Package ‘pathfindR’

October 8, 2023

Type Package

Title Enrichment Analysis Utilizing Active Subnetworks

Version 2.3.0

Maintainer Ege Ulgen <egeulgen@gmail.com>

Description Enrichment analysis enables researchers to uncover mechanisms underlying a phenotype. However, conventional methods for enrichment analysis do not take into account protein-protein interaction information, resulting in incomplete conclusions. pathfindR is a tool for enrichment analysis utilizing active subnetworks. The main function identifies active subnetworks in a protein-protein interaction network using a user-provided list of genes and associated p values. It then performs enrichment analyses on the identified subnetworks, identifying enriched terms (i.e. pathways or, more broadly, gene sets) that possibly underlie the phenotype of interest. pathfindR also offers functionalities to cluster the enriched terms and identify representative terms in each cluster, to score the enriched terms per sample and to visualize analysis results. The enrichment, clustering and other methods implemented in pathfindR are described in detail in Ulgen E, Ozisik O, Sezerman OU. 2019. pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front. Genet. <doi:10.3389/fgene.2019.00858>.

License MIT + file LICENSE

BugReports https://github.com/egeulgen/pathfindR/issues

Encoding UTF-8

SystemRequirements Java (>= 8.0)

biocViews

Imports DBI, AnnotationDbi, doParallel, foreach, rmarkdown, org.Hs.eg.db, ggplot2, ggraph, ggupset, fpc, grDevices, igraph, R.utils, magick, msigdb, KEGGREST, KEGGgraph, knitr

Depends R (>= 4.0), pathfindR.data (>= 2.0)
Suggests testthat (>= 2.3.2), covr, mockery
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no
Author Ege Ulgen [cre, cph] (<https://orcid.org/0000-0003-2090-3621>),
 Ozan Ozisik [aut] (<https://orcid.org/0000-0001-5980-8002>)
Repository CRAN
Date/Publication 2023-10-08 20:30:02 UTC
Wrapper for Active Subnetwork Search + Enrichment over Single/Multiple Iteration(s)

Description

Wrapper for Active Subnetwork Search + Enrichment over Single/Multiple Iteration(s)

Usage

active_snw_enrichment_wrapper(
 input_processed,
 pin_path,
 gset_list,
 enrichment_threshold,
 list_active_snw_genes,
 adj_method = "bonferroni",
 search_method = "GR",
 disable_parallel = FALSE,
 use_all_positives = FALSE,
 iterations = 10,
 n_processes = NULL,
 score_quan_thr = 0.8,
 sig_gene_thr = 0.02,
 saTemp0 = 1,
 saTemp1 = 0.01,
 saIter = 10000,
 gaPop = 400,
 gaIter = 200,
 gaThread = 5,
 gaCrossover = 1,
Arguments

- **input_processed**: processed input data frame
- **pin_path**: path/to/PIN/file
- **gset_list**: list for gene sets
- **enrichment_threshold**: adjusted-p value threshold used when filtering enrichment results (default = 0.05)
- **list_active_snw_genes**: boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = FALSE)
- **adj_method**: correction method to be used for adjusting p-values. (default = 'bonferroni')
- **search_method**: algorithm to use when performing active subnetwork search. Options are greedy search (GR), simulated annealing (SA) or genetic algorithm (GA) for the search (default = 'GR').
- **disable_parallel**: boolean to indicate whether to disable parallel runs via foreach (default = FALSE)
- **use_all_positives**: if TRUE: in GA, adds an individual with all positive nodes. In SA, initializes candidate solution with all positive nodes. (default = FALSE)
- **iterations**: number of iterations for active subnetwork search and enrichment analyses (Default = 10)
- **n_processes**: optional argument for specifying the number of processes used by foreach. If not specified, the function determines this automatically (Default == NULL. Gets set to 1 for Genetic Algorithm)
- **score_quan_thr**: active subnetwork score quantile threshold. Must be between 0 and 1 or set to -1 for not filtering. (Default = 0.8)
- **sig_gene_thr**: threshold for the minimum proportion of significant genes in the subnetwork (Default = 0.02) If the number of genes to use as threshold is calculated to be < 2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2
- **saTemp0**: Initial temperature for SA (default = 1.0)
- **saTemp1**: Final temperature for SA (default = 0.01)
- **saIter**: iteration number for SA (default = 10000)
- **gaPop**: Population size for GA (default = 400)
active_snw_search

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gaIter</td>
<td>Iteration number for GA (default = 200)</td>
</tr>
<tr>
<td>gaThread</td>
<td>Number of threads to be used in GA (default = 5)</td>
</tr>
<tr>
<td>gaCrossover</td>
<td>Applies crossover with the given probability in GA (default = 1, i.e. always perform crossover)</td>
</tr>
<tr>
<td>gaMut</td>
<td>For GA, applies mutation with given mutation rate (default = 0, i.e. mutation off)</td>
</tr>
<tr>
<td>grMaxDepth</td>
<td>Sets max depth in greedy search, 0 for no limit (default = 1)</td>
</tr>
<tr>
<td>grSearchDepth</td>
<td>Search depth in greedy search (default = 1)</td>
</tr>
<tr>
<td>grOverlap</td>
<td>Overlap threshold for results of greedy search (default = 0.5)</td>
</tr>
<tr>
<td>grSubNum</td>
<td>Number of subnetworks to be presented in the results (default = 1000)</td>
</tr>
<tr>
<td>silent_option</td>
<td>boolean value indicating whether to print the messages to the console (FALSE) or not (TRUE, this will print to a temp. file) during active subnetwork search (default = TRUE). This option was added because during parallel runs, the console messages get disorderly printed.</td>
</tr>
</tbody>
</table>

Value

Data frame of combined pathfindR enrichment results

active_snw_search

Perform Active Subnetwork Search

Description

Perform Active Subnetwork Search

Usage

```r
active_snw_search(
  input_for_search,           # Input data frame
  pin_name_path = "Biogrid", # Path to interaction database
  snws_file = "active_snws", # File containing subnetworks
  dir_for_parallel_run = NULL, # Directory for parallel runs
  score_quan_thr = 0.8,       # Score quantile threshold
  sig_gene_thr = 0.02,        # Significance threshold for genes
  search_method = "GR",       # Search method: GR, SA, GA
  seedForRandom = 1234,       # Seed for random number generation
  silent_option = TRUE,       # Whether to print messages to console
  use_all_positives = FALSE,  # Whether to include all positives
  geneInitProbs = 0.1,        # Initial probability for genes
  saTemp0 = 1,                # Temperature parameter for SA
  saTemp1 = 0.01,             # Temperature parameter for SA
  saIter = 10000,             # Number of SA iterations
  gaPop = 400,                # Population size in GA
  gaIter = 10000,             # Iteration number in GA
)```

active_snw_search

```r
gaThread = 5,
gaCrossover = 1,
gaMut = 0,
grMaxDepth = 1,
grSearchDepth = 1,
grOverlap = 0.5,
grSubNum = 1000
```

**Arguments**

- `input_for_search` input the input data that active subnetwork search uses. The input must be a data frame containing at least these 2 columns:
  - **GENE** Gene Symbol
  - **P_VALUE** p value obtained through a test, e.g. differential expression/methylation

- `pin_name_path` Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

- `snws_file` name for active subnetwork search output data **without file extension** (default = 'active_snws')

- `dir_for_parallel_run` (previously created) directory for a parallel run iteration. Used in the wrapper function (see ?run_pathfindR) (Default = NULL)

- `score_quan_thr` active subnetwork score quantile threshold. Must be between 0 and 1 or set to -1 for not filtering. (Default = 0.8)

- `sig_gene_thr` threshold for the minimum proportion of significant genes in the subnetwork. (Default = 0.02) If the number of genes to use as threshold is calculated to be < 2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2

- `search_method` algorithm to use when performing active subnetwork search. Options are greedy search (GR), simulated annealing (SA) or genetic algorithm (GA) for the search (default = 'GR').

- `seedForRandom` seed for reproducibility while running the java modules (applies for GR and SA)

- `silent_option` boolean value indicating whether to print the messages to the console (FALSE) or not (TRUE, this will print to a temp. file) during active subnetwork search (default = TRUE). This option was added because during parallel runs, the console messages get disorderly printed.

- `use_all_positives` if TRUE: in GA, adds an individual with all positive nodes. In SA, initializes candidate solution with all positive nodes. (default = FALSE)

- `geneInitProbs` For SA and GA, probability of adding a gene in initial solution (default = 0.1)

- `saTemp0` Initial temperature for SA (default = 1.0)

- `saTemp1` Final temperature for SA (default = 0.01)

- `saIter` Iteration number for SA (default = 10000)
**annotate_term_genes**

Annotate the Affected Genes in the Provided Enriched Terms

**Description**

Function to annotate the involved affected (input) genes in each term.

**Usage**

```r
annotate_term_genes(
 result_df,
 input_processed,
 genes_by_term = pathfindR.data::kegg_genes
)
```

---

**gaPop**
Population size for GA (default = 400)

**gaIter**
Iteration number for GA (default = 200)

**gaThread**
Number of threads to be used in GA (default = 5)

**gaCrossover**
Applies crossover with the given probability in GA (default = 1, i.e. always perform crossover)

**gaMut**
For GA, applies mutation with given mutation rate (default = 0, i.e. mutation off)

**grMaxDepth**
Sets max depth in greedy search, 0 for no limit (default = 1)

**grSearchDepth**
Search depth in greedy search (default = 1)

**grOverlap**
Overlap threshold for results of greedy search (default = 0.5)

**grSubNum**
Number of subnetworks to be presented in the results (default = 1000)

**Value**

A list of genes in every identified active subnetwork that has a score greater than the `score_quan_thr`th quantile and that has at least `sig_gene_thr` affected genes.

**Examples**

