementations will almost every time produce the same tree. There are, naturally, exceptions where ensuring backward-compatibility requires specific choices of hyper parameters in `partykit::ctree_control`. We will demonstrate how one can compute the same trees in `partykit` and `party` in this section. In addition, some novel features introduced in `partykit` 1.2-0 are described.

7.1. Regression

We use the `airquality` data from package `party` and fit a regression tree after removal of missing response values. There are missing values in one of the explanatory variables, so we ask for three surrogate splits to be set-up:

```r
> data("airquality", package = "datasets")
> airq <- subset(airquality, !is.na(Ozone))
> (airct_party <- party::ctree(Ozone ~ ., data = airq,
+ controls = party::ctree_control(maxsurrogate = 3)))
```

Conditional inference tree with 5 terminal nodes

Response:  Ozone
Inputs:  Solar.R, Wind, Temp, Month, Day
Number of observations:  116

1) Temp <= 82; criterion = 1, statistic = 56.086
   2) Wind <= 6.9; criterion = 0.998, statistic = 12.969
      3)* weights = 10
> plot(sptree)

Figure 9: Regression tree for hunting spider abundance with boxplots for each response.
2) Wind > 6.9
   4) Temp <= 77; criterion = 0.997, statistic = 11.599
      5)* weights = 48
      4) Temp > 77
         6)* weights = 21
1) Temp > 82
   7) Wind <= 10.3; criterion = 0.997, statistic = 11.712
      8)* weights = 30
      7) Wind > 10.3
         9)* weights = 7

> mean((airq$Ozone - predict(airct_party))^2)

[1] 403.6668

For this specific example, the same call produces the same tree under both party and partykit. To ensure this also for other patterns of missingness, the numsurrogate flag needs to be set in order to restrict the evaluation of surrogate splits to numeric variables only (this is a restriction hard-coded in party):

> (airct_partykit <- partykit::ctree(Ozone ~ ., data = airq,
+   control = partykit::ctree_control(maxsurrogate = 3,
+                                       numsurrogate = TRUE)))

Model formula:
Ozone ~ Solar.R + Wind + Temp + Month + Day

Fitted party:
[1] root
  | [2] Temp <= 82
  | | [3] Wind <= 6.9: 55.600 (n = 10, err = 21946.4)
  | | | [5] Temp <= 77: 18.479 (n = 48, err = 3956.0)
  | | | [6] Temp > 77: 31.143 (n = 21, err = 4620.6)
  | [7] Temp > 82
  | | [8] Wind <= 10.3: 81.633 (n = 30, err = 15119.0)
  | | [9] Wind > 10.3: 48.714 (n = 7, err = 1183.4)

Number of inner nodes: 4
Number of terminal nodes: 5

> mean((airq$Ozone - predict(airct_partykit))^2)

[1] 403.6668

> table(predict(airct_party, type = "node"),
+       predict(airct_partykit, type = "node"))
> max(abs(predict(airct_party) - predict(airct_partykit)))

[1] 0

The results are identical as are the underlying test statistics:

> airct_party@tree$criterion

$statistic
Solar.R Wind Temp Month Day
13.34761286 41.61369618 56.08632426 3.11265955 0.02011554

$criterion
Solar.R Wind Temp Month Day
9.987069e-01 1.000000e+00 1.000000e+00 6.674119e-01 1.824984e-05

$maxcriterion
[1] 1

> info_node(node_party(airct_partykit))

$criterion
Solar.R Wind Temp Month Day
statistic 13.347612859 4.161370e+01 5.608632e+01 3.1126596
p.value 0.001293090 5.560572e-10 3.467894e-13 0.3325881
criterion -0.001293926 -5.560572e-10 -3.467894e-13 -0.4043478
Day
p.value 0.99998175
Day
$criterion
-10.91135399

$p.value
Temp
3.467894e-13

$unweighted
[1] TRUE

$nobs
[1] 116
partykit has a nicer way or presenting the variable selection test statistics on the scale of the statistics and the \( p \)-values. In addition, the criterion to be maximised (here: \( \log(1 - p\text{-value}) \)) is given.

