Package ‘pcaone’

October 29, 2022

Title Randomized Singular Value Decomposition Algorithms with 'RcppEigen'

Version 1.0.0

Date 2022-10-25

Author Zilong Li [aut, cre]

Maintainer Zilong Li <zilong.dk@gmail.com>

Description Randomized Singular Value Decomposition (RSVD) methods proposed in the 'PCAone' paper by Li (2022) <doi:10.1101/2022.05.25.493261>, where we implement and propose two RSVD methods. One is based on Yu (2017) <arXiv:1704.07669> single pass RSVD but with power iteration scheme. The other is our new window based RSVD.

License GPL (>= 3)

Encoding UTF-8

Depends R (>= 3.6.0)

Imports Rcpp

LinkingTo Rcpp, RcppEigen (>= 0.3.3.3.0)

SystemRequirements C++17

RoxygenNote 7.2.1

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/Zilong-Li/PCAoneR

BugReports https://github.com/Zilong-Li/PCAoneR/issues

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-10-29 08:57:35 UTC

R topics documented:

pcaone ... 2

Index 5
Randomized Singular Value Decomposition Algorithm with Window-based Power Iterations from PCAone (Li et al 2022).

Description

The Randomized Singular Value Decomposition (RSVD) computes the near-optimal low-rank approximation of a rectangular matrix using a fast probabilistic algorithm.

Usage

```r
pcaone(
  A,
  k = NULL,
  p = 7,
  q = 10,
  sdist = "normal",
  method = "alg2",
  windows = 64,
  shuffle = FALSE
)
```

Arguments

- **A**: array_like; a real/complex \((m, n)\) input matrix (or data frame) to be decomposed.
- **k**: integer; specifies the target rank of the low-rank decomposition. \(k \ll \min(m, n)\).
- **p**: integer, optional; number of additional power iterations (by default \(p = 7\)).
- **q**: integer, optional; oversampling parameter (by default \(q = 10\)).
- **sdist**: string c("unif", "normal"); specifies the sampling distribution of the random test matrix:
 - "unif" : Uniform \([-1,1]\).
 - "normal" (default) : Normal \(\sim N(0,1)\).
- **method**: string c("alg1", "alg2"); optional;
 specifies the different variation of the randomized singular value decomposition:
 - "alg1" : single pass RSVD with power iterations in PCAone refered to algorithm1.
 - "alg2" (default): window based RSVD in PCAone refered to algorithm2.
```python
pcaone

windows integer, optional;
the number of windows for 'alg2' method. must be a power of 2 (by default
windows = 64).
shuffle logical, optional;
if shuffle the rows of input tall matrix or not. recommended for algorithm 2 (by
default shuffle = FALSE).

Details

The singular value decomposition (SVD) plays an important role in data analysis, and scientific
computing. Given a rectangular \((m, n)\) matrix \(A\), and a target rank \(k \ll \min(m, n)\), the SVD
factors the input matrix \(A\) as

\[ A = U_k \text{diag}(d_k) V_k^T \]

The \(k\) left singular vectors are the columns of the real or complex unitary matrix \(U\). The \(k\) right
singular vectors are the columns of the real or complex unitary matrix \(V\). The \(k\) dominant singular
values are the entries of \(d\), and non-negative and real numbers.

\(q\) is an oversampling parameter to improve the approximation. A value of at least 10 is recom-
mended, and \(q = 10\) is set by default.

The parameter \(p\) specifies the number of power (subspace) iterations to reduce the approximation
error. The power scheme is recommended, especially when the singular values decay slowly. How-
ever, computing power iterations increases the computational costs. Even though most RSVD im-
plementations recommend \(p = 3\) power iterations by default, it’s always sufficient to run only few
power iterations where our window-based power iterations ('alg2') come to play. We recommend
using \(windows = 64\) and \(p >= 7\) for pcaone algorithm2. As it is designed for large dataset, we
recommend using 'alg2' when \(\max(n, m) > 5000\).

If \(k > (\min(n, m)/4)\), a deterministic partial or truncated svd algorithm might be faster.

Value

pcaone returns a list containing the following three components:

\[ \text{d array_like;}
\text{u array_like;}
\text{v array_like;}
\]

singular values; vector of length \((k)\).
left singular vectors; \((m, k)\) or \((m, nu)\) dimensional array.
right singular vectors; \((n, k)\) or \((n, nv)\) dimensional array.

Note

The singular vectors are not unique and only defined up to sign. If a left singular vector has its sign
changed, changing the sign of the corresponding right vector gives an equivalent decomposition.
Author(s)

Zilong Li <zilong.dk@gmail.com>

References


Examples

```r
library('pcaone')
mat <- matrix(rnorm(100*20000), 100, 20000)
res <- pcaone(mat, k = 10, p = 7, method = "alg2")
str(res)
res <- pcaone(mat, k = 10, p = 7, method = "alg1")
str(res)
```
Index

pcaone, 2
svd, 3