Package ‘pcensmix’

July 24, 2017

Type Package
Title Model Fitting to Progressively Censored Mixture Data
Version 1.2-1
Depends R (>= 3.3.3), stats
Imports utils
Description Functions for generating progressively Type-II censored data in
a mixture structure and fitting models using a constrained EM algorithm. It can also
create a progressive Type-II censored version of a given real dataset to be considered for
model fitting.
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Author Lida Fallah [aut, cre],
John Hinde [aut]
Maintainer Lida Fallah <l.fallah22@gmail.com>
Repository CRAN
Date/Publication 2017-07-24 19:01:10 UTC

R topics documented:

pcensmix-package .. 2
blood .. 3
insulate ... 3
mixgen ... 4
pcensmixR ... 5
pcensmixSim .. 7
pogen .. 9
print.pogen .. 11
run_pcsenmix .. 12

Index 14
Description

This package provides functions to generate two-component mixture data from various different mixture distribution, generate progressive Type-II censored data in a mixture structure and fit a normal mixture model using a constrained EM algorithm. In addition, it can create a progressive Type-II censored version of a given real dataset and fit a normal mixture model to. Main functions are pcgen, pcensmixSim and pcensmixR. Example datasets are included for illustration.

Details

Package: pcensmix
Type: Package
Version: 1.2-1
Date: 2017-07-24
License: GPL (>= 2)

Author(s)

Lida Fallah <l.fallah22@gmail.com> and John Hinde
Maintainer: Lida Fallah <l.fallah22@gmail.com>

References

blood

Blood pressure of mine workers.

Description
A dataframe containing the blood pressure of a population of mine workers in Ghana.

Usage
blood

Format
A data frame with 495 rows and 3 variables
- Systolic.BP. Systolic blood pressure
- Diastolic.BP. Diastolic blood pressure
- Amplitude. Amplitude

References

insulate

Failure times of insulating fluid.

Description
A dataset containing measurements of 19 failure times (in minutes) for an insulating fluid between two electrodes subject to a voltage of 34 KV, see Nelson (1982).

Usage
insulate

Format
A vector of length 19.

References
mixgen Generating Mixture Datasets

Description
This function generates two-component mixture data from a various different mixture distributions.

Usage
mixgen(N, dist1, dist2, control)

Arguments
N population size.
dist1, dist2 respective distributions of the first and second mixture components to be simulated from. For Normal, Log-normal, Weibull, Gamma, Cauchy and Beta distributions, they must be provided as 'norm', 'lnorm', 'weibull', 'gamma', 'cauchy' and 'beta' respectively. The Exponential distribution can be included as a Gamma distribution with scale parameter one.
control a list of parameters for controlling the simulation process. This includes parameters of the first and second mixture component distributions and the mixture proportion \(\pi \) which should be provided in the order mentioned, i.e., parameters for the first component come first, those of the second component come after and then the value of the mixing proportion. All values should be provided in a list of numerics. Note parameters for each component distribution should be added in the order as required in their generator functions, see rnorm, rlnorm, rweibull, rgamma, rcauchy and rbeta.

Details
It generates a two-component mixture dataset from a density function

\[
\pi f_1 + (1 - \pi) f_2,
\]

where \(f_1 \) and \(f_2 \) are the first and the second mixture component distributions respectively.

Value
An object of class data.frame containing the following information:

z mixture data
label component indicator

Author(s)
Lida Fallah, John Hinde
Maintainer: Lida Fallah <l.fallah22@gmail.com>
Description

This function uses a two-layer EM algorithm to fit a mixture model to progressive Type-II censored mixture data by estimating the latent mixture components and the censored data.

