Package ‘passt’

December 5, 2019

Type Package
Title Probability Associator Time (PASS-T)
Version 0.1.1
Description Simulates judgments of frequency and duration based on the Probability Associator Time (PASS-T) model. PASS-T is a memory model based on a simple competitive artificial neural network. It can imitate human judgments of frequency and duration, which have been extensively studied in cognitive psychology (e.g. Hintzman (1970) <doi:10.1037/h0028865>, Betsch et al. (2010) <https://psycnet.apa.org/record/2010-18204-003>). The PASS-T model is an extension of the PASS model (Sedlmeier, 2002, ISBN:0198508638). The package provides an easy way to run simulations, which can then be compared with empirical data in human judgments of frequency and duration.

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2

URL https://github.com/johannes-titz/passt
BugReports https://github.com/johannes-titz/passt/issues
Suggests knitr, ggplot2, plyr, testthat (>= 2.1.0), covr
VignetteBuilder knitr
Imports magrittr,methods,dplyr,tidyr,rlang

NeedsCompilation no

Author Johannes Titz [aut, cre]
Maintainer Johannes Titz <johannes.titz@gmail.com>
Repository CRAN
Date/Publication 2019-12-05 14:30:02 UTC
run_exp

R topics documented:

run_exp .. 2
run_sim .. 3

Index

run_exp Run simulations and analyze data

Description

Runs several simulations and returns correlative effect sizes between the frequency/total duration/single duration of each pattern and the output activation of the network for each pattern, respectively. Comparable to running an empirical experiment in judgments of frequency and duration and analyzing the data.

Usage

run_exp(
 frequency,
 duration,
 lrate_onset,
 lrate_drop_time,
 lrate_drop_perc,
 patterns = diag(length(duration)),
 number_of_participants = 100,
 cor_noise_sd = 0
)

Arguments

frequency presentation frequency for each pattern in the matrix
duration presentation duration for each pattern in the matrix
lrate_onset learning rate at the onset of a stimulus
lrate_drop_time point at which the learning rate drops, must be lower than duration
lrate_drop_perc how much the learning rate drops at lrate_drop_time
patterns matrix with input patterns, one row is one pattern
number_of_participants corresponds with number of simulations run
cor_noise_sd the amount of noise added to the final activations of the network, set to 0 if you do not want any noise
run_sim

Value

data frame with three columns: f_dv, td_dv, t_dv which are the correlations between the frequency/total duration/single duration of each pattern and the activation of the network for each pattern, respectively.

See Also

run_sim

Examples

```r
run_exp(10:1, 1:10, 0.05, 2, 0.2)
```

Description

Runs several simulations and returns output activation for each simulation and each input pattern

Usage

```r
run_sim(
  patterns,
  frequency,
  duration,
  lrate_onset,
  lrate_drop_time,
  lrate_drop_perc,
  n_runs = 100,
  n_output_units = ncol(patterns),
  pulses_per_second = 1
)
```

Arguments

- `patterns` matrix with input patterns, one row is one pattern
- `frequency` presentation frequency for each pattern in the matrix
- `duration` presentation duration for each pattern in the matrix
- `lrate_onset` learning rate at the onset of a stimulus
- `lrate_drop_time` point at which the learning rate drops, must be lower than duration
- `lrate_drop_perc` how much the learning rate drops at lrate_drop_time
- `n_runs` number of simulations to be run, default is 100
- `n_output_units` number of output units, defaults to number of input units
- `pulses_per_second` how many time steps should be simulated per second
Value

list with following elements

- output: the sum of the activation strengths of the output units for each input pattern
- weight_matrix: final weight_matrix
- pres_matrix: presentation matrix

See Also

run_exp

Examples

run_sim(diag(10), 1:10, 10:1, 0.05, 2, 0.2)
Index

run_exp, 2, 4
run_sim, 3, 3