Package ‘pdR’

July 7, 2019

Type Package
Title Threshold Model and Unit Root Tests in Cross-Section and Time Series Data
Version 1.7
Date 2019-07-07
Author Ho Tsung-wu
Maintainer Ho Tsung-wu <tsungwu@ntnu.edu.tw>
License GPL (>= 2)
LazyLoad yes
Depends plm, tcltk
Imports boot, car, coefplot, lmtest, sandwich, papeR
NeedsCompilation no
Repository CRAN
Date/Publication 2019-07-07 04:40:02 UTC

R topics documented:

pdR-package ... 2
bank_income ... 3
cigaretts ... 4
contts .. 5
crime ... 6
dur_john ... 7
hegy.reg ... 8
HEGY.test .. 8
iClick.plm1way ... 10
iClick.plm2way ... 11
Description

Functions for analysis of panel data, including the panel threshold model of Hansen (1999, JE), panel unit root test of Chang (2002, JE) based upon instruments generating functions (IGF), and panel seasonal unit root test based upon Hylleberg et al. (1990, JE).

Details

This version offers formatted output. This package designs a specification function ptm() to estimate the panel threshold model of Hansen (1999). The key feature of ptm() is to generalize Hansen’s original code to allow multiple (more-than-one) regime-dependent right-hand-side independent variables; Dr. Hansen’s original code admits only 1 regime-dependent right-hand-side independent variable. This version also includes panel unit root tests based on the instrument generating functions (IGF), proposed by Chang (2002, J. of Econometrics), and the panel version of Hylleberg et al. (1990) seasonal unit root test, proposed by Otero, et al. (2005, 2007).
bank_income

Type: Package
Version: 1.5
Date: 2017-2-1
License: GPL-2

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.
Maintainer: Ho Tsung-wu <tsungwu@ntnu.edu.tw>

References

bank_income

Panel data of bank, 2001Q1~2010Q1

Description

A quarterly panel data frame with 1000 observations on the following 7 variables, unbalanced panel data ranges from 2001Q1~2010Q1.

Usage

data("bank_income")

Format

ID a numeric vector
Qtr a numeric vector
preTax_Income a numeric vector
shortRatio a numeric vector
longRatio a numeric vector
Current_ratio a numeric vector
LoanDeposit_ratio a numeric vector
Examples
data(bank_income)

cigaretts

Description
Cigaretts consumption of US states

Usage
data(cigaretts)

Format
A data frame of 48 US states’ cigaretts consumption

State State abbreviation, N
Year Year, t
Y_SALES Cigarette sales in packs per capita, deflated by population
X1_PRICE P=Real price per pack of cigarettes, deflated by 1983 CPI.
X2_PIMIN Real minimum price in adjoining states per pack of cigarettes, deflated by CPI
X3_NDI Per capita disposable income

References

Examples
data(cigaretts)
head(cigaretts)
Function for extracting components from a lm object

Description

Extract the standard error and t-stat of the a-th parameter estimate of a lm object

Usage

contts(lm, a)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lm</td>
<td>lm object</td>
</tr>
<tr>
<td>a</td>
<td>The a-th parameter estimate of a linear model regression</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>se.coef</td>
<td>The standard error of the selected coefficient</td>
</tr>
<tr>
<td>t.stat</td>
<td>The t-stat of the selected coefficient</td>
</tr>
</tbody>
</table>

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle.

References

Examples

```r
x <- rnorm(100)
y <- 1 + 0.2 * x + rnorm(100)
LMout <- lm(y ~ x)
contts(LMout, 1)

# $se.coef
# [1] 0.1081023

# $t.stat
# (Intercept)
#    10.68401
```
Annual crime dataset of US counties

Usage
data(crime)