Usage

```r
pcensmixR(Pdat, ...)  
```

```
## S3 method for class 'pcgen'
pcensmixR(Pdat, start, iteration = 1e+05, INERiter = 20,  
          warn = FALSE, ...)
```

Arguments

- **Pdat**: an object of class "pcgen" created by function `pcgen` or a two-column matrix (or data.frame) with first column giving a vector of censored version of a two-component mixed normal data, and the other one indicating the censoring status associated with them (1 if not censored, otherwise zero).
- **...**: additional arguments to pass by.
- **start**: a numeric vector; used as starting values for the EM algorithm.
- **iteration**: the maximum number of required iteration for the EM algorithm until convergence– default value is `1e+05`.
- **INERiter**: the maximum number of required iteration for the second EM algorithm– default is 20.
- **warn**: logical. shows warning messages if TRUE, if there is any– default is FALSE.
Details

This function fits a two-component normal mixture model to a given progressive Type-II censored data.

It uses a two-layer EM algorithm for fitting the model. Generally speaking, the first layer estimates the mixture component latent variables, in the E-step, by finding their conditional expected values given the current parameter estimates and the data; and the second layer consists of another EM algorithm to estimate the missing censored data and eventually the parameters of interest. The layers are repeated until convergence achieved.

Value

`pcensmixR` gives an object of class `data.frame` containing the following components:

- `muhat1, sigmahat1` component one parameter estimates \((\hat{\mu}_1, \hat{\sigma}_1)\)
- `muhat2, sigmahat2` component two parameter estimates \((\hat{\mu}_2, \hat{\sigma}_2)\)
- `pihat` estimation of mixture proportion \(\hat{\pi}\)
- `se.muhat1, se.sigmahat1` standard errors of \(\hat{\mu}_1\) and \(\hat{\sigma}_1\)
- `se.muhat2, se.sigmahat2` standard errors of \(\hat{\mu}_2\) and \(\hat{\sigma}_2\)
- `se.pihat` standard error of \(\hat{\pi}\)
- `no.fails.comp1, no.fails.comp2` number of failures from each mixture component
- `no.cens.comp1, no.cens.comp2` number of censored observations from each mixture component
- `ll` log-likelihood value

Note

See `pcgen` for the definition of censored version of data.

Author(s)

Lida Fallah, John Hinde

Maintainer: Lida Fallah <l.fallah22@gmail.com>

See Also

`pcgen, pcensmixSim`
pcensmixSim

Fitting a Normal Mixture Model to a Simulated Progressive Type-II
Censored Data Using EM Algorithm

Description

This function fits a normal mixture model to progressive Type-II censored mixture data by dealing
with the two aspects of missing data, latent mixture components and the censored data, using a
maximum likelihood estimation through a constrained two-layer EM algorithm.

Usage

pcensmixSim(pdat, ...) # S3 method for class 'pcgen'

pcensmixSim(pdat, r, p, param, iteration = 1e+05,
INERiter = 20, ...)

Arguments

Pdat an object of class "pcgen" created by function pcgen or a two-column matrix
(or data.frame) with first column giving a vector of censored version of a two-
component mixed normal data, and the other one indicating the censoring status
associated with them (1 if not censored, otherwise zero).

... additional arguments to pass by.

r desired number of failures to observe.

p a parameter controlling the amount of censoring. The action of censoring indivi-
duals after each failure occurs with probability p from binomial distribution at
each stage. If p = 0, there will be no censoring.

param a numeric vector; used as starting values for the EM and simulating a new data
to replace in case of happening singularity in the likelihood.
iteration the maximum number of required iteration for the EM algorithm until convergence—
default value is 1e+05.

INERiter the maximum number of required iteration for the second EM algorithm— default
is 20.

Details

This function fits a two-component normal mixture model to simulated progressive Type-II cen-
sored data with density function

\[\pi \left(\frac{1}{\sigma_1} \phi \left(\frac{z - \mu_1}{\sigma_1} \right) \right) + (1 - \pi) \left(\frac{1}{\sigma_2} \phi \left(\frac{z - \mu_2}{\sigma_2} \right) \right) \]

where \(\phi \) is the standard normal density.

