Package ‘pcv’

August 12, 2023

Version 1.1.0
Date 2023-08-12
Title Procrustes Cross-Validation
Maintainer Sergey Kucheryavskiy <svkucheryavski@gmail.com>
Encoding UTF-8
License MIT + file LICENSE
Imports graphics, grDevices, stats
RoxygenNote 7.2.3
Suggests testthat
NeedsCompilation no
Depends R (>= 3.5.0)
URL https://github.com/svkucheryavski/pcv
BugReports https://github.com/svkucheryavski/pcv/issues
Author Sergey Kucheryavskiy [aut, cre]
 (<https://orcid.org/0000-0002-3145-7244>)
Repository CRAN
Date/Publication 2023-08-12 19:20:02 UTC

R topics documented:
corn .. 2
crossvalParams 2
cR .. 3
cxpvorth .. 3
normalize ... 4
pcv .. 4
pcvcrossval 5
getCrossvalParams

- `pcvpcr` ... 7
- `pcvpls` ... 9
- `pcvreg` ... 11
- `rotationMatrixToX1` ... 13
- `simpls` ... 13

Index

| corn | Corn data |

Description

NIR spectra and moisture of 80 Corn samples.

Usage

data(corn)

Format

A list with two matrices, spectra and moisture.

Details

This is a part of Corn dataset, which was downloaded from Eigenvector Research, Inc. website (https://eigenvector.com/resources/data-sets/), where it is available publicly. This dataset contains several NIR spectra of corn samples recorded using different instruments. For our examples we took "mp5" spectra and corrected them using Standard Normal Variate transformation.

Source

getCrossvalParams

Returns parameters for cross-validation based on 'cv' value

Description

Returns parameters for cross-validation based on 'cv' value

Usage

getcrossvalParams(cv, nobj)
getR

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv</td>
<td>settings for cross-validation provided by user</td>
</tr>
<tr>
<td>nobj</td>
<td>number of objects in calibration set</td>
</tr>
</tbody>
</table>

getR

Creates rotation matrix to map a set vectors base1 to a set of vectors base2.

Description

In both sets vectors should be orthonormal.

Usage

getR(base1, base2)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>base1</td>
<td>Matrix (JxA) with A orthonormal vectors as columns to be rotated (A <= J)</td>
</tr>
<tr>
<td>base2</td>
<td>Matrix (JxA) with A orthonormal vectors as columns, base1 should be aligned with</td>
</tr>
</tbody>
</table>

Value

Rotation matrix (JxJ)

getxpworth

Generates the orthogonal part for Xpv

Description

Generates the orthogonal part for Xpv

Usage

getxpworth(q.k, X.k, PRM)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q.k</td>
<td>vector with orthogonal distances for cross-validation set for segment k</td>
</tr>
<tr>
<td>X.k</td>
<td>matrix with local validation set for segment k</td>
</tr>
<tr>
<td>PRM</td>
<td>projecton matrix for orthogonalization of residuals</td>
</tr>
</tbody>
</table>

Value

A matrix with orthogonal part for Xpv
normalize

Normalization rows or columns of a matrix

Description

Normalization rows or columns of a matrix

Usage

normalize(
 X,
 dim = 1,
 weights = if (dim == 1) 1/sqrt(rowSums(X^2)) else 1/sqrt(colSums(X^2))
)

Arguments

- **X**: matrix with numeric values
- **dim**: which dimension to normalize (1 for rows, 2 for columns)
- **weights**: vector with normalization weights, by default 2-norm is used

pcv

Compute matrix with pseudo-validation set

Description

Compute matrix with pseudo-validation set

Usage

pcv(
 X,
 ncomp = min(round(nrow(X)/nseg) - 1, col(X), 20),
 nseg = 4,
 scale = FALSE
)

Arguments

- **X**: matrix with calibration set (IxJ)
- **ncomp**: number of components for PCA decomposition
- **nseg**: number of segments in cross-validation
- **scale**: logical, standardize columns of X prior to decompositon or not
Details

This is the old (original) version of PCV algorithm for PCA models. Use `pcvpca` instead. Ane check project web-site for details: https://github.com/svkucheryavski/pcv