### 7.2. Classification

For classification tasks with more than two classes, the default in party is a maximum-type test statistic on the multidimensional test statistic when computing splits. partykit employs a quadratic test statistic by default, because it was found to produce better splits empirically. One can switch-back to the old behaviour using the `splitstat` argument:

\[
> \text{(irisct_party <- party::ctree(Species ~ ., data = iris))}
\]

Conditional inference tree with 4 terminal nodes

Response: Species
Number of observations: 150

1) Petal.Length <= 1.9; criterion = 1, statistic = 140.264
   2)* weights = 50
1) Petal.Length > 1.9
   3) Petal.Width <= 1.7; criterion = 1, statistic = 67.894
      4) Petal.Length <= 4.8; criterion = 0.999, statistic = 13.865
         5)* weights = 46
      4) Petal.Length > 4.8
         6)* weights = 8
   3) Petal.Width > 1.7
      7)* weights = 46

\[
> \text{(irisct_partykit <- partykit::ctree(Species ~ ., data = iris, + control = partykit::ctree_control(splitstat = "maximum"))})
\]

Model formula:
Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

Fitted party:
[1] root
 | [2] Petal.Length <= 1.9: setosa (n = 50, err = 0.0%)
 | [3] Petal.Length > 1.9
 | | | [5] Petal.Length <= 4.8: versicolor (n = 46, err = 2.2%)
 | | | [6] Petal.Length > 4.8: versicolor (n = 8, err = 50.0%)
 | | [7] Petal.Width > 1.7: virginica (n = 46, err = 2.2%)

Number of inner nodes: 3
Number of terminal nodes: 4
> table(predict(irisct_party, type = "node"),
+       predict(irisct_partykit, type = "node"))

    2  5  6  7
 2  50  0  0  0
 5  0  46  0  0
 6  0  0  8  0
 7  0  0  0  46

The interface for computing conditional class probabilities changed from

> tr_party <- treeresponse(irisct_party, newdata = iris)

to

> tr_partykit <- predict(irisct_partykit, type = "prob",
+                        newdata = iris)
> max(abs(do.call("rbind", tr_party) - tr_partykit))

[1] 0

leading to identical results. For ordinal regression, the conditional class probabilities can be computed in the very same way:

> ### ordinal regression
> data("mammoexp", package = "TH.data")
> (mammoct_party <- party::ctree(ME ~ ., data = mammoexp))

Conditional inference tree with 3 terminal nodes

Response: ME
Inputs: SYMPT, PB, HIST, BSE, DECT
Number of observations: 412

1) SYMPT <= Agree; criterion = 1, statistic = 29.933
   1)* weights = 113
2) SYMPT > Agree
   1) SYMPT > Agree
      3) PB <= 8; criterion = 0.988, statistic = 9.17
         4)* weights = 208
      3) PB > 8
         5)* weights = 91

> ### estimated class probabilities
> tr_party <- treeresponse(mammoct_party, newdata = mammoexp)
> (mammoct_partykit <- partykit::ctree(ME ~ ., data = mammoexp))
Model formula:
ME ~ SYMPT + PB + HIST + BSE + DECT

Fitted party:
[1] root
   | [2] SYMPT <= Agree: Never (n = 113, err = 15.9%)
   | [3] SYMPT > Agree
      | | [4] PB <= 8: Never (n = 208, err = 60.1%)
      | | [5] PB > 8: Never (n = 91, err = 38.5%)

Number of inner nodes: 2
Number of terminal nodes: 3

> ### estimated class probabilities
> tr_partykit <- predict(mammoct_partykit, newdata = mammoexp, type = "prob")
> max(abs(do.call("rbind", tr_party) - tr_partykit))