It uses a constrained two-layer EM algorithm to deal with the two forms of missing data: the
censored survival times and the mixture component labels. Given the EM algorithm is at a particular
iteration: (i) first, in the E-step it obtains the mixture component indicator estimates given the
current parameter estimates and the observed data. (ii) Next, for re-estimation of the unknown
parameters, a new EM algorithm is nested in the M-step of the initial EM algorithm to deal with
the estimation of the missing censored survival times and consequently building the maximum
likelihood equations. These steps are repeated until the model converges.

Value

pcensmixSim gives an object of class data.frame containing the following components:

muhat1,sigmahat1 component one parameter estimates (\(\hat{\mu}_1, \hat{\sigma}_1 \))

muhat2,sigmahat2 component two parameter estimates (\(\hat{\mu}_2, \hat{\sigma}_2 \))

pihat estimation of mixture proportion \(\hat{\pi} \)

se.muhat1,se.sigmahat1 standard errors of \(\hat{\mu}_1 \) and \(\hat{\sigma}_1 \)

se.muhat2,se.sigmahat2 standard errors of \(\hat{\mu}_2 \) and \(\hat{\sigma}_2 \)

se.pihat standard error of \(\hat{\pi} \)

no.fails.comp1,no.fails.comp2 number of failures from each mixture component

no.cens.comp1,no.cens.comp2 number of censored observations from each mixture component

ll log-likelihood value

datachange_flag TRUE if data has been replaced by a newly generated one
Note

• In fitting the model, to overcome the problem of singularity and model non-identifiability that might happen in some cases depending on the true means and standard deviations of the components, we use the constraint proposed by Hathaway (1985). Based on this, the ratios of the standard deviations are considered to be greater than a pre-fixed constant. We consider the constraints $\sigma_1/\sigma_2 > 0.1$ and $\sigma_2/\sigma_1 > 0.1$ which lead to obtain a parameter space with no singularities. In case this conditions doesn’t hold, the data will be replaced by a new simulated one and datachange_flag will appear as TRUE in the output.

• See pcgen for the definition of censored version of data.

Author(s)

Lida Fallah, John Hinde

Maintainer: Lida Fallah <l.fallah22@gmail.com>

See Also

pcgen, run_pcensmix

Examples

```r
# Not run:
set.seed(100)

Pdat<- pcgen(r = 60, p = 0.3, data = mixgen(N = 100, dist1 = 'norm',
                                              dist2 = 'norm', control = list(12, 2, 14, 5, 0.35)))
pcensmixSim(Pdat, r = 60, p = 0.3, param=c(12, 2, 14, 5, 0.35))
# End(Not run)
```

Description

This function implements an algorithm for generating a progressive Type-II censored version of a specified dataset.

Usage

```r
pcgen(r, p, data)
```
Arguments

- **r**: desired number of failures to observe.
- **p**: a parameter controlling the amount of censoring. The action of censoring individuals after each failure occurs with probability \(p \) from binomial distribution at each stage. If \(p = 0 \), no censoring will happen.
- **data**: a numeric vector of a real dataset (mixture/not mixture) or an object of class `data.frame` generated by `mixgen`.

Details

It creates a progressive Type-II censored version of a given real dataset or a simulated dataset from `mixgen`. The output of this function can be passed as an argument to `pcensmixR` or `pcensmixSim` for the purpose of fitting a normal mixture model to the progressively censored dataset.

Value

An object of class "pcgen" containing the following information:

- **original_data**: original mixture data
- **label**: component membership indicator for the original simulated mixture data. This will not be returned if a real data has been used.
- **censored_version_of_data**: progressive Type-II censored version of data, i.e., each observation is equal to the actual observed survival time in the event of failure and is equal to the latest observe failure time if it is associated to an unobserved censored observation. Notice that they are order statistics.
- **component_indicator**: component indicator associated with the censored_version_of_data. This will not be returned if a real data has been used.
- **censoring_indicator**: censoring indicator associated with the censored_version_of_data.

Note

See `print.pcgen` for printing data of class "pcgen".

