Package ‘pda’
March 8, 2023

Type Package
Title Privacy-Preserving Distributed Algorithms
Version 1.2.6
Date 2023-03-06

Description A collection of privacy-preserving distributed algorithms for conducting multi-site data analyses. The regression analyses can be linear regression for continuous outcome, logistic regression for binary outcome, Cox proportional hazard regression for time-to event outcome, Poisson regression for count outcome, or multi-categorical regression for nominal or ordinal outcome. The PDA algorithm runs on a lead site and only requires summary statistics from collaborating sites, with one or few iterations. The package can be used together with the online system (https://pda-ota.pdamethods.org/) for safe and convenient collaboration. For more information, please visit our software websites: https://github.com/Penncil/pda, and https://pdamethods.org/.

Maintainer Jiajie Chen <jiajie.chen@pennmedicine.upenn.edu>

License Apache License 2.0

Suggests imager, lme4

Depends R (>= 4.1.0)

Imports Rcpp (>= 0.12.19), stats, httr, rvest, jsonlite, data.table, survival, minqa, glmnet, MASS, numDeriv, metafor, ordinal, plyr

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.2

Encoding UTF-8

LazyData true

NeedsCompilation yes

Author Chongliang Luo [aut],
Rui Duan [aut],
Mackenzie Edmondson [aut],
Jiayi Tong [aut],
Xiaokang Liu [aut],
Kenneth Locke [aut],
Jiajie Chen [cre],
Yong Chen [aut],
Penn Computing Inference Learning (PennCIL) lab [cph]
Repository CRAN
Date/Publication 2023-03-08 16:00:02 UTC

R topics documented:

```
ADAP_data ................................................................. 2
covid ................................................................. 3
cs ................................................................. 3
getCloudConfig ......................................................... 4
LOS ................................................................. 4
lung2 ................................................................. 5
ODACAT_nominal ...................................................... 5
ODACAT_ordinal ...................................................... 6
pda ................................................................. 6
pdaGet ......................................................... 9
pdaList ....................................................... 10
pdaPut ....................................................... 10
pdaSync .................................................... 11
```

Index 12

<table>
<thead>
<tr>
<th>ADAP_data</th>
<th>ADAP simulated data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAP_data</td>
<td>ADAP simulated data</td>
</tr>
</tbody>
</table>

Description

A simulated data set for ADAP demonstration

Usage

ADAP_data

Format

A list containing the following elements:

- **sites** site id, 300 'site1', 300 'site2', 300 'site3'
- **status** binary outcome of length 900
- **x** 900 by 49 matrix generated by standard normal distribution, representing the covariates
covid

COVID-19 LOS and mortality data

Description
A simulated data set of hospitalization Length of Stay (LOS) and mortality from 6 sites

Usage
covid

Format
A data frame with 2100 rows and 6 variables:
site site id, 600 'site1', 500 'site2', 400 'site3', 300 'site4', 200 'site5', 100 'site6'
age continuous age in year, min 3 max 97
sex 2 categories, '1' for male and '0' for female
lab lab test results, continuous value ranging from 2.3 to 97.4
los LOS in days, ranging from 1 to 29
death mortality status, '1' for death and '0' for alive.

cs

CrabSatellites data

Description
A data set modified from the CrabSatellites data in countreg package (see demo(ODAH)).

Usage
cs

Format
A data frame containing 173 observations on 4 variables.
site Simulated site id, 85 'site1' and 88 'site2'.
satellites Number of satellites. Treated as (zero-inflated) count outcome in ODAH
width Carapace width (cm).
weight Weight (kg).

Source
https://rdrr.io/rforge/countreg/man/CrabSatellites.html
getCloudConfig

Description

gather cloud settings into a list

Usage

getCloudConfig(site_id, dir, uri, secret)

Arguments

- site_id: site identifier
- dir: shared directory path if flat files
- uri: web uri if web service
- secret: web token if web service

Value

A list of cloud parameters: site_id, secret and uri

See Also

pda

LOS

Length of Stay data

Description

A simulated data set of hospitalization Length of Stay (LOS) from 3 sites

Usage

LOS

Format

A data frame with 1000 rows and 5 variables:

- **site**: site id, 500 'site1', 400 'site2' and 100 'site3'
- **age**: 3 categories, 'young', 'middle', and 'old'
- **sex**: 2 categories, 'M' for male and 'F' for female
- **lab**: lab test results, continuous value ranging from 0 to 100
- **los**: LOS in days, ranging from 1 tp 28. Treated as continuous outcome in DLM
lung2
Lung cancer survival time data

Description
A data set modified from the lung data in survival package (see demo(ODAC)).

