Package ‘peacesciencer’

June 21, 2021

Type Package

Title Various Tools and Data for Quantitative Peace Science

Version 0.5.0

Depends R (>= 3.5.0)

Maintainer Steve Miller <steven.v.miller@gmail.com>

Description These are useful tools and data sets for the study of quantitative peace science. The goal for this package is to include tools and data sets for doing original research that mimics well what a user would have to previously get from a software package that may not be well-sourced or well-supported. Those software bundles were useful the extent to which they encourage replications of long-standing analyses by starting the data-generating process from scratch. However, a lot of the functionality can be done relatively quickly and more transparently in the R programming language.

License GPL-2

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.1.1

URL https://github.com/svmiller/peacesciencer/

BugReports https://github.com/svmiller/peacesciencer/issues/

Imports bib2df, lubridate, magrittr, dplyr, geosphere, tidyr, stringr, rlang, stevemisc (>= 1.1.0)

Suggests countrycode, tibble, testthat, knitr, rmarkdown

NeedsCompilation no

Author Steve Miller [aut, cre] (<https://orcid.org/0000-0003-4072-6263>)

Repository CRAN

Date/Publication 2021-06-21 21:20:02 UTC
\textbf{R topics documented:}

\begin{verbatim}
add_archigos .. 3
add_atop_alliance ... 4
add_capital_distance .. 5
add_ccode_to_gw .. 6
add_contiguity .. 7
add_cow_alliance .. 9
add_cow_majors ... 10
add_cow_mids ... 11
add_cow_trade .. 12
add_cow_wars ... 13
add_creg_fractionalization 15
add_democracy ... 16
add_gml_mids ... 17
add_gwcode_to_cow ... 19
add_igos .. 20
add_minimum_distance .. 21
add_nmc ... 22
add_peace_years .. 23
add_rugged_terrain .. 25
add_sdp_gdp ... 27
add_strategic_rivalries 28
add_ucdp_acd ... 29
add_ucdp_onsets ... 31
archigos .. 32
atop_alliance ... 33
capitals .. 34
ccode_democracy ... 35
cow_alliance ... 36
cow_contdir .. 37
cow_ddy .. 38
cow_gw_years ... 38
cow_igo_ndy .. 39
cow_igo_sy .. 40
cow_majors .. 41
cow_mid_ddydisps .. 42
cow_mid_dirdisps ... 43
cow_mid_disps ... 44
cow_mindist .. 45
cow_nmc ... 46
cow_sdp_gdp ... 47
cow_states .. 48
cow_trade_ndy ... 49
cow_trade_sy ... 50
cow_war_inter .. 50
cow_war_intra ... 52
create_dyadyears ... 53
\end{verbatim}
Description

`add_archigos()` allows you to add some information about leaders to dyad-year or state-year data. The function leans on an abbreviated version of the data, which also comes in this package.

Usage

```r
add_archigos(data)
```

Arguments

data a dyad-year data frame (either "directed" or "non-directed") or state-year data frame

Details

The function leans on attributes of the data that are provided by the `create_dyadyear()` or `create_stateyear()` function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.
Value

add_archigos() takes a dyad-year or state-year data frame and adds a few summary variables based off the leader-level data. These include whether there was a leader transition in the state-year (or first/second state in the dyad-year), whether there was an "irregular" leader transition, the number of leaders in the state-year, the unique leader ID for Jan. 1 of the year, and the unique leader ID for Dec. 31 of the year.

Author(s)

Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_archigos()

create_stateyears() %>% add_archigos()
add_capital_distance

Value

add_atop_alliance() takes a dyad-year data frame and adds information about the alliance pledge in that given dyad-year from the ATOP data. These include whether there was an alliance with a defense pledge, an offense pledge, neutrality pledge, non-aggression pledge, or pledge for consultation in time of crisis.

Author(s)

Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_atop_alliance()

Description

add_capital_distance() allows you to add capital-to-capital distance to a dyad-year or state-year data frame. The capitals are coded in the capitals data frame, along with their latitudes and longitudes. The distance variable that emerges capdist is calculated using the "Vincenty" method (i.e. "as the crow flies") and is expressed in kilometers.

Usage

add_capital_distance(data)

Arguments

data a dyad-year data frame (either "directed" or "non-directed") or state-year data frame

Details

The function leans on attributes of the data that are provided by the create_dyadyear() or create_stateyear() function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.
add_capital_distance() takes a dyad-year or state-year data frame and adds the capital-to-capital distance between the first state and the second state (in dyad-year data) or the minimum capital-to-capital distance for a given state in a given year. A minor note about this function: cases of capital transition are recorded in the capitals data but, in the conversion to capital-years (and eventual merging into a dyad-year data frame), the Jan. 1 capital is used for calculating distances.

Author(s)

Steven V. Miller

Examples

```r
# just call `library(tidyverse)` at the top of the your script
library(magrittr)
cow_ddy %>% add_capital_distance()
create_stateyears() %>% add_capital_distance()
```

add_ccode_to_gw

Add Correlates of War state system codes to dyad-year or state-year data with Gleditsch-Ward state codes.