The method computes pseudo-validation matrix Xpv, based on PCA decomposition of calibration set X and systematic (venetian blinds) cross-validation. It is assumed that data rows are ordered correctly, so systematic cross-validation can be applied

Value

Pseudo-validation matrix (IxJ)

pcvcrossval

Generate sequence of indices for cross-validation

Description

Generates and returns sequence of object indices for each segment in random segmented cross-validation

Usage

```r
pcvcrossval(cv = 1, nobj = NULL, resp = NULL)
```

Arguments

- `cv` cross-validation settings, can be a number, a list or a vector with integers.
- `nobj` number of objects in a dataset
- `resp` vector or matrix with response values to use in case of venetian blinds

Details

Parameter `cv` defines how to split the rows of the training set. The split is similar to cross-validation splits, as PCV is based on cross-validation. This parameter can have the following values:

1. A number (e.g. `cv = 4`). In this case this number specifies number of segments for random splits, except 'cv = 1' which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: `list("name", nseg)`. In this case "name" defines the way to make the split, you can select one of the following: "loo" for leave-one-out, "rand" for random splits or "ven" for Venetian blinds (systematic) splits. The second parameter, 'nseg', is a number of segments for splitting the rows into. For example, `cv = list("ven", 4)`, shown in the code examples above, tells PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. `cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)`. In this case number of values in this vector must be the same as number of rows in the training set. The values specify which segment a particular row will belong to. In case of the example shown here, it is assumed that you have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist of measurements from rows 1, 4 and 7.
Value

text with object indices for each segment

Description

Procrustes cross-validation for PCA models

Usage

pcvpca(
 X,
 ncomp = min(nrow(X) - 1, ncol(X), 30),
 cv = list("ven", 4),
 center = TRUE,
 scale = FALSE,
 cv.scope = "global"
)

Arguments

X matrix with predictors from the training set.
ncomp number of components to use (more than the expected optimal number).
cv which split method to use for cross-validation (see description for details).
center logical, to center or not the data sets
scale logical, to scale or not the data sets
cv.scope scope for center/scale operations inside CV loop: ‘global’ — using globally computed mean and std or ‘local’ — recompute new for each local calibration set.

Details

The method computes Procrustes validation set (PV-set), matrix Xpv, based on PCA decomposition of calibration set ‘X’ and cross-validation. See description of the method in [1].

Parameter ‘cv’ defines how to split the rows of the training set. The split is similar to cross-validation splits, as PCV is based on cross-validation. This parameter can have the following values:

1. A number (e.g. ‘cv = 4’). In this case this number specifies number of segments for random splits, except ‘cv = 1’ which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: ‘list("name", nseg)’. In this case “name” defines the way to make the split, you can select one of the following: “loo” for leave-one-out, “rand” for random splits or “ven” for Venetian blinds (systematic) splits. The second parameter, ‘nseg’, is a number of segments for...
splitting the rows into. For example, `cv = list("ven", 4)`, shown in the code examples above, tells PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. `cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)`. In this case number of values in this vector must be the same as number of rows in the training set. The values specify which segment a particular row will belong to. In case of the example shown here, it is assumed that you have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist of measurements from rows 1, 4 and 7.

Parameter `cv.scope` influences how the Procrustean rule is met. In case of "global" scope, the rule will be met strictly - distances for PV-set and the global model will be identical to the distances from conventional cross-validation. In case of "local" scope, every local model will have its own center and scaling factor and hence the rule will be almost met (the distances will be close but not identical).