```r
processed_df <- example_pathfindR_input[1:15, -2]
colnames(processed_df) <- c('GENE', 'P_VALUE')
GR_snws <- active_snw_search(
 input_for_search = processed_df,
 pin_name_path = 'KEGG',
 search_method = 'GR',
 score_quan_thr = 0.8
)
clean-up
unlink('active_snw_search', recursive = TRUE)
```
Arguments

result_df: data frame of enrichment results. The only must-have column is 'ID'.
input_processed: input data processed via input_processing.
genes_by_term: List that contains genes for each gene set. Names of this list are gene set IDs (default = kegg_genes)

Value

The original data frame with two additional columns:

**Up_regulated** the up-regulated genes in the input involved in the given term’s gene set, comma-separated.
**Down_regulated** the down-regulated genes in the input involved in the given term’s gene set, comma-separated.

Examples

```r
example_gene_data <- example_pathfindR_input
colnames(example_gene_data) <- c('GENE', 'CHANGE', 'P_VALUE')

annotated_result <- annotate_term_genes(
 result_df = example_pathfindR_output,
 input_processed = example_gene_data
)
```

check_java_version: Check Java Version

Description

Check Java Version

Usage

check_java_version(version = NULL)

Arguments

version: character vector containing the output of `java -version`. If NULL, result of `fetch_java_version` is used (default = NULL)

Details

this function was adapted from the CRAN package `sparklyr`

Value

only parses and checks whether the java version is >= 1.8
**cluster_enriched_terms**

*Cluster Enriched Terms*

---

**Description**

Cluster Enriched Terms

**Usage**

```r
cluster_enriched_terms(
 enrichment_res,
 method = "hierarchical",
 plot_clusters_graph = TRUE,
 use_description = FALSE,
 use_active_snw_genes = FALSE,
 ...
)
```

**Arguments**

- `enrichment_res` data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if `use_description = TRUE`) or 'ID' (if `use_description = FALSE'), 'Down_regulated', and 'Up_regulated'. If `use_active_snw_genes = TRUE`, 'non_Signif_Snw_Genes' must also be provided.
- `method` Either 'hierarchical' or 'fuzzy'. Details of clustering are provided in the corresponding functions `hierarchical_term_clustering` and `fuzzy_term_clustering`.
- `plot_clusters_graph` boolean value indicate whether or not to plot the graph diagram of clustering results (default = TRUE).
- `use_description` Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)
- `use_active_snw_genes` boolean to indicate whether or not to use non-input active subnetwork genes in the calculation of kappa statistics (default = FALSE, i.e. only use affected genes)
- `...` additional arguments for `hierarchical_term_clustering`, `fuzzy_term_clustering` and `cluster_graph_vis`. See documentation of these functions for more details.

**Value**

a data frame of clustering results. For 'hierarchical', the cluster assignments (Cluster) and whether the term is representative of its cluster (Status) is added as columns. For 'fuzzy', terms that are in multiple clusters are provided for each cluster. The cluster assignments (Cluster) and whether the term is representative of its cluster (Status) is added as columns.
See Also

See `hierarchical_term_clustering` for hierarchical clustering of enriched terms. See `fuzzy_term_clustering` for fuzzy clustering of enriched terms. See `cluster_graph_vis` for graph visualization of clustering.

Examples

```r
example_clustered <- cluster_enriched_terms(
 example_pathfindR_output[1:3,],
 plot_clusters_graph = FALSE
)
example_clustered <- cluster_enriched_terms(
 example_pathfindR_output[1:3,],
 method = 'fuzzy', plot_clusters_graph = FALSE
)
```

---

### cluster_graph_vis

**Graph Visualization of Clustered Enriched Terms**

#### Description

Graph Visualization of Clustered Enriched Terms

#### Usage

```r
cluster_graph_vis(
 clu_obj,
 kappa_mat,
 enrichment_res,
 kappa_threshold = 0.35,
 use_description = FALSE,
 vertex.label.cex = 0.7,
 vertex.size.scaling = 2.5
)
```

#### Arguments

- `clu_obj`: clustering result (either a matrix obtained via `hierarchical_term_clustering` or `fuzzy_term_clustering` or a vector obtained via `hierarchical_term_clustering`)
- `kappa_mat`: matrix of kappa statistics (output of `create_kappa_matrix`)
- `enrichment_res`: data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if `use_description = TRUE`) or 'ID' (if `use_description = FALSE`), 'Down_regulated', and 'Up_regulated'. If `use_active_snw_genes = TRUE`, 'non_Signif_Snw_Genes' must also be provided.
- `kappa_threshold`: threshold for kappa statistics, defining strong relation (default = 0.35)
### color_kegg_pathway

**use_description**
Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

**vertex.label.cex**
font size for vertex labels; it is interpreted as a multiplication factor of some device-dependent base font size (default = 0.7)

**vertex.size.scaling**
scaling factor for the node size (default = 2.5)

### Value
Plots a graph diagram of clustering results. Each node is an enriched term from `enrichment_res`. Size of node corresponds to -log(lowest_p). Thickness of the edges between nodes correspond to the kappa statistic between the two terms. Color of each node corresponds to distinct clusters. For fuzzy clustering, if a term is in multiple clusters, multiple colors are utilized.

### Examples
```r
Not run:
cluster_graph_vis(clu_obj, kappa_mat, enrichment_res)
End(Not run)
```

---

**color_kegg_pathway**

**Color hsa KEGG pathway**

### Description
Color hsa KEGG pathway

### Usage
```r
color_kegg_pathway(
 pw_id,
 change_vec,
 scale_vals = TRUE,
 node_cols = NULL,
 quiet = TRUE
)
```

### Arguments
- **pw_id**: hsa KEGG pathway id (e.g. hsa05012)
- **change_vec**: vector of change values, names should be hsa KEGG gene ids
- **scale_vals**: should change values be scaled? (default = TRUE)
combined_results_graph

node_cols

low, middle and high color values for coloring the pathway nodes (default = NULL). If node_cols=NULL, the low, middle and high color are set as 'green', 'gray' and 'red'. If all change values are 1e6 (in case no changes are supplied, this dummy value is assigned by input_processing), only one color ('#F38F18' if NULL) is used.

quiet

If TRUE, suppress status messages (if any), and the progress bar while downloading file(s)

Value

list containing:

1. file_path: path to colored hsa KEGG pathway diagram
2. all_key_cols: colors used for each change value bin
3. all_brks: breaks used for separating change values into bins

Examples

```r
Not run:
pw_id <- 'hsa00010'
change_vec <- c(-2, 4, 6)
names(change_vec) <- c('hsa:2821', 'hsa:226', 'hsa:229')
result <- pathfindR:::color_kegg_pathway(pw_id, change_vec)
End(Not run)
```
**Arguments**

- **combined_df**  
  Data frame of combined pathfindR enrichment results

- **selected_terms**  
  the vector of selected terms for creating the graph (either IDs or term descriptions). If set to 'common', all of the common terms are used. (default = 'common')

- **use_description**  
  Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

- **layout**  
  The type of layout to create (see ggraph for details. Default = 'stress')

- **node_size**  
  Argument to indicate whether to use number of significant genes ('num_genes') or the -log10(lowest p value) ('p_val') for adjusting the node sizes (default = 'num_genes')

**Value**

a ggraph object containing the combined term-gene graph. Each node corresponds to an enriched term (orange if common, different shades of blue otherwise), an up-regulated gene (green), a down-regulated gene (red) or a conflicting (i.e. up in one analysis, down in the other or vice versa) gene (gray). An edge between a term and a gene indicates that the given term involves the gene. Size of a term node is proportional to either the number of genes (if node_size = 'num_genes') or the -log10(lowest p value) (if node_size = 'p_val').

**Examples**

```r
combined_results <- combine_pathfindR_results(
 example_pathfindR_output,
 example_comparison_output,
 plot_common = FALSE
)
g <- combined_results_graph(combined_results, selected_terms = sample(combined_results$ID, 3))
```

---

**Description**

Combine 2 pathfindR Results

**Usage**

```r
combine_pathfindR_results(result_A, result_B, plot_common = TRUE)
```
combine_pathfindR_results

Arguments

- `result_A` data frame of first pathfindR enrichment results
- `result_B` data frame of second pathfindR enrichment results
- `plot_common` boolean to indicate whether or not to plot the term-gene graph of the common terms (default=TRUE)

Value

Data frame of combined pathfindR enrichment results. Columns are:

- **ID** ID of the enriched term
- **Term_Description** Description of the enriched term
- **Fold_Enrichment_A** Fold enrichment value for the enriched term (Calculated using ONLY the input genes)
- **occurrence_A** the number of iterations that the given term was found to enriched over all iterations
- **lowest_p_A** the lowest adjusted-p value of the given term over all iterations
- **highest_p_A** the highest adjusted-p value of the given term over all iterations
- **Up_regulated_A** the up-regulated genes in the input involved in the given term’s gene set, comma-separated
- **Down_regulated_A** the down-regulated genes in the input involved in the given term’s gene set, comma-separated
- **Fold_Enrichment_B** Fold enrichment value for the enriched term (Calculated using ONLY the input genes)
- **occurrence_B** the number of iterations that the given term was found to enriched over all iterations
- **lowest_p_B** the lowest adjusted-p value of the given term over all iterations
- **highest_p_B** the highest adjusted-p value of the given term over all iterations
- **Up_regulated_B** the up-regulated genes in the input involved in the given term’s gene set, comma-separated
- **Down_regulated_B** the down-regulated genes in the input involved in the given term’s gene set, comma-separated
- **combined_p** the combined p value (via Fisher’s method)
- **status** whether the term is found in both analyses (‘common’), found only in the first (‘A only’) or found only in the second (‘B only’)

By default, the function also displays the term-gene graph of the common terms

Examples