Description

add_ccode_to_gw() allows you to match, as well as one can, Correlates of War system membership data with Gleditsch-Ward system data.

Usage

```r
add_ccode_to_gw(data)
```

Arguments

data a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.

Details

The data-raw directory on the project’s Github contains more information about the underlying data that assists in merging in these codes.

The user will invariably need to be careful and ask why they want these data included. The issue here is that both have a different composition and the merging process will not (and cannot) be perfect.
We can note that a case like Gran Colombia is not too difficult to handle (i.e. CoW does not have this entity and none of the splinter states conflict with CoW’s coding). However, there is greater weirdness with a case like the unification of West Germany and East Germany. Herein, Correlates of War treats the unification as the reappearance of the original Germany whereas Gleditsch-Ward treat the unification as an incorporation of East Germany into West Germany. The script will *not* create state-year or dyad-year duplicates for the Gleditsch-Ward codes. The size of the original data remain unchanged. However, there will be some year duplicates for various Correlates of War codes (prominently Serbia and Yugoslavia in 2006). Use with care. You can also use the countrycode package. Whether you use this function or the countrycode package, do *not* do this kind of merging without assessing the output.

Value

`add_ccode_to_gw()` takes a dyad-year data frame or state-year data frame that already has Gleditsch-Ward state system codes and adds their corollary Correlates of War codes.

Author(s)

Steven V. Miller

Examples

```r
# just call `library(tidyverse)` at the top of your script
library(magrittr)

create_dyadyears(system = "gw") %>% add_ccode_to_gw()
create_stateyears(system = 'gw') %>% add_ccode_to_gw()
```

add_contiguity
Add Correlates of War direct contiguity information to a dyad-year or state-year data frame

Description

`add_contiguity()` allows you to add Correlates of War contiguity data to a dyad-year or state-year data frame.

Usage

`add_contiguity(data)`

Arguments

- **data**
a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame
add_contiguity

Details

The contiguity codes in the dyad-year data range from 0 to 5. 1 = direct land contiguity. 2 = separated by 12 miles of water or fewer (a la Stannis Baratheon). 3 = separated by 24 miles of water or fewer (but more than 12 miles). 4 = separated by 150 miles of water or fewer (but more than 24 miles). 5 = separated by 400 miles of water or fewer (but more than 150 miles).

Importantly, 0 are the dyads that are not contiguous at all in the CoW contiguity data. This is a conscious decision on my part as I do not think of the CoW's contiguity data as exactly ordinal. Cross-reference CoW’s contiguity data with the minimum distance data in this exact package to see how some dyads that CoW codes as not contiguous are in fact very close to each other, sometimes even land-contiguous. For example, Zimbabwe and Namibia are separated by only about a few hundred feet of water at that peculiar intersection of the Zambezi River where the borders of Zambia, Botswana, Namibia, and Zimbabwe meet. There is no contiguity record for this in the CoW data. There are other cases where contiguity records are situationally missing (e.g. India-Bangladesh, and Bangladesh-Myanmar in 1971) or other cases where states are much closer than CoW’s contiguity data imply (e.g. Pakistan and the Soviet Union were separated by under 30 kilometers of Afghan territory). The researcher is free to recode these 0s to be, say, 6s, but this is why peacesciencer does not do this.

For additional clarity, the "master records" produce duplicates for cases when the contiguity relationship changed in a given year. This function returns the *minimum* contiguity relationship observed in that given year. There should be no duplicates in the returned output.

Value

`add_contiguity()` takes a dyad-year data frame and adds information about the contiguity relationship based on the "master records" for the Correlates of War direct contiguity data (v. 3.2). If the data are dyad-year, the function returns the lowest contiguity type observed in the dyad-year (if contiguity is observed at all). If the data are state-year, the data return the total number of land and sea borders calculated from these master records.

Author(s)

Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_contiguity()

create_stateyears() %>% add_contiguity()
Add Correlates of War alliance data to a dyad-year data frame

Description

add_cow_alliance() allows you to add Correlates of War alliance data to a dyad-year data frame.

Usage

add_cow_alliance(data)

Arguments

data: a dyad-year data frame (either "directed" or "non-directed")

Details

Duplicates in the original directed dyad-year alliance data were pre-processed. Check cow_alliance for more information.

Value

add_cow_alliance() takes a dyad-year data frame and adds information about the alliance pledge in that given dyad-year. These include whether there was an alliance with a defense pledge, neutrality pledge, non-aggression pledge, or pledge for consultation in time of crisis (entente).

Author(s)

Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_cow_alliance()
add_cow_majors

Add Correlates of War major power information to a dyad-year or state-year data frame

Description

add_cow_majors() allows you to add Correlates of War major power variables to a dyad-year or state-year data frame.

Usage

add_cow_majors(data)

Arguments

data: a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.