[1] 0

7.3. Survival Analysis

Like in classification analysis, the `treeresponse` function from package `party` was replaced by the `predict` function with argument `type = "prob"` in `partykit`. The default survival trees are identical:

> data("GBSG2", package = "TH.data")
> (GBSG2ct_party <- party::ctree(Surv(time, cens) ~ ., data = GBSG2))

   Conditional inference tree with 4 terminal nodes

Response: Surv(time, cens)
Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec
Number of observations: 686

1) pnodes <= 3; criterion = 1, statistic = 56.156
   2) horTh == {yes}; criterion = 0.965, statistic = 8.113
      3)* weights = 128
   2) horTh == {no}
      4)* weights = 248
1) pnodes > 3
   5) progrec <= 20; criterion = 0.999, statistic = 14.941
      6)* weights = 144
   5) progrec > 20
      7)* weights = 166

> (GBSG2ct_partykit <- partykit::ctree(Surv(time, cens) ~ .,data = GBSG2))
Model formula:
\[ \text{Surv(time, cens) \sim horTh + age + menostat + tsize + tgrade + pnodes + progres + estrec} \]

Fitted party:
1. root
   2. pnodes \leq 3
      3. horTh in no: 2093.000 (n = 248)
      4. horTh in yes: Inf (n = 128)
   5. pnodes > 3
      6. progrec \leq 20: 624.000 (n = 144)
      7. progrec > 20: 1701.000 (n = 166)

Number of inner nodes: 3
Number of terminal nodes: 4

as are the conditional Kaplan-Meier estimators

```r
> tr_party <- treeresponse(GBSG2ct_party, newdata = GBSG2)
> tr_partykit <- predict(GBSG2ct_partykit, newdata = GBSG2, type = "prob")
> all.equal(lapply(tr_party, function(x) unclass(x)[!(names(x) %in% "call")]),
 lapply(tr_partykit, function(x) unclass(x)[!(names(x) %in% "call")]),
 check.names = FALSE)
[1] TRUE
```

7.4. New Features

`partykit` comes with additional arguments in `ctree_control` allowing a more detailed control over the tree growing.

alpha: The user can optionally change the default nominal level of \( \alpha = 0.05 \); `mincriterion` is updated to \( 1 - \alpha \) and `logmincriterion` is then \( \log(1 - \alpha) \). The latter allows variable selection on the scale of \( \log(1 - p\text{-value}) \):

```r
> (airct_partykit_1 <- partykit::ctree(Ozone ~ ., data = airq,
+ control = partykit::ctree_control(maxsurrogate = 3, alpha = 0.001,
+ numsurrogate = FALSE)))
```

Model formula:
\[ \text{Ozone \sim Solar.R + Wind + Temp + Month + Day} \]

Fitted party:
1. root
   2. Temp \leq 82: 26.544 (n = 79, err = 42531.6)
   3. Temp > 82: 75.405 (n = 37, err = 22452.9)
Number of inner nodes: 1
Number of terminal nodes: 2

> depth(airct_partykit_1)

[1] 1

> mean((airq$Ozone - predict(airct_partykit_1))^2)

[1] 560.2113

Lower values of $\alpha$ lead to smaller trees.

**splittest**: This enables the computation of $p$-values for maximally selected statistics for variable selection. The default test statistic is not particularly powerful against cutpoint-alternatives but much faster to compute. Currently, $p$-value approximations are not available, so one has to rely on resampling for $p$-value estimation.