```r
combined_results <- combine_pathfindR_results(example_pathfindR_output, example_comparison_output)
```
**configure_output_dir**  
Configure Output Directory Name

**Description**
Configure Output Directory Name

**Usage**

```r
configure_output_dir(output_dir = NULL)
```

**Arguments**

- `output_dir` the directory to be created where the output and intermediate files are saved
  (default = NULL, a temporary directory is used)

**Value**

`/path/to/output/dir`

---

**create_HTML_report**  
Create HTML Report of pathfindR Results

**Description**
Create HTML Report of pathfindR Results

**Usage**

```r
create_HTML_report(input, input_processed, final_res, dir_for_report)
```

**Arguments**

- `input` the input data that pathfindR uses. The input must be a data frame with three columns:
  1. Gene Symbol (Gene Symbol)
  2. Change value, e.g. log(fold change) (OPTIONAL)
  3. p value, e.g. adjusted p value associated with differential expression
- `input_processed` processed input data frame
- `final_res` final pathfindR result data frame
- `dir_for_report` directory to render the report in
create_kappa_matrix  Create Kappa Statistics Matrix

Description

Create Kappa Statistics Matrix

Usage

create_kappa_matrix(
  enrichment_res,
  use_description = FALSE,
  use_active_snw_genes = FALSE
)

Arguments

enrichment_res  data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if use_description = TRUE) or 'ID' (if use_description = FALSE), 'Down_regulated', and 'Up_regulated'. If use_active_snw_genes = TRUE, 'non_Signif_Snw_Genes' must also be provided.

use_description  Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

use_active_snw_genes  boolean to indicate whether or not to use non-input active subnetwork genes in the calculation of kappa statistics (default = FALSE, i.e. only use affected genes)

Value

a matrix of kappa statistics between each term in the enrichment results.

Examples

sub_df <- example_pathfindR_output[1:3, ]
create_kappa_matrix(sub_df)
download_kegg_png  

Download Colored KEGG Diagram PNG

Description

Download Colored KEGG Diagram PNG

Usage

download_kegg_png(pw_url, f_path, quiet = TRUE)

Arguments

pw_url  
url to download

f_path  
local path to save the file

quiet  
If TRUE, suppress status messages (if any), and the progress bar while downloading file(s)

Value

download status

download_KGML_file  

Obtain KGML file for a KEGG pathway (hsa)

Description

Obtain KGML file for a KEGG pathway (hsa)

Usage

download_KGML_file(pw_id, pwKGML, quiet = TRUE)

Arguments

pw_id  
KEGG pathway ID

pwKGML  
destination file

quiet  
If TRUE, suppress status messages (if any), and the progress bar while downloading file(s)

Value

download status (0 for success), if warning/error returns NA
enrichment

Perform Enrichment Analysis for a Single Gene Set

Description

Perform Enrichment Analysis for a Single Gene Set

Usage

enrichment(
  input_genes,
  genes_by_term = pathfindR.data::kegg_genes,
  term_descriptions = pathfindR.data::kegg_descriptions,
  adj_method = "bonferroni",
  enrichment_threshold = 0.05,
  sig_genes_vec,
  background_genes
)

Arguments

input_genes The set of gene symbols to be used for enrichment analysis. In the scope of this package, these are genes that were identified for an active subnetwork

genes_by_term List that contains genes for each gene set. Names of this list are gene set IDs (default = kegg_genes)

term_descriptions Vector that contains term descriptions for the gene sets. Names of this vector are gene set IDs (default = kegg_descriptions)

adj_method correction method to be used for adjusting p-values. (default = 'bonferroni')

enrichment_threshold adjusted-p value threshold used when filtering enrichment results (default = 0.05)

sig_genes_vec vector of significant gene symbols. In the scope of this package, these are the input genes that were used for active subnetwork search

background_genes vector of background genes. In the scope of this package, the background genes are taken as all genes in the PIN (see enrichment_analyses)

Value

A data frame that contains enrichment results

See Also

[hyperg_test](#) for the details on hypergeometric distribution-based hypothesis testing.
enrichment_analyses

Examples

```r
enrichment(
 input_genes = c('PER1', 'PER2', 'CRY1', 'CREB1'),
 sig_genes_vec = 'PER1',
 background_genes = unlist(pathfindR.data::kegg_genes)
)
```

Description

Perform Enrichment Analyses on the Input Subnetworks

Usage

```r
enrichment_analyses(
 snws,
 sig_genes_vec,
 pin_name_path = "Biogrid",
 genes_by_term = pathfindR.data::kegg_genes,
 term_descriptions = pathfindR.data::kegg_descriptions,
 adj_method = "bonferroni",
 enrichment_threshold = 0.05,
 list_active_snw_genes = FALSE
)
```

Arguments

- **snws**: a list of subnetwork genes (i.e., vectors of genes for each subnetwork)
- **sig_genes_vec**: vector of significant gene symbols. In the scope of this package, these are the input genes that were used for active subnetwork search
- **pin_name_path**: Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')
- **genes_by_term**: List that contains genes for each gene set. Names of this list are gene set IDs (default = kegg_genes)
- **term_descriptions**: Vector that contains term descriptions for the gene sets. Names of this vector are gene set IDs (default = kegg_descriptions)
- **adj_method**: correction method to be used for adjusting p-values. (default = 'bonferroni')
- **enrichment_threshold**: adjusted-p value threshold used when filtering enrichment results (default = 0.05)
list_active_snw_genes

boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = FALSE)

Value

a dataframe of combined enrichment results. Columns are:

- **ID**  ID of the enriched term
- **Term_Description** Description of the enriched term
- **Fold_Enrichment** Fold enrichment value for the enriched term
- **p_value** p value of enrichment
- **adj_p** adjusted p value of enrichment
- **support** the support (proportion of active subnetworks leading to enrichment over all subnetworks) for the gene set
- **non_Signif_Snw_Genes (OPTIONAL)** the non-significant active subnetwork genes, comma-separated

See Also

enrichment for the enrichment analysis for a single gene set

Examples

```r
enr_res <- enrichment_analyses(
 snws = example_active_snws[1:2],
 sig_genes_vec = example_pathfindR_input$Gene.symbol[1:25],
 pin_name_path = 'KEGG'
)
```

---

**enrichment_chart**  Create Bubble Chart of Enrichment Results

**Description**

This function is used to create a ggplot2 bubble chart displaying the enrichment results.

**Usage**

```r
enrichment_chart(
 result_df,
 top_terms = 10,
 plot_by_cluster = FALSE,
 num_bubbles = 4,
 even_breaks = TRUE
)```
fetch_gene_set

Arguments

result_df a data frame that must contain the following columns:

Term_Description Description of the enriched term
Fold_Enrichment Fold enrichment value for the enriched term
lowest_p the lowest adjusted-p value of the given term over all iterations
Up_regulated the up-regulated genes in the input involved in the given term’s
gene set, comma-separated
Down_regulated the down-regulated genes in the input involved in the given
term’s gene set, comma-separated
Cluster(OPTIONAL) the cluster to which the enriched term is assigned
top_terms number of top terms (according to the 'lowest_p' column) to plot (default = 10).
If plot_by_cluster = TRUE, selects the top top_terms terms per each cluster.
Set top_terms = NULL to plot for all terms. If the total number of terms is less
than top_terms, all terms are plotted.
plot_by_cluster boolean value indicating whether or not to group the enriched terms by cluster
(works if result_df contains a 'Cluster' column).
num_bubbles number of sizes displayed in the legend # genes (Default = 4)
even_breaks whether or not to set even breaks for the number of sizes displayed in the legend
genes. If TRUE (default), sets equal breaks and the number of displayed bub-
bles may be different than the number set by num_bubbles. If the exact number
set by num_bubbles is required, set this argument to FALSE

Value

a ggplot2 object containing the bubble chart. The x-axis corresponds to fold enrichment values
while the y-axis indicates the enriched terms. Size of the bubble indicates the number of significant
genres in the given enriched term. Color indicates the -log10(lowest-p) value. The closer the color
is to red, the more significant the enrichment is. Optionally, if 'Cluster' is a column of result_df
and plot_by_cluster == TRUE, the enriched terms are grouped by clusters.

Examples

 g <- enrichment_chart(example_pathfindR_output)

fetch_gene_set Fetch Gene Set Objects

Description

Function for obtaining the gene sets per term and the term descriptions to be used for enrichment
analysis.
Usage

fetch_gene_set(
 gene_sets = "KEGG",
 min_gset_size = 10,
 max_gset_size = 300,
 custom_genes = NULL,
 custom_descriptions = NULL
)

Arguments

gene_sets Name of the gene sets to be used for enrichment analysis. Available gene sets are 'KEGG', 'Reactome', 'BioCarta', 'GO-All', 'GO-BP', 'GO-CC', 'GO-MF', 'cell_markers', 'mmu_KEGG' or 'Custom'. If 'Custom', the arguments custom_genes and custom_descriptions must be specified. (Default = 'KEGG')

min_gset_size minimum number of genes a term must contain (default = 10)

max_gset_size maximum number of genes a term must contain (default = 300)

custom_genes a list containing the genes involved in each custom term. Each element is a vector of gene symbols located in the given custom term. Names should correspond to the IDs of the custom terms.

custom_descriptions A vector containing the descriptions for each custom term. Names of the vector should correspond to the IDs of the custom terms.