Format
A data frame of US counties

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>county</td>
<td>counties index, N</td>
</tr>
<tr>
<td>year</td>
<td>Year, t</td>
</tr>
<tr>
<td>crmrte</td>
<td>crime rate (crime/population)</td>
</tr>
<tr>
<td>prbarr</td>
<td>probability of arrest (arrests/offenses)</td>
</tr>
<tr>
<td>prbconv</td>
<td>probability of conviction, given arrest</td>
</tr>
<tr>
<td>prbpris</td>
<td>probability of a prison, given conviction</td>
</tr>
<tr>
<td>avgsen</td>
<td>sanction severity (average prison sentence in days)</td>
</tr>
<tr>
<td>polpc</td>
<td>ability of police force to detect crime (# of police per capita)</td>
</tr>
<tr>
<td>density</td>
<td>population density (POP/area)</td>
</tr>
<tr>
<td>taxpc</td>
<td>Tax payment per capita</td>
</tr>
<tr>
<td>region</td>
<td>region index of county</td>
</tr>
<tr>
<td>smsa</td>
<td>=1 if SAMA, POP > 50000; =0 else</td>
</tr>
<tr>
<td>pctmin</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wcon</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wtuc</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wtrd</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wfir</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wser</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wmgf</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wfed</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wsta</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>wloc</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>mix</td>
<td>See Baltagi(2006) for details</td>
</tr>
<tr>
<td>pctymle</td>
<td>See Baltagi(2006) for details</td>
</tr>
</tbody>
</table>
References

The cross-country growth data in Durlauf and Johnson(1995)

Description

The Durlauf-Johnson data manipulated by Hansen(2000),excluding missing variables and oil states

Usage

data(dur_john)

Format

A data frame with 19 countries

gdpGrowth Economic growth measured by GDP of 1960 and 1985
1ogGDP60 log Per capita GDP in 1960
Inv_GDP Average ratio of investment (including Government Investment) to GDP from 1960 to 1985
popGrowth Average growth rate of working-age population 1960 to 1985
School Average fraction of working-age population enrolled in secondary school from 1960 to 1985
GDP60 Per capita GDP in 1960
Literacy fraction of the population over 15 years old that is able to read and write in 1960

Details

Examples

data(dur_john)
head(dur_john)
hegy.reg

Generate the HEGY regressors.

Description

This function generates the level regressors in HEGY regression, without differenced lag terms.

Usage

```r
hegy.reg(wts)
```

Arguments

- `wts`: Univariate time series, with a possibly seasonal stochastic trend

Details

This function automatically identifies the frequency of time series data, and generates necessary level components as described in Eq. (3.7) of Hylleberg et al. (1990).

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle

References

Examples

```r
data(inf_Q)
y=inf_Q[,1]
hegy.reg(y)
```

HEGY.test

Seasonal unit root test based on Hylleberg et al. (1990)

Description

The function performs seasonal unit root test based on Eq. (3.6) of Hylleberg et al. (1990), univariate time series.

Usage

```r
HEGY.test(wts, itsd, regvar = 0, selectlags = list(mode = "signf", Pmax = NULL))
```
Arguments

- **wts**: Univariate time series
- **itsd**: Options for \(c(i, t, sd)\)
 - \(i=1\), intercept; \(=0\) no intercept
 - \(t=1\), trend; \(=0\) no deterministic trend
 - \(sd=1\), season dummy \(1:(s-1); =0\) no
- **regvar**: Additional regressors
- **selectlags**: Selection of lags
 - \(mode\), Criteria for selection, having three options: "signf","bic","aic".
 - \(P_{max}\), maximum number of lags.

Details

Mode for selectlags has three options, AIC and BIC use R built-in functions for linear model and their meanings are popular and straightforward. They include only lags that meet specific criterion, others are dropped from regressors. That is, lag orders of your model may not be a regular sequence. See also selPsignf() and selPabic().

Value

- **stats**: Tests statistics for HEGY regression coefficients.
- **hegycoefs**: HEGY regression coefficients.
- **lagsorder**: Lags order. "aic" or "bic" returns a scalar; "signf" returns a sequence of numbers
- **lagcoefs**: Coefficients of lag terms.
- **regvarcoefs**: Coefficient(s) of additional regressor(s).

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle

References

Examples

```r
data(inf.Q)
y<-inf.Q[,1]
hegy.out<-HEGY.test(wts=y, itsd=c(1,0,c(1:3)),regvar=0, selectlags=list(mode="aic", Pmax=12))

hegy.out$stats #HEGY test statistics
names(hegy.out) # HEGY objects, which can be called by using $, see below.
hegy.out$hegycoefs
hegy.out$regvarcoefs
```
iClick GUI for one-way panel data analysis, based on package plm.

