Package ‘pbm’

October 14, 2022

Title Protein Binding Models
Version 1.2.1
Description Binding models which are useful when analysing protein-ligand interactions by techniques such as Biolayer Interferometry (BLI) or Surface Plasmon Resonance (SPR). Na- man B. Shah, Thomas M. Dun- can (2014) <doi:10.3791/51383>. Hoang H. Nguyen et al. (2015) <doi:10.3390/s150510481>. Af- ter initial binding parameters are known, binding curves can be simulated and parame- ters can be varied. The models within this package may also be used to fit a curve to mea- sured binding data using non-linear regression.
Depends R (>= 3.4.4)
License MIT + file LICENSE
Encoding UTF-8
URL https://github.com/jonathanrd/pbm
BugReports https://github.com/jonathanrd/pbm/issues
RoxygenNote 7.1.1
Suggests testthat, knitr, rmarkdown, ggplot2, gridExtra
VignetteBuilder knitr
NeedsCompilation no
Author Jonathan Davies [aut, cre] (<https://orcid.org/0000-0002-4986-8594>)
Maintainer Jonathan Davies <jonathanrd@gmail.com>
Repository CRAN
Date/Publication 2021-03-28 14:50:18 UTC

R topics documented:

 binding1to1 ... 2
 binding2to1 ... 2
 req ... 4
 tteq ... 4

Index 5
binding1to1
Generate a 1:1 Binding Curve

Description

Returns a response value for given parameters at time, t.

Usage

```
binding1to1(t, t0, conc, kon, koff, rmax, drift = 0, offset = 0, doffset = 0)
```

Arguments

- **t**: Time.
- **t0**: Time of dissociation.
- **conc**: Analyte concentration.
- **kon**: Kon binding constant.
- **koff**: Koff binding constant.
- **rmax**: Maximum response, Rmax.
- **drift**: Optional. Parameter to add a linear baseline drift.
- **offset**: Optional. Applies a global offset to the response value.
- **doffset**: Optional. Applies an offset at the start of dissociation.

Examples

```
time <- seq(1,2000)
curve <- binding1to1(time,1000,6e-9,1000,0.01,0.6)
plot(curve)
```

binding2to1
Generate a 2:1 Binding Curve

Description

Returns a response value for given parameters at time, t.
Usage

\[\text{binding2to1}(t, t0, \text{conc}, \text{kon1}, \text{koff1}, \text{rmax1}, \text{kon2}, \text{koff2}, \text{rmax2}, \text{drift} = 0, \text{offset} = 0, \text{doffset} = 0)\]

Arguments

- **t**: Time.
- **t0**: Time of dissociation.
- **conc**: Analyte concentration.
- **kon1**: Kon binding constant for first component.
- **koff1**: Koff binding constant for first component.
- **rmax1**: Maximum response, Rmax, for first component.
- **kon2**: Kon binding constant for second component.
- **koff2**: Koff binding constant for second component.
- **rmax2**: Maximum response, Rmax, for second component.
- **drift**: Optional. Parameter to add a linear baseline drift.
- **offset**: Optional. Applies a global offset to the response value.
- **doffset**: Optional. Applies an offset at the start of dissociation.

Examples

```r
  time <- seq(1,2000)
  curve <- binding2to1(time,1000,900e-9,10000,0.01,0.4,2000,0.0003,0.5)
  plot(curve)
```
req
Response at equilibrium

Description
Returns the response value at equilibrium from concentration, Rmax and KD.

Usage
`req(conc, rmax, kd)`

Arguments
- **conc**
 Analyte concentration.
- **rmax**
 Maximum response.
- **kd**
 Equilibrium dissociation constant.

Examples

`req(6e-7,1.2,6e-7)`

tteq
Time to Equilibrium

Description
Returns the time taken to reach 95% equilibrium.

Usage
`tteq(conc, kon, koff, theta = 0.95)`

Arguments
- **conc**
 Analyte concentration.
- **kon**
 Kon binding constant.
- **koff**
 Koff binding constant.
- **theta**
 Default 0.95.

Examples

`tteq(6e-7,20000,0.01)`
Index

* binding1to1
 binding1to1, 2
* binding2to1
 binding2to1, 2

binding1to1, 2
binding2to1, 2

req, 4

tteq, 4