Value

a list containing 2 elements

genes_by_term list of vectors of genes contained in each term
term_descriptions vector of descriptions per each term

Examples

KEGG_gset <- fetch_gene_set()
GO_MF_gset <- fetch_gene_set('GO-MF', min_gset_size = 20, max_gset_size = 100)

fetch_java_version Obtain Java Version

Description

Obtain Java Version

Usage

fetch_java_version()
Details

this function was adapted from the CRAN package sparklyr

Value

character vector containing the output of 'java -version'

filterActiveSnws

Parse Active Subnetwork Search Output File and Filter the Subnetworks

Description

Parse Active Subnetwork Search Output File and Filter the Subnetworks

Usage

```r
filterActiveSnws(
  active_snw_path,
  sig_genes_vec,
  score_quan_thr = 0.8,
  sig_gene_thr = 0.02
)
```

Arguments

- `active_snw_path`: path to the output of an Active Subnetwork Search
- `sig_genes_vec`: vector of significant gene symbols. In the scope of this package, these are the input genes that were used for active subnetwork search
- `score_quan_thr`: active subnetwork score quantile threshold. Must be between 0 and 1 or set to -1 for not filtering. (Default = 0.8)
- `sig_gene_thr`: threshold for the minimum proportion of significant genes in the subnetwork (Default = 0.02) If the number of genes to use as threshold is calculated to be < 2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2

Value

A list containing subnetworks: a list of of genes in every active subnetwork that has a score greater than the `score_quan_thr` quantile and that contains at least `sig_gene_thr` of significant genes and scores the score of each filtered active subnetwork

See Also

See `run_pathfindR` for the wrapper function of the pathfindR enrichment workflow
Examples

```r
path2snw_list <- system.file(
  'extdata/resultActiveSubnetworkSearch.txt',
  package = 'pathfindR'
)
filtered <- filterActiveSnws(
  active_snw_path = path2snw_list,
  sig_genes_vec = example_pathfindR_input$Gene.symbol
)
```

fuzzy_term_clustering

Heuristic Fuzzy Multiple-linkage Partitioning of Enriched Terms

Description

Heuristic Fuzzy Multiple-linkage Partitioning of Enriched Terms

Usage

```r
fuzzy_term_clustering(
  kappa_mat,
  enrichment_res,
  kappa_threshold = 0.35,
  use_description = FALSE
)
```

Arguments

- `kappa_mat`: matrix of kappa statistics (output of `create_kappa_matrix`)
- `enrichment_res`: data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if `use_description = TRUE`) or 'ID' (if `use_description = FALSE`), 'Down_regulated', and 'Up_regulated'. If `use_active_snw_genes = TRUE`, 'non_Signif_Snw_Genes' must also be provided.
- `kappa_threshold`: threshold for kappa statistics, defining strong relation (default = 0.35)
- `use_description`: Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

Details

get_biogrid_pin

Value

a boolean matrix of cluster assignments. Each row corresponds to an enriched term, each column corresponds to a cluster.

Examples

```r
## Not run:
fuzzy_term_clustering(kappa_mat, enrichment_res)
fuzzy_term_clustering(kappa_mat, enrichment_res, kappa_threshold = 0.45)
## End(Not run)
```

get_biogrid_pin

Retrieve the Requested Release of Organism-specific BioGRID PIN

Description

Retrieve the Requested Release of Organism-specific BioGRID PIN

Usage

get_biogrid_pin(org = "Homo_sapiens", path2pin, release = "4.4.224")

Arguments

org organism name. BioGRID naming requires underscores for spaces so 'Homo sapiens' becomes 'Homo_sapiens', 'Mus musculus' becomes 'Mus_musculus' etc. See https://wiki.thebiogrid.org/doku.php/statistics for a full list of available organisms (default = 'Homo_sapiens')

path2pin the path of the file to save the PIN data. By default, the PIN data is saved in a temporary file

release the requested BioGRID release (default = '4.4.224')

Value

the path of the file in which the PIN data was saved. If path2pin was not supplied by the user, the PIN data is saved in a temporary file
get_gene_sets_list Retrieve Organism-specific Gene Sets List

Description

Retrieve Organism-specific Gene Sets List

Usage

get_gene_sets_list(
 source = "KEGG",
 org_code = "hsa",
 species = "Homo sapiens",
 collection,
 subcollection = NULL
)

Arguments

source As of this version, either 'KEGG', 'Reactome' or 'MSigDB' (default = 'KEGG')
org_code (Used for 'KEGG' only) KEGG organism code for the selected organism. For a full list of all available organisms, see https://www.genome.jp/kegg/catalog/org_list.html
species (Used for 'MSigDB' only) species name, such as Homo sapiens, Mus musculus, etc. See msigdb_show_species for all the species available in the msigdb package (default = 'Homo sapiens')
collection (Used for 'MSigDB' only) collection. i.e., H, C1, C2, C3, C4, C5, C6, C7.
subcollection (Used for 'MSigDB' only) sub-collection, such as CGP, MIR, BP, etc. (default = NULL, i.e. list all gene sets in collection)

Value

A list containing 2 elements:

- gene_setsA list containing the genes involved in each gene set
- descriptionsA named vector containing the descriptions for each gene set

For 'KEGG' and 'MSigDB', it is possible to choose a specific organism. For a full list of all available KEGG organisms, see https://www.genome.jp/kegg/catalog/org_list.html. See msigdb_show_species for all the species available in the msigdb package used for obtaining 'MSigDB' gene sets. For Reactome, there is only one collection of pathway gene sets.
get_kegg_gsets

Retrieve Organism-specific KEGG Pathway Gene Sets

Description
Retrieve Organism-specific KEGG Pathway Gene Sets

Usage
get_kegg_gsets(org_code = "hsa")

Arguments
org_code
KEGG organism code for the selected organism. For a full list of all available organisms, see https://www.genome.jp/kegg/catalog/org_list.html

Value
list containing 2 elements:
- gene_sets A list containing the genes involved in each KEGG pathway
- descriptions A named vector containing the descriptions for each KEGG pathway

get_mgsigdb_gsets

Retrieve Organism-specific MSigDB Gene Sets

Description
Retrieve Organism-specific MSigDB Gene Sets

Usage
get_mgsigdb_gsets(species = "Homo sapiens", collection, subcollection = NULL)

Arguments
species
species name, such as Homo sapiens, Mus musculus, etc. See msigdb_show_species for all the species available in the msigdb package

collection
collection. i.e., H, C1, C2, C3, C4, C5, C6, C7.

subcollection
sub-collection, such as CGP, BP, etc. (default = NULL, i.e. list all gene sets in collection)
Details

Value

Retrieves the MSigDB gene sets and returns a list containing 2 elements:

- gene_setsA list containing the genes involved in each of the selected MSigDB gene sets
- descriptionsA named vector containing the descriptions for each selected MSigDB gene set

get_pin_file

Retrieve Organism-specific PIN data

Description

Retrieve Organism-specific PIN data

Usage

```r
get_pin_file(source = "BioGRID", org = "Homo_sapiens", path2pin, ...)
```

Arguments

- `source` As of this version, this function is implemented to get data from 'BioGRID' only. This argument (and this wrapper function) was implemented for future utility
- `org` organism name. BioGRID naming requires underscores for spaces so 'Homo sapiens' becomes 'Homo_sapiens', 'Mus musculus' becomes 'Mus_musculus' etc. See https://wiki.thebiogrid.org/doku.php/statistics for a full list of available organisms (default = 'Homo_sapiens')
- `path2pin` the path of the file to save the PIN data. By default, the PIN data is saved in a temporary file
- `...` additional arguments for `get_biogrid_pin`

Value

the path of the file in which the PIN data was saved. If `path2pin` was not supplied by the user, the PIN data is saved in a temporary file
get.reactome.gsets Retrieve Reactome Pathway Gene Sets

Description
Retrieve Reactome Pathway Gene Sets

Usage
get.reactome.gsets()

Value
Gets the latest Reactome pathways gene sets in gmt format. Parses the gmt file and returns a list containing 2 elements:

- gene_sets: A list containing the genes involved in each Reactome pathway
- descriptions: A named vector containing the descriptions for each Reactome pathway

gset.list.from.gmt Retrieve Gene Sets from GMT-format File

Description
Retrieve Gene Sets from GMT-format File

Usage
gset.list.from.gmt(path2gmt, descriptions_idx = 2)

Arguments

- path2gmt: path to the gmt file
- descriptions_idx: index for descriptions (default = 2)

Value
list containing 2 elements:

- gene_sets: A list containing the genes involved in each gene set
- descriptions: A named vector containing the descriptions for each gene set
hierarchical_term_clustering

Hierarchical Clustering of Enriched Terms

Description

Hierarchical Clustering of Enriched Terms

Usage

hierarchical_term_clustering(
 kappa_mat, # matrix of kappa statistics (output of create_kappa_matrix)
 enrichment_res, # data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if use_description = TRUE) or 'ID' (if use_description = FALSE), 'Down_regulated', and 'Up_regulated'. If use_active_snw_genes = TRUE, 'non_Signif_Snw_Genes' must also be provided.
 num_clusters = NULL, # number of clusters to be formed (default = NULL). If NULL, the optimal number of clusters is determined as the number which yields the highest average silhouette width.
 use_description = FALSE, # Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)
 clu_method = "average", # the agglomeration method to be used (default = 'average', see hclust)
 plot_hmap = FALSE, # boolean to indicate whether to plot the kappa statistics clustering heatmap or not (default = FALSE)
 plot_dend = TRUE # boolean to indicate whether to plot the clustering dendrogram partitioned into the optimal number of clusters (default = TRUE)
)