Description

This function generates analysis of panel data by iClick.plm.

Usage

iClick.plm1way(dep, indep, Formula, data, bootrep=99, ENDOG, IV, inst.method)

Arguments

dep Column number of dependent variable; e.g., dep=data[,2]. Default is NULL
indep Column number of Independent variables; e.g., indep=data[,c(3,5,8)]. Default is NULL
Formula Equation input by explicit formula; e.g., y=x1+x2+x3. Default is NULL
data A panel data class declared by plm.
bootrep Replication number of bootstrapping for fixed effect, the default number is 99 to avoid unnecessary computation.
ENDOG For 2SLS, declare endogeneous variables here; otherwise, keep it as default by NULL.
IV For 2SLS, declare IV variables here; otherwise, keep it as default by NULL.
inst.method For 2SLS, select estimation method.

Value

GUI output button.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

See Also

Package plm.

Examples

#library("pdR")
#data("bank_income")
data1.plm=plm.data(bank_income,index="ID");
#head(data1.plm,2)
iClick.plm1way(dep=4, indep=c(5,7,8), data=data1.plm)
iClick GUI for two-way panel data analysis, based on package plm.

Description

This function generates analysis of panel data by iClick.plm. Declare either dep and indep or Formula.

Usage

```r
iClick.plm2way(dep, indep, Formula, data, bootrep=99, ENDOG, IV, inst.method)
```

Arguments

- **dep**: Column number of dependent variable; e.g., dep=data[,2]. Default is NULL
- **indep**: Column number of Independent variables; e.g., indep=data[,c(3,5,8)]. Default is NULL
- **Formula**: Equation input by explicit formula; e.g., y=x1+x2+x3. Default is NULL
- **data**: A panel data class declared by plm.
- **bootrep**: Replication number of bootstrapping for fixed effect, the default number is 99 to avoid unnecessary computation.
- **ENDOG**: For 2SLS, declare endogeneous variables here; otherwise, keep it as default by NULL.
- **IV**: For 2SLS, declare IV variables here; otherwise, keep it as default by NULL.
- **inst.method**: For 2SLS, select estimation method. Details see package plm.
Value

GUI output button.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

See Also

Package plm.

Examples

#unmark to run
#library("pdR")
#data("productivity")
#data2.plm=plm.data(productivity,index="state")
#head(data2.plm)
#formula2="log(y_gsp)-log(x1_hwy)+log(x2_water)"
#iClick.plm2way(Formula=formula2,data=data2.plm)

#data("crime")
#data3.plm= plm.data(crime, index = c("county"))
#head(data3.plm)
#formula3="log(crmrte)-log(prbarr)+log(polpc)+log(prbconv)
 #+log(prbpris)+log(avgse)+log(density)+log(wcon)+log(wtuc)
 #+log(wtrd)+log(wfir)+log(wser) +log(wmfg)+log(wfed)
 #+log(wsta)+log(wloc)+log(pctyml)+log(pctmin)+smsa+region"
 #endo=c("log(prbarr)","log(polpc)"
 #iv=c("log(taxpc)","log(mix)"
 #iClick.plm1way(Formula=formula3,data=data3.plm,ENDOG=endo,IV=iv)

IGF

Unit root test based on Change(2002)

Description

This function estimates the unit root regression based on instrument generating function of Change(2002) and returns useful outputs.

Usage

`IGF(y, maxp, ic, spec)`
Arguments

- `y`: A univariate time series data
- `maxp`: the max number of lags
- `ic`: Information criteria, either "AIC" or "BIC"
- `spec`: regression model specification.
 - 0, no intercept and trend.
 - 1, intercept only.
 - 2, intercept and trend.