Usage
`lung2`

Format
A data frame with 228 rows and 5 variables:
- **site**: simulated site id, 86 'site1', 83 'site2' and 59 'site3'
- **time**: survival time in days
- **status**: censoring status 0=censored, 1=dead
- **age**: age in years
- **sex**: 1 for female and 0 for male

Source
https://CRAN.R-project.org/package=survival

ODACAT_nominal
ODACAT simulated data

Description
A simulated data set for ODACAT demonstration

Usage
`ODACAT_nominal`

Format
A data frame with 300 rows and 5 variables:
- **id.site**: site id, 102 'site1', 100 'site2', 98 'site3'
- **outcome**: 3-category outcome, possible values are 1,2,3. Category 3 will be used as reference
- **X1**: the first covariate, continuous
- **X2**: the second covariate, binary
- **X3**: the third covariate, binary
ODACAT_ordinal
ODACAT simulated data

Description

A simulated data set for ODACAT demonstration

Usage

ODACAT_ordinal

Format

A data frame with 300 rows and 5 variables:

- **id.site** site id, 105 'site1', 105 'site2', 90 'site3'
- **outcome** 3-category outcome, possible values are 1, 2, 3. Category 3 will be used as reference
- **X1** the first covariate, continuous
- **X2** the second covariate, binary
- **X3** the third covariate, binary

pda
PDA: Privacy-preserving Distributed Algorithm

Description

Fit Privacy-preserving Distributed Algorithms for linear, logistic, Poisson and Cox PH regression with possible heterogeneous data across sites.

Usage

pda(ipdata, site_id, control, dir, uri, secret, hosdata)

Arguments

- **ipdata** Local IPD data in data frame, should include at least one column for the outcome and one column for the covariates
- **site_id** Character site name
- **control** pda control data
- **dir** directory for shared flat file cloud
- **uri** Universal Resource Identifier for this run
- **secret** password to authenticate as site_id on uri
- **hosdata** hospital-level data, should include the same name as defined in the control file
Value

control
control

References

(ADAP) Xiaokang Liu, et al. (2021) ADAP: multisite learning with high-dimensional heterogeneous data via A Distributed Algorithm for Penalized regression.

(dGEM) Jiayi Tong, et al. (2022) dGEM: Decentralized Generalized Linear Mixed Effects Model

See Also

pdaPut, pdaList, pdaGet, getCloudConfig and pdaSync.

Examples

require(survival)
require(data.table)
require(pda)
data(lung)

data(lung)