Arguments

kappa_mat # matrix of kappa statistics (output of create_kappa_matrix)
enrichment_res # data frame of pathfindR enrichment results. Must-have columns are 'Term_Description' (if use_description = TRUE) or 'ID' (if use_description = FALSE), 'Down_regulated', and 'Up_regulated'. If use_active_snw_genes = TRUE, 'non_Signif_Snw_Genes' must also be provided.
num_clusters # number of clusters to be formed (default = NULL). If NULL, the optimal number of clusters is determined as the number which yields the highest average silhouette width.
use_description # Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)
clu_method # the agglomeration method to be used (default = 'average', see hclust)
plot_hmap # boolean to indicate whether to plot the kappa statistics clustering heatmap or not (default = FALSE)
plot_dend # boolean to indicate whether to plot the clustering dendrogram partitioned into the optimal number of clusters (default = TRUE)

Details

The function initially performs hierarchical clustering of the enriched terms in enrichment_res using the kappa statistics (defining the distance as 1 - kappa_statistic). Next, the clustering dendrogram is cut into k = 2, 3, ..., n - 1 clusters (where n is the number of terms). The optimal number of clusters is determined as the k value which yields the highest average silhouette width. (if num_clusters not specified)
Value

a vector of clusters for each enriched term in the enrichment results.

Examples

Not run:

hierarchical_term_clustering(kappa_mat, enrichment_res)

hierarchical_term_clustering(kappa_mat, enrichment_res, method = 'complete')

End(Not run)

hyperg_test

Hypergeometric Distribution-based Hypothesis Testing

Description

Hypergeometric Distribution-based Hypothesis Testing

Usage

`hyperg_test(term_genes, chosen_genes, background_genes)`

Arguments

- `term_genes`: vector of genes in the selected term gene set
- `chosen_genes`: vector containing the set of input genes
- `background_genes`: vector of background genes (i.e. universal set of genes in the experiment)

Details

To determine whether the `chosen_genes` are enriched (compared to a background pool of genes) in the `term_genes`, the hypergeometric distribution is assumed and the appropriate p value (the value under the right tail) is calculated and returned.

Value

the p-value as determined using the hypergeometric distribution.

Examples

`hyperg_test(letters[1:5], letters[2:5], letters)`

`hyperg_test(letters[1:5], letters[2:10], letters)`

`hyperg_test(letters[1:5], letters[2:13], letters)`
input_processing Process Input

Description
Process Input

Usage
input_processing(input, p_val_threshold = 0.05, pin_name_path = "Biogrid", convert2alias = TRUE)

Arguments
input the input data that pathfindR uses. The input must be a data frame with three columns:
1. Gene Symbol (Gene Symbol)
2. Change value, e.g. log(fold change) (OPTIONAL)
3. p value, e.g. adjusted p value associated with differential expression
p_val_threshold the p value threshold to use when filtering the input data frame. Must a numeric value between 0 and 1. (default = 0.05)
pin_name_path Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')
convert2alias boolean to indicate whether or not to convert gene symbols in the input that are not found in the PIN to an alias symbol found in the PIN (default = TRUE)

IMPORTANT NOTE: the conversion uses human gene symbols/alias symbols.

Value
This function first filters the input so that all p values are less than or equal to the threshold. Next, gene symbols that are not found in the PIN are identified. If aliases of these gene symbols are found in the PIN, the symbols are converted to the corresponding aliases. The resulting data frame containing the original gene symbols, the updated symbols, change values and p values is then returned.

See Also
See run_pathfindR for the wrapper function of the pathfindR workflow
input_testing

Description

Input Testing

Usage

```r
input_testing(input, p_val_threshold = 0.05)
```

Arguments

- `input`: the input data that pathfindR uses. The input must be a data frame with three columns:
 1. Gene Symbol (Gene Symbol)
 2. Change value, e.g. log(fold change) (OPTIONAL)
 3. p value, e.g. adjusted p value associated with differential expression

- `p_val_threshold`: the p value threshold to use when filtering the input data frame. Must a numeric value between 0 and 1. (default = 0.05)

Value

Only checks if the input and the threshold follows the required specifications.

See Also

See `run_pathfindR` for the wrapper function of the pathfindR workflow

Examples

```r
input_testing(example_pathfindR_input, 0.05)
```
obtain_colored_url

Obtain URL for a KEGG pathway diagram with a given set of genes marked

Description

Obtain URL for a KEGG pathway diagram with a given set of genes marked

Usage

obtain_colored_url(pw_id, KEGG_gene_ids, fg_cols, bg_cols)

Arguments

- pw_id: KEGG pathway ID
- KEGG_gene_ids: KEGG gene IDs for marking
- fg_cols: colors for the text and border
- bg_cols: background colors of the objects in a pathway diagram.

Value

URL for colored KEGG pathway diagram

pathfindR

pathfindR: A package for Enrichment Analysis Utilizing Active Sub-networks

Description

pathfindR is a tool for active-subnetwork-oriented gene set enrichment analysis. The main aim of the package is to identify active subnetworks in a protein-protein interaction network using a user-provided list of genes and associated p values then performing enrichment analyses on the identified subnetworks, discovering enriched terms (i.e. pathways, gene ontology, TF target gene sets etc.) that possibly underlie the phenotype of interest.

Details

For analysis on non-Homo sapiens organisms, pathfindR offers utility functions for obtaining organism-specific PIN data and organism-specific gene sets data.

pathfindR also offers functionalities to cluster the enriched terms and identify representative terms in each cluster, to score the enriched terms per sample and to visualize analysis results.
Author(s)

Maintainer: Ege Ulgen <egeulgen@gmail.com> (ORCID) [copyright holder]
Authors:

• Ozan Ozisik <ozanytu@gmail.com> (ORCID)

See Also

See run_pathfindR for details on the pathfindR active-subnetwork-oriented enrichment analysis
See cluster_enriched_terms for details on methods of enriched terms clustering to define clusters of biologically-related terms See score_terms for details on agglomerated score calculation for enriched terms to investigate how a gene set is altered in a given sample (or in cases vs. controls)
See term_gene_heatmap for details on visualization of the heatmap of enriched terms by involved genes See term_gene_graph for details on visualizing terms and term-related genes as a graph to determine the degree of overlap between the enriched terms by identifying shared and/or distinct significant genes See UpSet_plot for details on creating an UpSet plot of the enriched terms. See get_pin_file for obtaining organism-specific PIN data and get_gene_sets_list for obtaining organism-specific gene sets data

plot_scores (Plot the Heatmap of Score Matrix of Enriched Terms per Sample)

Description

Plot the Heatmap of Score Matrix of Enriched Terms per Sample

Usage

plot_scores(
 score_matrix,
 cases = NULL,
 label_samples = TRUE,
 case_title = "Case",
 control_title = "Control",
 low = "green",
 mid = "black",
 high = "red"
)

Arguments

score_matrix Matrix of agglomerated enriched term scores per sample. Columns are samples, rows are enriched terms
cases (Optional) A vector of sample names that are cases in the case/control experiment. (default = NULL)
label_samples Boolean value to indicate whether or not to label the samples in the heatmap plot (default = TRUE)
case_title Naming of the 'Case' group (as in cases) (default = 'Case')
control_title Naming of the 'Control' group (default = 'Control')
low a string indicating the color of 'low' values in the coloring gradient (default = 'green')
mid a string indicating the color of 'mid' values in the coloring gradient (default = 'black')
high a string indicating the color of 'high' values in the coloring gradient (default = 'red')

Value
A ‘ggplot2’ object containing the heatmap plot. x-axis indicates the samples. y-axis indicates the enriched terms. 'Score' indicates the score of the term in a given sample. If cases are provided, the plot is divided into 2 facets, named by case_title and control_title.

Examples
score_matrix <- score_terms(
 example_pathfindR_output,
 example_experiment_matrix,
 plot_hmap = FALSE
)
hmap <- plot_scores(score_matrix)

process_pin

Process Data frame of Protein-protein Interactions

Description
Process Data frame of Protein-protein Interactions

Usage
process_pin(pin_df)

Arguments
pin_df data frame of protein-protein interactions with 2 columns: 'Interactor_A' and 'Interactor_B'

Value
processed PIN data frame (removes self-interactions and duplicated interactions)
Return PIN Path

Return the Path to Given Protein-Protein Interaction Network (PIN)

Description

This function returns the absolute path to PIN.sif. While the default PINs are 'Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG' and 'mmu_STRING'. The user can also use any other PIN by specifying the 'path/to/PIN.sif'. All PINs to be used in this package must formatted as SIF files: i.e. have 3 columns with no header, no row names and be tab-separated. Columns 1 and 3 must be interactors' gene symbols, column 2 must be a column with all rows consisting of 'pp'.

Usage

```r
return_pin_path(pin_name_path = "Biogrid")
```

Arguments

- **pin_name_path**: Name of the chosen PIN or absolute path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

Value

The absolute path to chosen PIN.