> (airct_partykit <- partykit::ctree(Ozone ~ ., data = airq,
+   control = partykit::ctree_control(maxsurrogate = 3, splittest = TRUE,
+     testtype = "MonteCarlo")))

Model formula:
Ozone ~ Solar.R + Wind + Temp + Month + Day

Fitted party:
[1] root
  | [2] Temp <= 82
  |   | [3] Wind <= 6.9: 55.600 (n = 10, err = 21946.4)
  |   |   | [5] Temp <= 77
  |   | [8] Temp > 77
  |   | [12] Temp <= 87
  |   |   | [13] Wind <= 8.6: 72.308 (n = 13, err = 8176.8)
  |   |   | [14] Wind > 8.6: 45.571 (n = 7, err = 617.7)
  |   | [15] Temp > 87: 90.059 (n = 17, err = 3652.9)

Number of inner nodes: 7
Number of terminal nodes: 8

**saveinfo**: Reduces the memory footprint by not storing test results as part of the tree. The core information about trees is then roughly half the size needed by **party**.
nmax : Restricts the number of possible cutpoints to \texttt{nmax}, basically by treating all explanatory variables as ordered factors defined at quantiles of underlying numeric variables. This is mainly implemented in package \texttt{libcoin}. For the standard \texttt{ctree}, it is only appropriate to use in classification problems, where it can lead to substantial speed-ups:

\begin{verbatim}
> (irisct_partykit_1 <- partykit::ctree(Species ~ ., data = iris,
+ control = partykit::ctree_control(splitstat = "maximum", nmax = 25)))
\end{verbatim}

Model formula:
Species \textasciitilde Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

Fitted party:
[1] root
| [2] Petal.Width \leq 0.6: setosa (n = 50, err = 0.0%)
| [3] Petal.Width > 0.6
| | [4] Petal.Width \leq 1.7
| | | [5] Petal.Length \leq 4.8: versicolor (n = 46, err = 2.2%)
| | | [6] Petal.Length > 4.8: versicolor (n = 8, err = 50.0%)
| | [7] Petal.Width > 1.7: virginica (n = 46, err = 2.2%)

Number of inner nodes: 3
Number of terminal nodes: 4

\begin{verbatim}
> table(predict(irisct_partykit), predict(irisct_partykit_1))
\end{verbatim}

<table>
<thead>
<tr>
<th></th>
<th>setosa</th>
<th>versicolor</th>
<th>virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>versicolor</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>virginica</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
</tbody>
</table>

\texttt{multiway} : Implements multiway splits in unordered factors, each level defines a corresponding daughter node:

\begin{verbatim}
> GBSG2$tgrade <- factor(GBSG2$tgrade, ordered = FALSE)
> (GBSG2ct_partykit <- partykit::ctree(Surv(time, cens) \textasciitilde tgrade,
+ data = GBSG2, control = partykit::ctree_control(multiway = TRUE,
+ alpha = .5)))
\end{verbatim}

Model formula:
Surv(time, cens) \textasciitilde tgrade

Fitted party:
[1] root
| [2] tgrade in I: Inf (n = 81)
| [3] tgrade in II: 1730.000 (n = 444)
| [4] tgrade in III: 1337.000 (n = 161)

Number of inner nodes: 1
Number of terminal nodes: 3
...majority = FALSE: enables random assignment of non-splitable observations to daughter nodes preserving the node distribution. With majority = TRUE, these observations go with the majority (the only available behaviour of in party::ctree).

Two arguments of ctree are also interesting. The novel cluster argument allows conditional inference trees to be fitted to (simple forms of) correlated observations. For each cluster, the variance of the test statistics used for variable selection and also splitting is computed separately, leading to stratified permutation tests (in the sense that only observations within clusters are permuted). For example, we can cluster the data in the airquality dataset by month to be used as cluster variable:

```r
> airq$month <- factor(airq$Month)
> (airct_partykit_3 <- partykit::ctree(Ozone ~ Solar.R + Wind + Temp, data = airq,
+ cluster = month, control = partykit::ctree_control(maxsurrogate = 3)))
```