Details

Value

- `tstat.IGF`: IGF unit root test
- `beta`: regression coefficients. The first one is the AR(1) coefficient of unit root, and the last one is the intercept or trend
- `sdev`: The IGF standard error for unit root coefficient
- `cV`: The scalar C in IGF equation
- `p`: The optimal number of lag

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

References

Examples

```r
data(inf19)
y <- inf19[,1]
IGF(y,maxp=35,ic="BIC",spec=2)$tstat.IGF
```
Monthly inflation time series of 19 countries

Description

Monthly inflation time series of 19 countries, 1984.1~2011.3

Usage

data(inf19)

Format

A data frame with 19 countries

AUSTRIA inflation of Austria
BELGIUM inflation of Belgium
CANADA inflation of Canada
DENMARK inflation of Denmark
FINLAND inflation of Finland
FRANCE inflation of France
Greece inflation of Greece
ICELAND inflation of Iceland
ITALY inflation of Italy
JAPAN inflation of Japan
LUXEMBOURG inflation of Luxembourg
NETHERLANDS inflation of Netherlands
NORWAY inflation of Norway
PORTUGAL inflation of Portugal
SPAIN inflation of Spain
SWEDEN inflation of Sweden
SWITZERLAND inflation of Switzerland
UK inflation of UK
USA inflation of USA

Details

Monthly CIP, seasonaly differenced of log CPI of 19 countries

Examples

data(inf19)
head(inf19)
Monthly inflation time series of 20 countries

Description

Usage

data(inf_M)

Format

A data frame with 20 countries

AUSTRALIA inflation of Australia
AUSTRIA inflation of Austria
BELGIUM inflation of Belgium
CANADA inflation of Canada
DENMARK inflation of Denmark
FINLAND inflation of Finland
FRANCE inflation of France
GREECE inflation of Greece
ICELAND inflation of Iceland
ITALY inflation of Italy
JAPAN inflation of Japan
LUXEMBOURG inflation of Luxembourg
NETHERLANDS inflation of Netherlands
NORWAY inflation of Norway
PORTUGAL inflation of Portugal
SPAIN inflation of Spain
SWEDEN inflation of Sweden
SWITZERLAND inflation of Switzerland
UK inflation of UK
USA inflation of USA

Details

Monthly CIP, seasonaly differenced of log CPI of 20 countries

Examples

data(inf_M)
head(inf_M)
Description
Quarterly inflation time series of 19 countries, 1971Q1~2014Q4

Usage
data(inf_Q)

Format
A data frame with 19 countries
AUSTRALIA inflation of Australia
AUSTRIA inflation of Austria
BELGIUM inflation of Belgium
CANADA inflation of Canada
DENMARK inflation of Denmark
FINLAND inflation of Finland
FRANCE inflation of France
GREECE inflation of Greece
ICELAND inflation of Iceland
ITALY inflation of Italy
JAPAN inflation of Japan
LUXEMBOURG inflation of Luxembourg
NETHERLANDS inflation of Netherlands
NORWAY inflation of Norway
PORTUGAL inflation of Portugal
SPAIN inflation of Spain
SWEDEN inflation of Sweden
SWITZERLAND inflation of Switzerland
UK inflation of UK
USA inflation of USA

Details
Quarterly CIP, seasonaly differenced of log CPI of 20 countries

Examples
data(inf_Q)
head(inf_Q)
interpolpval

Extracting critical value and p-value from Table 1 of Hylleberg et. al (1990)

Description

Hylleberg et. al (1990, pp.226-227) offer simulated critical values for seasonal unitr to test. interpolpval() is an internal call and should not be used independently.

Usage

```r
interpolpval(code, stat, N, swarn = TRUE)
```

Arguments

- `code`: Type of HEGY model, this will be automatically identified.
- `N`: Sample size calculating stat above.
- `swarn`: Logical. Whether the warning message for negative p-value will be returned? The default is TRUE.

Value

- `table`: Table for critical value and p-value.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle

References

invest

Investment data of 565 listed companies, 1973-1987

Description

Investment data of 565 listed companies, 1973-1987, from Hansen’s example

Usage

```r
data(invest)
```
Format

A pooled data frame

\begin{verbatim}
invest[,1] investment/assets
invest[,2] Tobin's Q
invest[,3] cash-flow/assets
invest[,4] debt/assets
\end{verbatim}

Details

This is a pooled data frame, without date (T) and cross-section(N) ID columns

Examples

\begin{verbatim}
#data(invest)
#head(invest)
\end{verbatim}

\[\text{ipsHEGY} \]

IPS-HEGY seasonal unit root test in panel data, Otero et al.(2007).

Description

This function performs panel data-based HEGY seasonal unit root test, the asymptotics is based upon Otero et al.(2007).