See Also

See `run_pathfindR` for the wrapper function of the pathfindR workflow

Examples

```r
## Not run:
pin_path <- return_pin_path("GeneMania")
## End(Not run)
```

Run PathfindR

Wrapper Function for pathfindR - Active-Subnetwork-Oriented Enrichment Workflow

Description

run_pathfindR is the wrapper function for the pathfindR workflow
run_pathfindR

Usage

run_pathfindR(
 input,
 gene_sets = "KEGG",
 min_gset_size = 10,
 max_gset_size = 300,
 custom_genes = NULL,
 custom_descriptions = NULL,
 pin_name_path = "Biogrid",
 p_val_threshold = 0.05,
 enrichment_threshold = 0.05,
 convert2alias = TRUE,
 plot_enrichment_chart = TRUE,
 output_dir = NULL,
 list_active_snw_genes = FALSE,
 ...
)

Arguments

input the input data that pathfindR uses. The input must be a data frame with three columns:
1. Gene Symbol (Gene Symbol)
2. Change value, e.g. log(fold change) (OPTIONAL)
3. p value, e.g. adjusted p value associated with differential expression

gene_sets Name of the gene sets to be used for enrichment analysis. Available gene sets are 'KEGG', 'Reactome', 'BioCarta', 'GO-All', 'GO-BP', 'GO-CC', 'GO-MF', 'cell_markers', 'mmu_KEGG' or 'Custom'. If 'Custom', the arguments custom_genes and custom_descriptions must be specified. (Default = 'KEGG')

min_gset_size minimum number of genes a term must contain (default = 10)

max_gset_size maximum number of genes a term must contain (default = 300)

custom_genes a list containing the genes involved in each custom term. Each element is a vector of gene symbols located in the given custom term. Names should correspond to the IDs of the custom terms.

custom_descriptions A vector containing the descriptions for each custom term. Names of the vector should correspond to the IDs of the custom terms.

pin_name_path Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

p_val_threshold the p value threshold to use when filtering the input data frame. Must a numeric value between 0 and 1. (default = 0.05)

enrichment_threshold adjusted-p value threshold used when filtering enrichment results (default = 0.05)
convert2alias boolean to indicate whether or not to convert gene symbols in the input that are not found in the PIN to an alias symbol found in the PIN (default = TRUE)

IMPORTANT NOTE: the conversion uses human gene symbols/alias symbols.

plot_enrichment_chart boolean value. If TRUE, a bubble chart displaying the enrichment results is plotted. (default = TRUE)

output_dir the directory to be created where the output and intermediate files are saved (default = NULL, a temporary directory is used)

list_active_snw_genes boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = FALSE)

Details

This function takes in a data frame consisting of Gene Symbol, log-fold-change and adjusted-p values. After input testing, any gene symbols that are not in the PIN are converted to alias symbols if the alias is in the PIN. Next, active subnetwork search is performed. Enrichment analysis is performed using the genes in each of the active subnetworks. Terms with adjusted-p values lower than enrichment_threshold are discarded. The lowest adjusted-p value (over all subnetworks) for each term is kept. This process of active subnetwork search and enrichment is repeated for a selected number of iterations, which is done in parallel. Over all iterations, the lowest and the highest adjusted-p values, as well as number of occurrences are reported for each enriched term.

Value

Data frame of pathfindR enrichment results. Columns are:

ID ID of the enriched term

Term_Description Description of the enriched term

Fold_Enrichment Fold enrichment value for the enriched term (Calculated using ONLY the input genes)

occurrence the number of iterations that the given term was found to enriched over all iterations

support the median support (proportion of active subnetworks leading to enrichment within an iteration) over all iterations

lowest_p the lowest adjusted-p value of the given term over all iterations

highest_p the highest adjusted-p value of the given term over all iterations

non_Signif_Snw_Genes (OPTIONAL) the non-significant active subnetwork genes, comma-separated

Up_regulated the up-regulated genes (as determined by ‘change value’ > 0, if the ‘change column’ was provided) in the input involved in the given term’s gene set, comma-separated. If change column not provided, all affected are listed here.

Down_regulated the down-regulated genes (as determined by ‘change value’ < 0, if the ‘change column’ was provided) in the input involved in the given term’s gene set, comma-separated
The function also creates an HTML report with the pathfindR enrichment results linked to the visualizations of the enriched terms in addition to the table of converted gene symbols. This report can be found in `output_dir/results.html` under the current working directory.

By default, a bubble chart of top 10 enrichment results are plotted. The x-axis corresponds to fold enrichment values while the y-axis indicates the enriched terms. Sizes of the bubbles indicate the number of significant genes in the given terms. Color indicates the $-\log_{10}(\text{lowest-p})$ value; the more red it is, the more significant the enriched term is. See `enrichment_chart`.

Warning

Especially depending on the protein interaction network, the algorithm and the number of iterations you choose, `active subnetwork search + enrichment` component of `run_pathfindR` may take a long time to finish.

See Also

`input_testing` for input testing, `input_processing` for input processing, `active_snw_search` for active subnetwork search and subnetwork filtering, `enrichment_analyses` for enrichment analysis (using the active subnetworks), `summarize_enrichment_results` for summarizing the active subnetwork-oriented enrichment results, `annotate_term_genes` for annotation of affected genes in the given gene sets, `visualize_terms` for visualization of enriched terms, `enrichment_chart` for a visual summary of the pathfindR enrichment results, `foreach` for details on parallel execution of looping constructs, `cluster_enriched_terms` for clustering the resulting enriched terms and partitioning into clusters.

Examples

```r
## Not run:
run_pathfindR(example_pathfindR_input)
## End(Not run)
```

score_terms

Calculate Agglomerated Scores of Enriched Terms for Each Subject

Description

Calculate Agglomerated Scores of Enriched Terms for Each Subject

Usage

```r
score_terms(
  enrichment_table,  # (required) character vector of enriched term names
  exp_mat,            # (required) matrix of expression values
  cases = NULL,      # (optional) character vector of case labels
  use_description = FALSE,  # (optional) logical; use term descriptions in score
  plot_hmap = TRUE,  # (optional) logical; plot heatmap
  ...                # (optional) additional arguments
)
```
Arguments

enrichment_table

a data frame that must contain the 3 columns below:

Term_Description Description of the enriched term (necessary if use_description = TRUE)

ID ID of the enriched term (necessary if use_description = FALSE)

Up_regulated the up-regulated genes in the input involved in the given term’s gene set, comma-separated

Down_regulated the down-regulated genes in the input involved in the given term’s gene set, comma-separated

exp_mat the experiment (e.g., gene expression/methylation) matrix. Columns are samples and rows are genes. Column names must contain sample names and row names must contain the gene symbols.

cases (Optional) A vector of sample names that are cases in the case/control experiment. (default = NULL)

use_description Boolean argument to indicate whether term descriptions (in the ‘Term_Description’ column) should be used. (default = FALSE)

plot_hmap Boolean value to indicate whether or not to draw the heatmap plot of the scores. (default = TRUE)

... Additional arguments for plot_scores for aesthetics of the heatmap plot

Value

Matrix of agglomerated scores of each enriched term per sample. Columns are samples, rows are enriched terms. Optionally, displays a heatmap of this matrix.

Conceptual Background

For an experiment matrix (containing expression, methylation, etc. values), the rows of which are genes and the columns of which are samples, we denote:

• E as a matrix of size \(m \times n \)

• G as the set of all genes in the experiment \(G = E_i \), \(i \in [1, m] \)

• S as the set of all samples in the experiment \(S = E_j, j \in [1, n] \)

We next define the gene score matrix \(GS \) (the standardized experiment matrix, also of size \(m \times n \)) as:

\[GS_{gs} = \frac{E_{gs} - \bar{e}_g}{\hat{s}_g} \]

where \(g \in G, s \in S, \bar{e}_g \) is the mean of all values for gene \(g \) and \(\hat{s}_g \) is the standard deviation of all values for gene \(g \).

We next denote \(T \) to be a set of terms (where each \(t \in T \) is a set of term-related genes, i.e., \(t = \{g_1, \ldots, g_y\} \subset G \) and finally define the agglomerated term scores matrix \(TS \) (where rows correspond to genes and columns corresponds to samples s.t. the matrix has size \(|T| \times n\)) as:

\[TS_{ts} = \frac{1}{|T|} \sum_{g \in t} GS_{gs}, \text{ where } t \in T \text{ and } s \in S. \]
single_iter_wrapper

Examples

```r
score_matrix <- score_terms(
  example_pathfindR_output,
  example_experiment_matrix,
  plot_hmap = FALSE
)
```

Description

Active Subnetwork Search + Enrichment Analysis Wrapper for a Single Iteration

Usage

```r
single_iter_wrapper(  
  i = NULL,
  dirs,
  input_processed,
  pin_path,
  score_quan_thr,
  sig_gene_thr,
  search_method,
  silent_option,
  use_all_positives,
  geneInitProbs,
  saTemp0,
  saTemp1,
  saIter,
  gaPop,
  gaIter,
  gaThread,
  gaCrossover,
  gaMut,
  grMaxDepth,
  grSearchDepth,
  grOverlap,
  grSubNum,
  gset_list,
  adj_method,
  enrichment_threshold,
  list_active_snw_genes
)
```
Arguments