Model formula:
Ozone ~ Solar.R + Wind + Temp

Fitted party:
[1] root
 | [2] Temp <= 82
 | | [3] Temp <= 76: 18.250 (n = 48, err = 4199.0)
 | | [4] Temp > 76
 | | | [5] Wind <= 6.9: 71.857 (n = 7, err = 15510.9)
 | | | | [7] Temp <= 81: 32.412 (n = 17, err = 4204.1)
 | | | | [8] Temp > 81: 23.857 (n = 7, err = 306.9)
 | [9] Temp > 82
 | | [10] Wind <= 10.3: 81.633 (n = 30, err = 15119.0)

Number of inner nodes: 5
Number of terminal nodes: 6

```r
> info_node(node_party(airct_partykit_3))
```

$criterion

<table>
<thead>
<tr>
<th>Solar.R</th>
<th>Wind</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistic</td>
<td>14.4805065501</td>
<td>3.299881e+01</td>
</tr>
<tr>
<td>p.value</td>
<td>0.0004247923</td>
<td>2.766464e-08</td>
</tr>
<tr>
<td>criterion</td>
<td>-0.0004248826</td>
<td>-2.766464e-08</td>
</tr>
</tbody>
</table>

$p.value

<table>
<thead>
<tr>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.389038e-11</td>
</tr>
</tbody>
</table>

$unweighted
TRUE

> nobs
[1] 116

> mean((airq$Ozone - predict(airct_partykit_3))^2)
[1] 349.3382

This reduces the number of partitioning variables and makes multiplicity adjustment less costly.

The `ytrafo` argument has be made more general. `party` is not able to update influence functions $h$ within nodes. With the novel formula-based interface, users can create influence functions which are newly evaluated in each node. The following example illustrates how one can compute a survival tree with updated logrank scores:

```r
> ### with weight-dependent log-rank scores
> ### log-rank trafo for observations in this node only (= weights > 0)
> h <- function(y, x, start = NULL, weights, offset, estfun = TRUE, object = FALSE, ...)
+ if (is.null(weights)) weights <- rep(1, NROW(y))
+ s <- logrank_trafo(y[weights > 0,,drop = FALSE])
+ r <- rep(0, length(weights))
+ r[weights > 0] <- s
+ list(estfun = matrix(as.double(r), ncol = 1), converged = TRUE, unweighted = TRUE)
> partykit::ctree(Surv(time, cens) ~ ., data = GBSG2, ytrafo = h)
```

Model formula:
`Surv(time, cens) ~ horTh + age + menostat + tsize + tgrade + pnodes + progres + estrec`

Fitted party:
```
[1] root
| | [2] pnodes <= 3
| | | [3] horTh in no: 2093.000 (n = 248)
| | | [4] horTh in yes: Inf (n = 128)
| | [5] pnodes > 3
| | | [6] progres <= 20: 624.000 (n = 144)
| | | [7] progres > 20: 1701.000 (n = 166)
```

Number of inner nodes: 3
Number of terminal nodes: 4

The results are usually not very sensitive to (simple) updated influence functions. However, when one uses score functions of more complex models as influence functions (similar to the `mob` family of trees), it is necessary to refit models in each node. For example, we are
interested in a normal linear model for ozone concentration given temperature; both the intercept and the regression coefficient for temperature shall vary across nodes of a tree. Such a “permutation-based” MOB, here taking clusters into account, can be set-up using

```r
> ### normal varying intercept / varying coefficient model (aka "mob")
> h <- function(y, x, start = NULL, weights = NULL, offset = NULL, cluster = NULL, ...)
+ glm(y ~ 0 + x, family = gaussian(), start = start, weights = weights, ...)
> (airct_partykit_4 <- partykit::ctree(Ozone ~ Temp | Solar.R + Wind,
+ data = airq, cluster = month, ytrafo = h,
+ control = partykit::ctree_control(maxsurrogate = 3)))
```

Model formula:
Ozone ~ Temp + (Solar.R + Wind)