Value

Matrix with PV-set (same size as X)

References

Examples

```r
# load NIR spectra of Corn samples
data(corn)
X <- corn$spectra

# generate Xpv set based on PCA decomposition with A = 20 and venetian blinds split with 4 segments
Xpv <- pcvpca(X, ncomp = 20, center = TRUE, scale = FALSE, cv = list("ven", 4))

# show the original spectra and the PV-set (as is and mean centered)
oldpar <- par(mfrow = c(2, 2))
matplot(t(X), type = "l", lty = 1, main = "Original data")
matplot(t(Xpv), type = "l", lty = 1, main = "PV-set")
matplot(t(scale(X, scale = FALSE)), type = "l", lty = 1, main = "Original data (mean centered)")
matplot(t(scale(Xpv, scale = FALSE)), type = "l", lty = 1, main = "PV-set (mean centered)")
par(oldpar)
```

pcvpcr

Procrustes cross-validation for PCR models

Description

Procrustes cross-validation for PCR models
Usage

pcvpcr(
 X,
 Y,
 ncomp = min(nrow(X) - 1, ncol(X), 30),
 cv = list("ven", 4),
 center = TRUE,
 scale = FALSE,
 cv.scope = "global"
)

Arguments

X
- matrix with predictors from the training set.

Y
- vector with response values from the training set.

ncomp
- number of components to use (more than the expected optimal number).

cv
- which split method to use for cross-validation (see description of method 'pcv-pls()' for details).

center
- logical, to center or not the data sets

scale
- logical, to scale or not the data sets

cv.scope
- scope for center/scale operations inside CV loop: 'global' — using globally computed mean and std or 'local' — recompute new for each local calibration set.

Details

The method computes pseudo-validation matrix Xpv, based on PCR decomposition of calibration set X, y and cross-validation.

Parameter 'cv' defines how to split the rows of the training set. The split is similar to cross-validation splits, as PCV is based on cross-validation. This parameter can have the following values:

1. A number (e.g. 'cv = 4'). In this case this number specifies number of segments for random splits, except 'cv = 1' which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: 'list("name", nseg)'. In this case "name" defines the way to make the split, you can select one of the following: "loo" for leave-one-out, "rand" for random splits or "ven" for Venetian blinds (systematic) splits. The second parameter, 'nseg', is a number of segments for splitting the rows into. For example, 'cv = list("ven", 4)', shown in the code examples above, tells PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. 'cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)'. In this case number of values in this vector must be the same as number of rows in the training set. The values specify which segment a particular row will belong to. In case of the example shown here, it is assumed that you have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist of measurements from rows 1, 4 and 7.

Parameter 'cv.scope' influences how the Procrustean rule is met. In case of "global" scope, the rule will be met strictly - error of predictions for PV-set and the global model will be identical to the error from conventional cross-validation. In case of "local" scope, every local model will have its own center and hence the rule will be almost met (the errors will be close but not identical).
pcvpls

Procrustes cross-validation for PLS models

Description

Procrustes cross-validation for PLS models

Usage

pcvpls(
 X,
 Y,
 ncomp = min(nrow(X) - 1, ncol(X), 30),
 center = TRUE,
 scale = FALSE,
 cv = list("ven", 4),
 cv.scope = "global"
)
Arguments

- **X**: matrix with predictors from the training set.
- **Y**: vector or matrix with response values from the training set.
- **ncomp**: number of components to use (more than the expected optimal number).
- **center**: logical, to center or not the data sets
- **scale**: logical, to scale or not the data sets
- **cv**: which split method to use for cross-validation (see description for details).
- **cv.scope**: scope for center/scale operations inside CV loop: ’global’ — using globally computed mean and std or ’local’ — recompute new for each local calibration set.

Details

The method computes pseudo-validation matrix \(X_{pv} \), based on PLS decomposition of calibration set \(X, y \) and cross-validation.

Parameter ‘cv’ defines how to split the rows of the training set. The split is similar to cross-validation splits, as PCV is based on cross-validation. This parameter can have the following values:

1. A number (e.g. ‘cv = 4’). In this case this number specifies number of segments for random splits, except ‘cv = 1’ which is a special case for leave-one-out (full cross-validation).

2. A list with 2 values: ‘list("name", nseg)’. In this case “"name"” defines the way to make the split, you can select one of the following: “loo” for leave-one-out, "rand" for random splits or "ven" for Venetian blinds (systematic) splits. The second parameter, ‘nseg’, is a number of segments for splitting the rows into. For example, ‘cv = list("ven", 4)’, shown in the code examples above, tells PCV to use Venetian blinds splits with 4 segments.