- **i**: current iteration index (default = NULL)
- **dirs**: vector of directories for parallel runs
- **input_processed**: processed input data frame
- **pin_path**: path/to/PIN/file
- **score_quan_thr**: active subnetwork score quantile threshold. Must be between 0 and 1 or set to -1 for not filtering. (Default = 0.8)
- **sig_gene_thr**: threshold for the minimum proportion of significant genes in the subnetwork (Default = 0.02) If the number of genes to use as threshold is calculated to be < 2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2
- **search_method**: algorithm to use when performing active subnetwork search. Options are greedy search (GR), simulated annealing (SA) or genetic algorithm (GA) for the search (default = 'GR').
- **silent_option**: boolean value indicating whether to print the messages to the console (FALSE) or not (TRUE, this will print to a temp. file) during active subnetwork search (default = TRUE). This option was added because during parallel runs, the console messages get disorderly printed.
- **use_all_positives**: if TRUE: in GA, adds an individual with all positive nodes. In SA, initializes candidate solution with all positive nodes. (default = FALSE)
- **geneInitProbs**: For SA and GA, probability of adding a gene in initial solution (default = 0.1)
- **saTemp0**: Initial temperature for SA (default = 1.0)
- **saTemp1**: Final temperature for SA (default = 0.01)
- **saIter**: Iteration number for SA (default = 10000)
- **gaPop**: Population size for GA (default = 400)
- **gaIter**: Iteration number for GA (default = 200)
- **gaThread**: Number of threads to be used in GA (default = 5)
- **gaCrossover**: Applies crossover with the given probability in GA (default = 1, i.e. always perform crossover)
- **gaMut**: For GA, applies mutation with given mutation rate (default = 0, i.e. mutation off)
- **grMaxDepth**: Sets max depth in greedy search, 0 for no limit (default = 1)
- **grSearchDepth**: Search depth in greedy search (default = 1)
- **grOverlap**: Overlap threshold for results of greedy search (default = 0.5)
- **grSubNum**: Number of subnetworks to be presented in the results (default = 1000)
- **gset_list**: list for gene sets
- **adj_method**: correction method to be used for adjusting p-values. (default = 'bonferroni')
- **enrichment_threshold**: adjusted-p value threshold used when filtering enrichment results (default = 0.05)
`summarize_enrichment_results`

Summarize Enrichment Results

Usage

```r
summarize_enrichment_results(enrichment_res, list_active_snw_genes = FALSE)
```

Arguments

- `enrichment_res`: a dataframe of combined enrichment results. Columns are:
 - **ID**: ID of the enriched term
 - **Term_Description**: Description of the enriched term
 - **Fold_Enrichment**: Fold enrichment value for the enriched term
 - **p_value**: p value of enrichment
 - **adj_p**: adjusted p value of enrichment
 - **non_Signif_Snw_Genes (OPTIONAL)**: the non-significant active subnetwork genes, comma-separated

- `list_active_snw_genes`: boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = `FALSE`)

Value

a dataframe of summarized enrichment results (over multiple iterations). Columns are:

- **ID**: ID of the enriched term
- **Term_Description**: Description of the enriched term
- **Fold_Enrichment**: Fold enrichment value for the enriched term
- **occurrence**: the number of iterations that the given term was found to enriched over all iterations
- **support**: the median support (proportion of active subnetworks leading to enrichment within an iteration) over all iterations

Description

Summarize Enrichment Results

Usage

`summarize_enrichment_results(enrichment_res, list_active_snw_genes = FALSE)`

Arguments

- `enrichment_res`: a dataframe of combined enrichment results. Columns are:
 - **ID**: ID of the enriched term
 - **Term_Description**: Description of the enriched term
 - **Fold_Enrichment**: Fold enrichment value for the enriched term
 - **p_value**: p value of enrichment
 - **adj_p**: adjusted p value of enrichment
 - **non_Signif_Snw_Genes (OPTIONAL)**: the non-significant active subnetwork genes, comma-separated

- `list_active_snw_genes`: boolean value indicating whether or not to report the non-significant active subnetwork genes for the active subnetwork which was enriched for the given term with the lowest p value (default = `FALSE`)

Value

a dataframe of summarized enrichment results (over multiple iterations). Columns are:

- **ID**: ID of the enriched term
- **Term_Description**: Description of the enriched term
- **Fold_Enrichment**: Fold enrichment value for the enriched term
- **occurrence**: the number of iterations that the given term was found to enriched over all iterations
- **support**: the median support (proportion of active subnetworks leading to enrichment within an iteration) over all iterations
term_gene_graph

Summary

Create Term-Gene Graph

Description

Create Term-Gene Graph

Usage

```r
term_gene_graph(
  result_df,
  num_terms = 10,
  layout = "stress",
  use_description = FALSE,
  node_size = "num_genes"
)
```

Arguments

- **result_df**: A dataframe of pathfindR results that must contain the following columns:
 - **Term_Description**: Description of the enriched term (necessary if use_description = TRUE)
 - **ID**: ID of the enriched term (necessary if use_description = FALSE)
 - **lowest_p**: the lowest adjusted-p value of the given term over all iterations
 - **Up_regulated**: the up-regulated genes in the input involved in the given term’s gene set, comma-separated
 - **Down_regulated**: the down-regulated genes in the input involved in the given term’s gene set, comma-separated
 - **non_Signif_Snw_Genes**: the non-significant active subnetwork genes, comma-separated

- **num_terms**: Number of top enriched terms to use while creating the graph. Set to NULL to use all enriched terms (default = 10, i.e. top 10 terms)

- **layout**: The type of layout to create (see `ggraph` for details. Default = ’stress’)

- **use_description**: Boolean argument to indicate whether term descriptions (in the ’Term_Description’ column) should be used. (default = FALSE)

- **node_size**: Argument to indicate whether to use number of significant genes (’num_genes’) or the -log10(lowest p value) (’p_val’) for adjusting the node sizes (default = ’num_genes’)

Examples

```r
## Not run:
summarize_enrichment_results(enrichment_res)
## End(Not run)
```
Details

This function (adapted from the Gene-Concept network visualization by the R package enrichplot) can be utilized to visualize which input genes are involved in the enriched terms as a graph. The term-gene graph shows the links between genes and biological terms and allows for the investigation of multiple terms to which significant genes are related. The graph also enables determination of the overlap between the enriched terms by identifying shared and distinct significant term-related genes.

Value

a ggraph object containing the term-gene graph. Each node corresponds to an enriched term (beige), an up-regulated gene (green) or a down-regulated gene (red). An edge between a term and a gene indicates that the given term involves the gene. Size of a term node is proportional to either the number of genes (if node_size = 'num_genes') or the -log10(lowest p value) (if node_size = 'p_val').

Examples

p <- term_gene_graph(example_pathfindR_output)
p <- term_gene_graph(example_pathfindR_output, num_terms = 5)
p <- term_gene_graph(example_pathfindR_output, node_size = 'p_val')

Description

Create Terms by Genes Heatmap

Usage

term_gene_heatmap(
 result_df,
 genes_df,
 num_terms = 10,
 use_description = FALSE,
 low = "red",
 mid = "black",
 high = "green",
 legend_title = "change",
 sort_terms_by_p = FALSE,
 ...
)
Arguments

- **result_df**
 - A dataframe of pathfindR results that must contain the following columns:
 - **Term_Description** Description of the enriched term (necessary if `use_description = TRUE`
 - **ID** ID of the enriched term (necessary if `use_description = FALSE`
 - **lowest_p** the highest adjusted-p value of the given term over all iterations
 - **Up_regulated** the up-regulated genes in the input involved in the given term’s gene set, comma-separated
 - **Down_regulated** the down-regulated genes in the input involved in the given term’s gene set, comma-separated

- **genes_df**
 - the input data that was used with `run_pathfindR`. It must be a data frame with 3 columns:
 - Gene Symbol (Gene Symbol)
 - Change value, e.g. log(fold change) (optional)
 - p value, e.g. adjusted p value associated with differential expression
 - The change values in this data frame are used to color the affected genes

- **num_terms**
 - Number of top enriched terms to use while creating the plot. Set to NULL to use all enriched terms (default = 10)

- **use_description**
 - Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)

- **low**
 - a string indicating the color of 'low' values in the coloring gradient (default = 'green')

- **mid**
 - a string indicating the color of 'mid' values in the coloring gradient (default = 'black')

- **high**
 - a string indicating the color of 'high' values in the coloring gradient (default = 'red')

- **legend_title**
 - legend title (default = 'change')

- **sort_terms_by_p**
 - boolean to indicate whether to sort terms by 'lowest_p' (TRUE) or by number of genes (FALSE) (default = FALSE)

- **...**
 - additional arguments for `input_processing` (used if `genes_df` is provided)

Value

- a ggplot2 object of a heatmap where rows are enriched terms and columns are involved input genes. If `genes_df` is provided, colors of the tiles indicate the change values.

Examples

```r
term_gene_heatmap(example_pathfindR_output, num_terms = 3)
```
Create UpSet Plot of Enriched Terms

Description
Create UpSet Plot of Enriched Terms

Usage
UpSet_plot(
 result_df,
 genes_df,
 num_terms = 10,
 method = "heatmap",
 use_description = FALSE,
 low = "red",
 mid = "black",
 high = "green",
 ...)

Arguments

result_df A dataframe of pathfindR results that must contain the following columns:
 Term_Description Description of the enriched term (necessary if use_description = TRUE)
 ID ID of the enriched term (necessary if use_description = FALSE)
 lowest_p the highest adjusted-p value of the given term over all iterations
 Up_regulated the up-regulated genes in the input involved in the given term’s gene set, comma-separated
 Down_regulated the down-regulated genes in the input involved in the given term’s gene set, comma-separated

genes_df the input data that was used with run_pathfindR. It must be a data frame with 3 columns:
 1. Gene Symbol (Gene Symbol)
 2. Change value, e.g. log(fold change) (optional)
 3. p value, e.g. adjusted p value associated with differential expression

The change values in this data frame are used to color the affected genes

num_terms Number of top enriched terms to use while creating the plot. Set to NULL to use all enriched terms (default = 10)

method the option for producing the plot. Options include 'heatmap', 'boxplot' and 'baplot'. (default = 'heatmap')

use_description Boolean argument to indicate whether term descriptions (in the 'Term_Description' column) should be used. (default = FALSE)
visualize_active_subnetworks

low a string indicating the color of 'low' values in the coloring gradient (default = 'green')

mid a string indicating the color of 'mid' values in the coloring gradient (default = 'black')

high a string indicating the color of 'high' values in the coloring gradient (default = 'red')

... additional arguments for input_processing (used if genes_df is provided)

Value
UpSet plots are plots of the intersections of sets as a matrix. This function creates a ggplot object of an UpSet plot where the x-axis is the UpSet plot of intersections of enriched terms. By default (i.e. method = 'heatmap') the main plot is a heatmap of genes at the corresponding intersections, colored by up/down regulation (if genes_df is provided, colored by change values). If method = 'barplot', the main plot is bar plots of the number of genes at the corresponding intersections. Finally, if method = 'boxplot' and if genes_df is provided, then the main plot displays the boxplots of change values of the genes at the corresponding intersections.