Fitted party:
[1] root
| [2] Wind <= 5.7: 98.692 (n = 13, err = 11584.8)
| | | [5] Wind <= 6.9: 55.286 (n = 14, err = 11330.9)
| | | [6] Wind > 6.9: 50.824 (n = 17, err = 15400.5)
| | [7] Wind > 8: 27.306 (n = 72, err = 25705.3)

Number of inner nodes: 3
Number of terminal nodes: 4

```r
> airq$node <- factor(predict(airct_partykit_4, type = "node"))
> summary(m <- glm(Ozone ~ node + node:Temp - 1, data = airq))
```

Call:
`glm(formula = Ozone ~ node + node:Temp - 1, data = airq)`

Deviance Residuals:
```
 Min 1Q Median 3Q Max
-45.801 -11.208 -1.049 10.903 53.615
```

Coefficients:
```
 Estimate Std. Error t value Pr(>|t|)
node2 300.0527 93.4828 3.210 0.001750 **
node5 -217.3416 51.3970 -4.229 4.94e-05 ***
node6 -178.9333 58.1093 -3.079 0.002632 **
node7 -82.2722 17.9951 -4.572 1.29e-05 ***
node2:Temp -2.2922 1.0626 -2.157 0.033214 *
node5:Temp 3.2989 0.6191 5.328 5.47e-07 ***
node6:Temp 2.8059 0.7076 3.965 0.000132 ***
node7:Temp 1.4769 0.2408 6.133 1.45e-08 ***

```
Both intercept and effect of temperature change considerably between nodes. The corresponding MOB can be fitted using

```r
> mean((predict(m) - airq$Ozone)^2)

[1] 306.6534
```

```r
> airq_lmtree <- partykit::lmtree(Ozone ~ Temp | Solar.R + Wind, + data = airq, cluster = month)
> info_node(node_party(airq_lmtree))
```

```r
$criterion
 Solar.R Wind
statistic 8.5987001 19.559486324
p.value 0.2818551 0.002658029
criterion -0.3310839 -0.002661567
```

```r
$p.value
Wind
0.002658029
```

```r
$coefficients
(Intercept) Temp
-146.995491 2.428703
```

```r
$objfun
[1] 64109.89
```

```r
$object
Call:
 lm(formula = Ozone ~ Temp)
Coefficients:
 (Intercept) Temp
 -146.995 2.429
```
$\texttt{converged}$

[1] TRUE

$nobs$

[1] 116

```r
> mean((predict(airq_lmtree, newdata = airq) - airq$Ozone)^2)
```

[1] 443.9422

The $p$-values in the root node are similar but the two procedures find different splits. \texttt{mob} (and therefore \texttt{lmtree}) directly search for splits by optimising the objective function for all possible splits whereas \texttt{ctree} only works with the score functions.

Argument \texttt{xtrafo} allowing the user to change the transformations $g_j$ of the covariates was removed from the user interface.

**References**


De’ath G (2014). \texttt{mvpart}: Multivariate Partitioning. R package version 1.6-2, URL \url{http://CRAN.R-project.org/package=mvpart}.


**Affiliation:**
Torsten Hothorn
Institut für Epidemiologie, Biostatistik und Prävention
Universität Zürich
Hirschengraben 84
CH-8001 Zürich, Switzerland
E-mail: Torsten.Hothorn@R-project.org
URL: [http://user.math.uzh.ch/hothorn/](http://user.math.uzh.ch/hothorn/)
Kurt Hornik
Institute for Statistics and Mathematics
WU Wirtschaftsuniversität Wien
Welthandelsplatz 1
1020 Wien, Austria
E-mail: Kurt.Hornik@R-project.org
URL: http://statmath.wu.ac.at/~hornik/

Achim Zeileis
Department of Statistics
Faculty of Economics and Statistics
Universität Innsbruck
Universitätsstr. 15
6020 Innsbruck, Austria
E-mail: Achim.Zeileis@R-project.org
URL: http://eeecon.uibk.ac.at/~zeileis/