Usage

\[\text{ipsHEGY(data, itsd, Sel, pmax, CIPS = TRUE)} \]

Arguments

\begin{verbatim}
data Panel data, T by N
itsd Options for c(i,t,sd).
i=1, intercept;=0 no intercept.
t=1, trend;=0 no deterministic trend.
sd=1, season dummy 1:(s-1);=0 no.
Sel Selection of lags, having three options: "signf","bic","aic".
pmax Maximum number of lags for searching optimal criteria.
CIPS Logical. If TRUE, using Pesaran(2007) to account for cross-section correlation. The default is TRUE.
\end{verbatim}
Details

Mode for selectlags has three options, AIC and BIC use R built-in functions for linear model and their meanings are popular and straightforward. "signf" includes only statistically significant lags, and statistically insignificant lags are dropped from regressors. That is, once you select this option, lags of your model may not be continuous.

The critical values for panel HEGY are standard normal for individual t-ratios, however, you need to perform simulation for the critical values of F joint test, at pdR 1.3. To this end, you are encouraged to work this out for yourself: using arima.sim() to sample seasonal time series with unit root (1-order difference) and obtain their statistics under the null using ipsHEGY(), then it is straightforward to obtain critical values.

Otero et al. (2007) provide critical values for quarterly frequency.

Value

`p_hegy` Panel HEGY statistics.

`u_hegy` Individual HEGY statistics of N units.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

References

Examples

```r
data(inf_Q)
dataz<-inf_Q
itsd<-c(1,0,c(1:3))
#Seasonal dummy only takes quarters 1:3,
#because of the presence of common intercept.
Sel<-"bic" # "aic","bic","signf".
pmax<-12

OUT<-ipsHEGY(dataz,itsd,sel,pmax,CIPS=FALSE)
OUT$p_HEGY
OUT$u_HEGY

# Simulation of critical values
```
lagSelect

Select the optimal number of lags, given criteria

Description

Determine the optimal number of lags for dynamic regression

Usage

lagSelect(y, maxp, ic)

Arguments

y A univariate time series data
maxp the max number of lags
ic Information criteria, either "AIC" or "BIC"

Details

Information criteria "AIC" and "BIC" use the R built-in functions.

Value

It returns an integer, indicating the optimal lags

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

Examples

#library(pdR)
data(infl9)
y<-infl9[,1]
#lagSelect(y,maxp=25,ic="BIC")
lookupCVtable

Function for looking up tabulated critical values and associated p-values of HEGY test.

Description

Function for looking up tabulated critical values and associated p-values, Hylleberg et al (1990, Table 1a and Table 1b).

Usage

lookupCVtable(code)

Arguments

code

Type of HEGY model, this will be automatically identified.

Value

table

Table for critical value and p-value.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle

References

model

Estimate specified panel threshold model

Description

This function is the main function estimating threshold regression for function ptm().

Usage

model(r, trim, rep, it, qq1, cf, xt, ct, thresh, tt, qn1, n, qn, cc, yt, ty, k)
Arguments

- \(r \) vector of threshold estimate(s).
- \(\text{trim} \) value of trimmed percentage.
- \(\text{rep} \) number bootstrap repetition.
- \(\text{it} \) number of regime during computation, used in a for loop.
- \(\text{qq1} \) defined parameter.
- \(\text{cf} \) special declaration, e.g. \(\text{lag}() \).
- \(\text{xt} \) regime independent variables.
- \(\text{ct} \) trace of regime dependent variables.
- \(\text{thresh} \) threshold variable.
- \(\text{tt} \) length of time period.
- \(\text{qn1} \) as defined by \(\text{nrow(qq1)} \).
- \(n \) number of cross-section units.
- \(\text{qn} \) number of quantiles to examine.
- \(\text{cc} \) as defined by \(2 \times \log(1 - \sqrt{\text{conf}_\text{lev}}) \).
- \(\text{yt} \) vectorized dependent variable.
- \(\text{ty} \) trace of \(\text{yt} \).
- \(k \) number of regime-independent independent variables.

Note

Original code offered by Dr. B. E. Hansen (http://www.ssc.wisc.edu/~bhansen/).

References

\[\text{pIGF} \]

Panel unit root test of Chang(2002)

Description

Compute the panel unit root test statistic of Chang(2002).