3. A vector with integer numbers, e.g. ‘cv = c(1, 2, 3, 1, 2, 3, 1, 2, 3)’. In this case number of values in this vector must be the same as number of rows in the training set. The values specify which segment a particular row will belong to. In case of the example shown here, it is assumed that you have 9 rows in the calibration set, which will be split into 3 segments. The first segment will consist of measurements from rows 1, 4 and 7.

Parameter ‘cv.scope’ influences how the Procrustean rule is met. In case of "global" scope, the rule will be met strictly - error of predictions for PV-set and the global model will be identical to the error from conventional cross-validation. In case of "local" scope, every local model will have its own center and hence the rule will be almost met (the errors will be close but not identical).

Value

Pseudo-validation matrix (same size as \(X \)) with an additional attribute, ‘D’ which contains the scaling coefficients (\(c_k/c \))

References

Examples

```r
# load NIR spectra of Corn samples
data(corn)
X <- corn$spectra
Y <- corn$moisture

# generate Xpv set based on PCA decomposition with A = 20 and venetian blinds split with 4 segments
Xpv <- pcvpls(X, Y, ncomp = 20, center = TRUE, scale = FALSE, cv = list("ven", 4))

# show the original spectra and the PV-set (as is and mean centered)
oldpar <- par(mfrow = c(2, 2))
matplot(t(X), type = "l", lty = 1, main = "Original data")
matplot(t(Xpv), type = "l", lty = 1, main = "PV-set")
matplot(t(scale(X, scale = FALSE)), type = "l", lty = 1, main = "Original data (mean centered)"
matplot(t(scale(Xpv, scale = FALSE)), type = "l", lty = 1, main = "PV-set (mean centered)"
par(oldpar)

# show the heatmap with the scaling coefficients
plotD(Xpv)
```

pcvreg

Procrustes cross-validation for multivariate regression models

Description

This is a generic method, use ‘pcvpls()’ or ‘pcvpcr()’ instead.

Usage

```r
pcvreg(
  X, 
  Y, 
  ncomp = min(nrow(X) - 1, ncol(X), 30),
  cv = list("ven", 4),
  center = TRUE,
  scale = FALSE,
  funlist = list(),
  cv.scope = "global"
)
```

Arguments

- **X**: matrix with predictors from the training set.
- **Y**: vector with response values from the training set.
- **ncomp**: number of components to use (more than the expected optimal number).
plotD

Plots heatmap for scaling coefficients obtained when generating PV-set for PCR or PLS

Description

Plots heatmap for scaling coefficients obtained when generating PV-set for PCR or PLS

Usage

plotD(
 Xpv,
 colmap = colorRampPalette(c("blue", "white", "red"))(256),
 lim = c(-2, 4),
 xlab = "Components",
 ylab = "Segments",
 ...
)

Arguments

- Xpv: PV-set generated by ‘pcvpcr()’ or ‘pcvpls()’.
- colmap: colormap - any with 256 colors.
- lim: limits for color map (smallest/largest expected value), centered around 1.
- xlab: label for x-axis
- ylab: label for y-axis
- ...: any other parameters for method ‘image’

Value

No return value, just creates a plot.
rotationMatrixToX1

Describes a rotation matrix to map a vector x to [1 0 0 ... 0]

Usage

rotationMatrixToX1(x)

Arguments

x
Vector (sequence with J coordinates)

Value

Rotation matrix (JxJ)

simpls

SIMPLS algorithm

Description

SIMPLS algorithm for calibration of PLS model

Usage

simpls(X, Y, ncomp)

Arguments

X
a matrix with x values (predictors)

Y
a matrix with y values (responses)

ncomp
number of components to calculate

Value

a list with computed weights, x- and y-loadings for PLS regression model.

References

Index

* datasets
 corn, 2

corn, 2

getcrossvalparams, 2
getr, 3
getxpworth, 3

normalize, 4

pcv, 4
pcvcrossval, 5
pcvpca, 5, 6
pcvpcr, 7
pcvpls, 9
pcvreg, 11
plotd, 12

rotationMatrixToX1, 13

simpls, 13