Author(s)

Lida Fallah, John Hinde
Maintainer: Lida Fallah <l.fallah22@gmail.com>

See Also

`mixgen, print.pcgen`.
print.pcgren

Examples

1. Generate a progressive Type-II censored data from a simulated mixture data with
allowing for censoring with controlling parameters p = 0.3 and r = 12.
set.seed(0)
mixture <- mixgen(N = 20, dist1 = 'norm', dist2 = 'weibull', control = list(12, 2, 15, 4, 0.3))
Pdat0 <- pcgen(r = 12, p = 0.3, data = mixture)
print(Pdat0)

2. Examples of generating a progressively Type-II censored data
set.seed(0)
Pdat1 <- pcgen(r = 6, p = 0.3, data = insulate)
print(Pdat1)
set.seed(100)
Pdat2 <- pcgen(r = 260, p = 0.35, data = blood$systolic.BP)
print(Pdat2)

print.pcgren \hspace{1cm} \textbf{Print Method for pcgen Objects}

Description

This function prints the progressive censored data generated by the S3 class pcgen.

Usage

S3 method for class 'pcgen'
print(x, ...)

Arguments

x \hspace{1cm} \text{object of class pcgen.}

... \hspace{1cm} \text{optional arguments to pass by.}

Value

This function uses the generic function print to print the dataset of class "pcgen" in a nice format.

Examples

Generate a two component normal mixture data,
Pdat <- pcgen(r = 80, p = 0.3, data = mixgen(N = 100, dist1 = 'norm',
 dist2 = 'norm', control = list(12, 2, 14, 4, 0.3)))
and print it.
print(Pdat)
run_pcensmix

Generating Progressively Type-II Censored Mixture Data and Fitting a Model

Description

This function implements an algorithm using the mixgen, pcgen and pcensmixSim functions to generate data and fit a model using EM algorithm with a specified number of iterations.

Usage

run_pcensmix(N, r, p, param, repetition = 100)

Arguments

N population size.

r required number of failures to observe.

p a parameter controlling the amount of censoring. The action of censoring individuals after each failure occurs with probability p from a binomial distribution at each stage. If p = 0, there will be no censoring.

param a numeric vector; used as starting values for the EM and simulating a new data to replace in case of happening singularity in the likelihood.

repetition the required number of repetition of the algorithm– default is 100.

Value

It returns the parameter estimates given by pcensmixSim with the desired number of repetitions. In each repetition it generates a new normal mixture progressive Type-II censored dataset from the same true parameter values and fits a model.

Author(s)

Lida Fallah, John Hinde

Maintainer: Lida Fallah <l.fallah22@gmail.com>

See Also

pcgen, pcensmixSim, mixgen

Examples

Not run:

Example 1: with very well separated mixture components
set.seed(3)
f1 <- run_pcensmix(N = 160, r = 120, p = 0.3, param = c(10, 2, 25, 4, 0.3), repetition = 100)
colMeans(f1)
Example 2.

```r
set.seed(150)
f2 <- run_pcensmix(N = 160, r = 130, p = 0.35, param = c(10, 2, 17, 4, 0.3), repetition = 100)
colMeans(f2)
```

Example 3.

```r
set.seed(20)
f3 <- run_pcensmix(N = 160, r = 130, p = 0.3, param = c(20, 6, 22, 12, 0.6), repetition = 100)
colMeans(f3)
```

End(Not run)
Index

*Topic datasets
 blood, 3
 insulate, 3
*Topic package
 pcensmix-package, 2

blood, 3
insulate, 3
mixgen, 4, 10, 12
pcensmix-package, 2
pcensmixR, 2, 5, 10
pcensmixSim, 2, 6, 7, 10, 12
pcgen, 2, 5–7, 9, 9, 11, 12
print, 11
print.pcgem, 10, 11

rbeta, 4
rcauchy, 4
rgamma, 4
rlnorm, 4
rnorm, 4
run_pcensmix, 9, 12
rweibull, 4