Usage

\[\text{pIGF(datamat, maxp, ic, spec)} \]
productivity

Arguments

- `datanat`: T by N panel data. T is the time length, N is the number of cross-section units.
- `maxp`: the max number of lags
- `ic`: Information criteria, either "AIC" or "BIC".
- `spec`: model specification.
 - =0, no intercept and trend.
 - =1, intercept only.
 - =2, intercept and trend.

Details

This function estimates the panel unit root test based on univariate instrument generating function of (Chang, 2002).

Value

- `panel.tstat`: panel IGF test statistics
- `pvalue`: P-value of the panel.tstat

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

References

Examples

```r
data(inf19)
datam <- inf19
pIGF(datam,maxp=25,ic="BIC",spec=2)
```

productivity

Productivity data of 48 US state, 1970-1986

Description

Gross state production data

Usage

```r
data(productivity)
```
Format

A data frame with US production

state US state index, 1-48
year Year index
y_gsp Gross state product
x1_hwy Expenditure of public utility - highway construction
x2_water Expenditure of public utility - water
x3_other Expenditure of others
x4_private Private consumption of each state
x5_emp Employment rate of each state
x6_unemp Unemployment rate of each state

Examples

data(productivity)
head(productivity)

ptm Threshold specification of panel data

Description

A generalized specification for estimating panel threshold model.

Usage

ptm(dep, ind1, ind2, d, bootn, trimn, qn, conf_lev, t, n)

Arguments

dep Dependent variable
ind1 Independent variables: regime dependent
ind2 Independent variables: regime independent
d Threshold variable
bootn Vector of bootstrap repetition
trimn Vector of trimmed percentage
qn Number of quantiles to examine
conf_lev Confidence level
t Length of time period
n Number of cross-section units
Details

This code fits only balanced panel data. It generalizes the simple code of Dr. Hansen (http://www.ssc.wisc.edu/~bhansen/), allowing multiple (more-than-one) regime-dependent (ind1) variables. We generalize the original code to better fit general need of threshold modeling in panel data. bootn and trimn are vector of 3 by 1, indicating numbers of three corresponding regimes. This version corrects a slight error incurred by argument max_lag, which is used by Hansen to arrange investment data via lags. In this package, users manipulate data to fit personal research to ptm(), hence this argument is omitted lest should degree of freedom will suffer a loss of N.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal University.

References

Examples

```R
# library(pdR)
#data(invest)
#dat<-invest[1:1500,]  # subsetting the first 1500 obs., #for simplicity
#t <- 15  #Length of time period
#nt <- nrow(dat)
#n <- nt/t  # number of cross-section units

#dep<- as.matrix(dat[,1])  # investment/assets
#th1<- as.matrix(dat[,2])  # Tobin's Q
#th2<- as.matrix(dat[,3])  # cash-flow/assets
#ind1<- cbind(th1,th2)  # regime-dep covariates
#d <- as.matrix(dat[,4])  # Threshold variable
#ind2 <- cbind((th1^2),(th1^3),(th1*d))  # regime-indep covariates:
#bootn<-c(100,200,300)  # bootstrapping replications for each threshold estimation
#trimn<-c(0.05,0.05,0.05)  # trimmed percentage for each threshold estimation

#qnc<-400
#conf_lev<-0.95

#Output=ptm(dep,ind1,ind2,d,bootn,trimn,qn,conf_lev,t,n)
#Output[[1]]  #Formatted output of 1st threshold, 2 regimes
#Output[[2]]  #Formatted output of 2nd threshold, 3 regimes
#Output[[3]]  #Formatted output of 3rd threshold, 4 regimes

# In the output, the Regime-dependent Coefficients matrix
# is, from top to bottom, regime-wise.
```
Description

ret() is similar to embed(), but returns a data.frame specified with colnames, not matrix.

Usage

ret(wts, k)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wts</td>
<td>Univariate time series.</td>
</tr>
<tr>
<td>k</td>
<td>k-1 lagged terms.</td>
</tr>
</tbody>
</table>

Details

ret() is similar to embed(), but returns a data.frame with colnames, not matrix. Moreover, unlike embed(), ret() fills lagged cells with NA, instead of trimming them.