In the toy example below we aim to analyze the association of lung status with
age and sex using logistic regression, data(lung) from 'survival', we randomly
```
## assign to 3 sites: 'site1', 'site2', 'site3'. we demonstrate using PDA ODAL can
## obtain a surrogate estimator that is close to the pooled estimate. We run the
## example in local directory. In actual collaboration, account/password for pda server
## will be assigned to the sites at the server https://pda.one.
## Each site can access via web browser to check the communication of the summary stats.
## for more examples, see demo(ODAC) and demo(ODAP)

# Create 3 sites, split the lung data amongst them
sites = c('site1', 'site2', 'site3')
set.seed(42)
lung2 <- lung[,c('status', 'age', 'sex')]
lung2$sex <- lung2$sex - 1
lung2$status <- ifelse(lung2$status == 2, 1, 0)
lung_split <- split(lung2, sample(1:length(sites), nrow(lung), replace=TRUE))
## fit logistic reg using pooled data
fit.pool <- glm(status ~ age + sex, family = binomial, data = lung2)

# ############################ STEP 1: initialize ############################
control <- list(project_name = 'Lung cancer study',
          step = 'initialize',
          sites = sites,
          heterogeneity = FALSE,
          model = 'ODAL',
          family = 'binomial',
          outcome = 'status',
          variables = c('age', 'sex'),
          optim_maxit = 100,
          lead_site = 'site1',
          upload_date = as.character(Sys.time()) )

## run the example in local directory:
## specify your working directory, default is the tempdir
mydir <- tempdir()
## assume lead site1: enter "1" to allow transferring the control file
pda(site_id = 'site1', control = control, dir = mydir)
## in actual collaboration, account/password for pda server will be assigned, thus:
## Not run: pda(site_id = 'site1', control = control, uri = 'https://pda.one', secret='abc123')
## you can also set your environment variables, and no need to specify them in pda:
## Not run: Sys.setenv(PDA_USER = 'site1', PDA_SECRET = 'abc123', PDA_URI = 'https://pda.one')
## Not run: pda(site_id = 'site1', control = control)

## assume remote site3: enter "1" to allow tranferring your local estimate
pda(site_id = 'site3', ipdata = lung_split[[3]], dir=mydir)

## assume remote site2: enter "1" to allow transferring your local estimate
pda(site_id = 'site2', ipdata = lung_split[[2]], dir=mydir)

## assume lead site1: enter "1" to allow transferring your local estimate
## control.json is also automatically updated
pda(site_id = 'site1', ipdata = lung_split[[1]], dir=mydir)
```
```
## if lead site1 initialized before other sites,
## lead site1: uncomment to sync the control before STEP 2
## Not run: pda(site_id = 'site1', control = control)
## Not run: config <- getCloudConfig(site_id = 'site1')
## Not run: pdaSync(config)

# STEP 2: derivative

' assume remote site3: enter "1" to allow transferring your derivatives
pda(site_id = 'site3', ipdata = lung_split[[3]], dir=mydir)

' assume remote site2: enter "1" to allow transferring your derivatives
pda(site_id = 'site2', ipdata = lung_split[[2]], dir=mydir)

' assume lead site1: enter "1" to allow transferring your derivatives
pda(site_id = 'site1', ipdata = lung_split[[1]], dir=mydir)

# STEP 3: estimate

' assume lead site1: enter "1" to allow transferring the surrogate estimate
pda(site_id = 'site1', ipdata = lung_split[[1]], dir=mydir)

' the PDA ODAL is now completed!
' All the sites can still run their own surrogate estimates and broadcast them.

' compare the surrogate estimate with the pooled estimate
config <- getCloudConfig(site_id = 'site1', dir=mydir)
fit.odal <- pdaGet(name = 'site1_estimate', config = config)
cbind(b.pool=fit.pool$coef,
    b.odal=fit.odal$btilde,
    sd.pool=summary(fit.pool)$coef[,2],
    sd.odal=sqrt(diag(solve(fit.odal$Htilde)/nrow(lung2))))

# see demo(ODAL) for more optional steps
```

pdaGet

Function to download json and return as object

Description

Function to download json and return as object

Usage

```r
pdaGet(name, config)
```

Arguments

- `name` of file
- `config` cloud configuration
pdaPut

Value
A list of data objects from the json file on the cloud

See Also
pda

pdaList
Function to list available objects

Description
Function to list available objects

Usage
pdaList(config)

Arguments
config
a list of variables for cloud configuration

Value
A list of (json) files on the cloud

See Also
pda

pdaPut
Function to upload object to cloud as json

Description
Function to upload object to cloud as json

Usage
pdaPut(obj,name,config)

Arguments
obj
R object to encode as json and uploaded to cloud
name
of file
config
a list of variables for cloud configuration
pdaSync

Value

NONE

See Also

pda

Description

update pda control if ready (run by lead)

Usage

pdaSync(config)

Arguments

config cloud configuration

Value

control

See Also

pda
Index

* datasets
 ADAP_data, 2
 covid, 3
 cs, 3
 LOS, 4
 lung2, 5
 ODACAT_nominal, 5
 ODACAT_ordinal, 6

ADAP_data, 2

covid, 3
cs, 3

getCloudConfig, 4

LOS, 4
lung2, 5

ODACAT_nominal, 5
ODACAT_ordinal, 6

pda, 6
pdaGet, 9
pdaList, 10
pdaPut, 10
pdaSync, 11