Examples
UpSet_plot(example_pathfindR_output)

visualize_active_subnetworks

Visualize Active Subnetworks

Description
Visualize Active Subnetworks

Usage
visualize_active_subnetworks(
 active_snw_path,
 genes_df,
 pin_name_path = "Biogrid",
 num_snws,
 layout = "stress",
 score_quan_thr = 0.8,
 sig_gene_thr = 0.02,
 ...
)

Arguments

active_snw_path
path to the output of an Active Subnetwork Search

genes_df
the input data that was used with run_pathfindR. It must be a data frame with 3 columns:

1. Gene Symbol (Gene Symbol)
2. Change value, e.g. log(fold change) (optional)
3. p value, e.g. adjusted p value associated with differential expression

The change values in this data frame are used to color the affected genes

pin_name_path
Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

num_snws
number of top subnetworks to be visualized (leave blank if you want to visualize all subnetworks)

layout
The type of layout to create (see ggraph for details. Default = 'stress')

score_quan_thr
active subnetwork score quantile threshold. Must be between 0 and 1 or set to -1 for not filtering. (Default = 0.8)

sig_gene_thr
threshold for the minimum proportion of significant genes in the subnetwork (Default = 0.02) If the number of genes to use as threshold is calculated to be < 2 (e.g. 50 signif. genes x 0.01 = 0.5), the threshold number is set to 2

...
additional arguments for input_processing

Value

a list of ggplot objects of graph visualizations of identified active subnetworks. Green nodes are down-regulated genes, reds are up-regulated genes and yellows are non-input genes

Examples

path2snw_list <- system.file(
'extdata/resultActiveSubnetworkSearch.txt',
package = 'pathfindR'
)
visualize top 2 active subnetworks

visualize top 2 active subnetworks

g_list <- visualize_active_subnetworks(
active_snw_path = path2snw_list,
genesis_df = example_pathfindR_input[1:10,],
pin_name_path = 'KEGG',
num_snws = 2
)
visualize_hsa_KEGG

Visualize Human KEGG Pathways

Description
Visualize Human KEGG Pathways

Usage

visualize_hsa_KEGG(
 hsa_kegg_ids,
 input_processed,
 scale_vals = TRUE,
 node_cols = NULL,
 quiet = TRUE,
 key_gravity = "northeast",
 logo_gravity = "southeast"
)

Arguments

hsa_kegg_ids hsa KEGG ids of pathways to be colored and visualized
input_processed input data processed via input_processing
scale_vals should change values be scaled? (default = TRUE)
node_cols low, middle and high color values for coloring the pathway nodes (default = NULL). If node_cols=NULL, the low, middle and high color are set as 'green', 'gray' and 'red'. If all change values are 1e6 (in case no changes are supplied, this dummy value is assigned by input_processing), only one color ('#F38F18' if NULL) is used.
quiet If TRUE, suppress status messages (if any), and the progress bar while downloading file(s)
key_gravity gravity value (character) for the color key legend placement (see gravity_types)
logo_gravity gravity value (character) for the logo placement (see gravity_types)

Value
Creates colored visualizations of the enriched human KEGG pathways and saves them in the folder 'term_visualizations' under the current working directory.

See Also
See visualize_terms for the wrapper function for creating enriched term diagrams. See run_pathfindR for the wrapper function of the pathfindR enrichment workflow.
visualize_terms

Create Diagrams for Enriched Terms

Description

Create Diagrams for Enriched Terms

Usage

visualize_terms(
 result_df,
 input_processed = NULL,
 hsa_KEGG = TRUE,
 pin_name_path = "Biogrid",
 ...
)

Arguments

result_df Data frame of enrichment results. Must-have columns for KEGG human pathway diagrams (hsa_kegg = TRUE) are: 'ID' and 'Term_Description'. Must-have columns for the rest are: 'Term_Description', 'Up_regulated' and 'Down_regulated'

input_processed input data processed via input_processing, not necessary when hsa_KEGG = FALSE

hsa_KEGG boolean to indicate whether human KEGG gene sets were used for enrichment analysis or not (default = TRUE)

pin_name_path Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')

Details

For hsa_KEGG = TRUE, KEGG human pathway diagrams are created, affected nodes colored by up/down regulation status. For other gene sets, interactions of affected genes are determined (via a shortest-path algorithm) and are visualized (colored by change status) using igraph.
visualize_term_interactions

Value

Depending on the argument hsa_KEGG, creates visualization of interactions of genes involved in the list of enriched terms in result_df and saves them in the folder 'term_visualizations' under the current working directory.

See Also

See `visualize_hsa_KEGG` for the visualization function of human KEGG diagrams. See `visualize_term_interactions` for the visualization function that generates diagrams showing the interactions of input genes in the PIN. See `run_pathfindR` for the wrapper function of the pathfindR workflow.

Examples

```r
## Not run:
visualize_terms(result_df, input_processed)
visualize_terms(result_df, hsa_KEGG = FALSE, pin_name_path = 'IntAct')

## End(Not run)
```

visualize_term_interactions

Visualize Interactions of Genes Involved in the Given Enriched Terms

Description

Visualize Interactions of Genes Involved in the Given Enriched Terms

Usage

```r
visualize_term_interactions(result_df, pin_name_path, show_legend = TRUE)
```

Arguments

- `result_df`: Data frame of enrichment results. Must-have columns are: 'Term_Description', 'Up_regulated' and 'Down_regulated'
- `pin_name_path`: Name of the chosen PIN or absolute/path/to/PIN.sif. If PIN name, must be one of c('Biogrid', 'STRING', 'GeneMania', 'IntAct', 'KEGG', 'mmu_STRING'). If path/to/PIN.sif, the file must comply with the PIN specifications. (Default = 'Biogrid')
- `show_legend`: Boolean to indicate whether to display the legend (TRUE) or not (FALSE) (default: TRUE)
Details

The following steps are performed for the visualization of interactions of genes involved for each enriched term:

1. shortest paths between all affected genes are determined (via igraph)
2. the nodes of all shortest paths are merged
3. the PIN is subsetted using the merged nodes (genes)
4. using the PIN subset, the graph showing the interactions is generated
5. the final graph is visualized using igraph, colored by changed status (if provided), and is saved as a PNG file.

Value

Creates PNG files visualizing the interactions of genes involved in the given enriched terms (annotated in the result_df) in the PIN used for enrichment analysis (specified by pin_name_path). The PNG files are saved in the folder 'term_visualizations' under the current working directory.

See Also

See visualize_terms for the wrapper function for creating enriched term diagrams. See run_pathfindR for the wrapper function of the pathfindR enrichment workflow.

Examples

```r
## Not run:
visualize_term_interactions(result_df, pin_name_path = 'IntAct')

## End(Not run)
```
Index

active_snw_enrichment_wrapper, 3, 39
active_snw_search, 5, 40
annotate_term_genes, 7, 40
check_java_version, 8
cluster_enriched_terms, 9, 35, 40
cluster_graph_vis, 9, 10, 10
color_kegg_pathway, 11
combine_pathfindR_results, 13
combined_results_graph, 12
configure_output_dir, 15
create_HTML_report, 15
create_kappa_matrix, 10, 16, 24, 30
download_kegg_png, 17
download_KGML_file, 17
enrichment, 18, 20
enrichment_analyses, 18, 19, 40
enrichment_chart, 20, 40
fetch_gene_set, 21
fetch_java_version, 8, 22
filterActiveSnws, 23
foreach, 40
fuzzy_term_clustering, 9, 10, 24
get_biogrid_pin, 25, 28
gene_sets_list, 26, 35
gene_sets, 27
gene_sets, 27
gene_sets, 27
gene_sets, 29
get_pin_file, 28, 35
get_reactome_gsets, 29
get_gsets, 29
ggplot2, 21
ggraph, 13, 45, 46, 50
gravity_types, 51
gset_list_from_gmt, 29
hclust, 30
hierarchical_term_clustering, 9, 10, 30
hyperg_test, 18, 31
igraph, 54
input_processing, 8, 12, 32, 40, 47, 49–52
input_testing, 33, 40
msigdbr, 28
msigdbr_show_species, 26, 27
obtain_colored_url, 34
p.adjust, 18
pathfindR, 34
pathfindR-package (pathfindR), 34
plot_scores, 35, 41
process_pin, 36
return_pin_path, 37
run_pathfindR, 18, 23, 32, 33, 35, 37, 47, 48, 50, 51, 53, 54
score_terms, 35, 40
single_iter_wrapper, 42
summarize_enrichment_results, 40, 44
term_gene_graph, 35, 45
term_gene_heatmap, 35, 46
UpSet_plot, 35, 48
visualize_active_subnetworks, 49
visualize_hsa_KEGG, 51, 52, 53
visualize_term_interactions, 52, 53, 53
visualize_terms, 40, 51, 52, 54