Value

A T by k data frame returns. If you need 2 lags, you have to specify k=3, then it returns a data frame with T by 3 data frame, the first column is lag0.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle

References

Examples

data(inf_Q)
y=inf_Q[,2]
ret(y,3)
Description

This function is a subroutine for model(), estimation procedure.

Usage

r_est(y, r, trim, tt, qq1, qn1, qn, n, cf, xt, ct, thresh)

Arguments

y vector of dependent variable.
r numer of regime.
trim value of trimmed percentage.
tt length of time period.
qq1 parameter defined by as.matrix(unique(thresh)[floor(sq*nrow(as.matrix(sort(unique(thresh)))))]).
qn1 as defined by nrow(qq1).
qn number of quantiles to examine.
n parameter of cross-section units.
cf special declaration, e.g. lag().
xt regime independent variables.
ct trace of regime dependent variables.
thresh threshold variable.

References

Original code from Dr. Hansen (http://www.ssc.wisc.edu/~bhansen/).
SeasComponent

Generate a data matrix of seasonal components

Description

Generate a data matrix of seasonal components, having two pattern cycles.

Usage

SeasComponent(wts, type)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wts</td>
<td>A univariate time series with monthly or quarterly frequency.</td>
</tr>
<tr>
<td>type</td>
<td>Types of patterns of seasonal cycle.</td>
</tr>
</tbody>
</table>

- "dummyCycle", generating dummy variables for the pattern of seasonal cycle, Barsky & Miron (1989)

Details

This function generates data matrix for controlling the pattern of seasonal cycles. type="dummyCycle" generates DUMMY variables with season frequency. type="trgCycle" generates trigonometric pattern.

Value

A dataframe returns. Number of columns is determined by frequency.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle

References

Examples

```r
data(inf.Q)
y=inf.Q[,2]
SeasComponent(y,type="dummyCycle")
SeasComponent(y,type="trgCycle")
```
selPabic

Selection of lags.

Description
Lagged coefficient estimates are kept if they meet the inequality condition of AIC or BIC.

Usage
selPabic(lmdet, type, Pmax = NULL)

Arguments
- `lmdet`: Object of `lm()`
- `type`: Take the value of "aic" or "bic".
- `Pmax`: The maximum number of lag orders.

Details
This is an internal function used for HEGY.test(). Beginning with Pmax, the lag order will be drop if its inclusion worsens the minimum condition. Hence, they may not be a regular sequence. For example, for Pmax=10, the selected lags may look like (1,4,5,8,9), rather than 1,2,3,...10.

Value
This function returns the lag orders.

Author(s)
Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle

References

Examples
```r
data(inf.Q)
y=inf.Q[,1]
hegy.out<-HEGY.test(wts=y, itsd=c(1,0,c(1:3)), regvar=0, selectlags=list(mode="aic", Pmax=12))
hegy.out$lagsorder
hegy.out$lagcoefs
```
Description

Lagged coefficient estimates are kept if they are statistically significant.

Usage

```r
selPsignf(lmdet, cvref = 1.65, Pmax = NULL)
```

Arguments

- `lmdet`: Object of `lm()`
- `cvref`: Reference of critical values, the default is 1.65.
- `Pmax`: The maximum number of lag orders.

Details

This is an internal function used for `HEGY.test()`. Beginning with pamx, the lag order will be kept if it is statistically significant. Hence, the lag orders may not be a regular sequence. For example, for `pmax=10`, the selected lags may look like (1, 4, 5, 8, 9), rather than 1, 2, 3, ..., 10.

Value

This function returns the lag orders.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, modified from Javier Lopez-de-Lacalle.

References

Examples

```r
data(inf.Q)
y=inf.Q[,1]
hegy.out<-HEGY.test(wts=y, itsd=c(1,0,c(1:3)),regvar=0, selectlags=list(mode="signf", Pmax=12))
hegy.out$lagsorder
hegy.out$lagcoefs
```
SMPLSplit_est

Estimation of sub-sampled data

Description
A function for estimating the subsampled data.

Usage
SMPLSplit_est(dat,dep,indep,th,plot)

Arguments
- dat: The data in either data.frame or matrix
- dep: The number of column of dependent variable
- indep: The number of columns of regime dependent independent variables:
- th: The threshold variable
- plot: =1, plot; =0, do not plot

Details
This code estimates the parameters of sub-sampled data. It generalizes the simple code of Dr. Hansen, allowing Heteroskedastic Errors (White Corrected).

Note
Original code offered by Dr. B. E.Hansen (http://www.scc.wisc.edu/~bhansen/).

References

SMPLSplit_example

Example code for sample splitting

Description
A sample code for learning sample splitting.

Usage
SMPLSplit_example(data,dep,indep,th1,th2,trim_per,rep,plot)
Arguments

data The data in either data.frame or matrix

dep The number of column of dependent variable

indep The number of columns of regime dependent independent variables:
th1 The first threshold variable

th2 The second threshold variable

trim_per Trimmed percentage

rep Number of bootstrap repetition

plot =1, plot; =0, do not plot

Details

This code is the learning example for learning Hansen’s econometric sample splitting. I detailed the description of each threshold stage.

Note

Original code offered by Dr. B. E. Hansen (http://www.ssc.wisc.edu/~bhansen/).

References

Examples

Not run, because of bootstrap replication takes time. Users may unmark # and run.
data("dur_john")
#rep <- 500
#trim_per <- 0.15
#dep <- 1
#indep <- c(2,3,4,5)
#th1 <- 6
#th2 <- 7
#OUT=SMPLSplit_example(data=dur_john,dep,indep,th1,th2,trim_per,rep,plot=1)
#OUT$TEST
#OUT$Hypothesis
#OUT$Threshold
#stat=matrix(as.numeric(OUT$TEST),byrow = TRUE,8,2)
#colnames(stat)=c("F-Stat","P-value")
#rownames(stat)=OUT$Hypothesis
#stat
SMPLSplit_het Testing for sample splitting

Description

A function for testing sample split given subsampled data.

Usage

SMPLSplit_het(data, dep, indep, th, trim_per, rep, plot)

Arguments

data: The data in either data.frame or matrix

dep: The number of columns of dependent variable

indep: The number of columns of regime dependent independent variables:

th: The threshold variable

trim_per: Trimmed percentage

rep: Number of bootstrap repetition

plot: =1, plot; =0, do not plot

Details

This code tests for the presence of threshold. It generalizes the simple code of Dr. Hansen, allowing Heteroskedastic Errors (White Corrected).

Note

Original code offered by Dr. B. E. Hansen (http://www.ssc.wisc.edu/~bhansen/).

References

sse_calc

A subroutine of `model()`

Description

SSE calculation

Usage

```
sse_calc(y, x)
```

Arguments

- `y`: This function is a sub-routine for model(), calculating SSE of each regression vector of dependent variable.
- `x`: Matrix of independent variables.

References

Original code from Dr. Hansen (http://www.ssc.wisc.edu/~bhansen/).

tbar

Compute the recursive mean

Description

Compute the recursive mean of each series

Usage

```
tbar(x)
```

Arguments

- `x`: A univariate time series data

Details

This function computes the recursive mean

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>
Examples

data(inf19)
y <- inf19[,1]
tbar(y)

thr_sse a subroutine calculating SSE

Description

This function is a sub-routine for model(), calculating SSE of each threshold regression.

Usage

thr_sse(y, q, r, cf, xt, ct, thresh, tt, n)

Arguments

y parameter.
q q1 in model().
r parameter.
cf as defined in model().
xt as defined in model().
ct as defined in model().
thresh as defined in model().
tt as defined in model().
n as defined in model().

References

Original code from Dr. Hansen (http://www.ssc.wisc.edu/~bhansen/).
Description

Estimation of trace.

Usage

\texttt{tr(y, tt, n)}

Arguments

This function is a sub-routine for model(), calculating trace of matrix data vector.

\textit{\&t} time period length.

\textit{n} number of cross-section units.

References

Original code from Dr. Hansen (http://www.ssc.wisc.edu/~bhansen/).
Index

*Topic Seasonal unit root test
 HEGY.test, 8
*Topic instrument generating functions
 IGF, 12
 *Topic unit root
 IGF, 12

bank_income, 3

ret, 26

SeasComponent, 28
selPabic, 29
selPsignf, 30
SMPLSplit_est, 31
SMPLSplit_example, 31
SMPLSplitHet, 33
sse_calc, 34
tbar, 34
thr_sse, 35
tr, 36