Details

The function leans on attributes of the data that are provided by the create_dyadyear() or create_stateyear() function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.

Value

add_cow_majors() takes a dyad-year data frame or state-year data frame and adds information about major power status for the given state or dyad in that year. If the data are dyad-year, the function returns two columns for whether the first state (i.e. ccode1) or the second state (i.e. ccode2) are major powers in the given year, according to the Correlates of War. 1 = is a major power. 0 = is not a major power. If the data are state-year, the function returns just one column (cowmaj) for whether the state was a major power in a given dyad-year.

Author(s)

Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of your script
library(magrittr)
add_cow_mids

cow_ddy %>% add_cow_majors()

add_cow_mids

Add Correlates of War (CoW) Militarized Interstate Dispute (MID) data to dyad-year data frame

Description

add_cow_mids() merges in CoW’s MID data to a dyad-year data frame. The current version of the CoW-MID data is version 5.0.

Usage

add_cow_mids(data, keep)

Arguments

data a dyad-year data frame (either "directed" or "non-directed")

keep an optional parameter, specified as a character vector, passed to the function in a `select(one_of(.))` wrapper. This allows the user to discard unwanted columns from the directed dispute data so that the output does not consume too much space in memory. Note: the Correlates of War system codes (ccode1, ccode2), the observation year (year), the presence or absence of an ongoing MID (cowmidongoing), and the presence or absence of a unique MID onset (cowmidonset) are *always* returned. It would be foolish and self-defeating to eliminate those observations. The user is free to keep or discard anything else they see fit.

If keep is not specified in the function, the ensuing output returns everything.

Details

Dyads are capable of having multiple disputes in a given year, which can create a problem for merging into a complete dyad-year data frame. Consider the case of France and Italy in 1860, which had three separate dispute onsets that year (MID#0112, MID#0113, MID#0306), as illustrative of the problem. This merging process employs several rules to whittle down these duplicate dyad-years for merging into a dyad-year data frame.

Value

add_cow_mids() takes a dyad-year data frame and adds dyad-year dispute information from the CoW-MID data.

Author(s)

Steven V. Miller
References

Examples

```r
# just call 'library(tidyverse)\' at the top of the your script
library(magrittr)
cow_ddy %>% add_cow_mids()

# keep just the dispute number and Side A/B identifiers
cow_ddy %>% add_cow_mids(keep=c("dispnum","sidea1", "sidea2"))
```

```r
add_cow_trade

Add Correlates of War trade data to a dyad-year or state-year data frame
```

Description

`add_cow_trade()` allows you to add Correlates of War alliance data to a dyad-year data frame

Usage

```r
add_cow_trade(data)
```

Arguments

- **data**
 - a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame

Details

For the dyad-year data, there must be some kind of information loss in order to work within the limited space available to this package. This package loads a truncated version of the data in which the trade values are rounded to integers in order to greatly reduce the disk space for this package. I do not think this to be terribly problematic, though I admit I do not like it. If this is a problem for your research question, you may want to consider not using this function for dyad-year data.
add_cow_wars

Value

add_cow_trade() takes a dyad-year data frame or state-year data frame and adds information about the volume of trade in that given dyad-year or state-year. For the state-year data, these are minimally the sum of all imports and the sum of all exports. For dyad-year data, this function returns the value of imports in current million USD in the first country from the second country (and vice-versa) along with their "smooth" equivalents.

Author(s)

Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_cow_trade()

add_cow_wars Add Correlates of War war data to dyad-year or state-year data frame.

Description

add_cow_wars() allows you to add UCDP Armed Conflict data to a state-year data frame

Usage

add_cow_wars(data, type, intratype = "all")

Arguments

data state-year data frame
type the type of war you want to add. Options include "inter" or "intra".
intratype the types of armed conflicts the user wants to consider, specified as a character vector. Options include "local issues" and "central control". Applicable only if type is "intra".
Details

Intra-state war data are coerced into true state-year data by first selecting the duplicate state-years on unique onsets, then whichever war was the deadliest. The inter-state war data work functionally the same way.

On intra-state wars: the primary_state is used to identify the government principally fighting the domestic non-state actor over central control over local issues. Internationalized civil wars are included in the data, but not for outside actors that intervene on behalf of the government or rebel group.

Extra-state war functionality is not available right now as I try to figure out the demand for its use.

Value

`add_cow_wars()` takes a dyad-year or state-year data frame and returns information about wars from either the inter-state or intra-state war data set from the Correlates of War. The function works for state-year data when the user wants information about extra-state wars or intra-state wars. The function works for dyad-year data when the user wants information about inter-state wars.

Author(s)

Steven V. Miller

References

Examples

```r
# just call `library(tidyverse)` at the top of the your script
library(magrittr)

create_stateyears(system = "cow") %>%
  add_cow_wars(type = "intra", intratype = "central control")

create_stateyears(system = "cow") %>%
  add_cow_wars(type = "intra", intratype = "local issues")

cow_ddy %>% add_cow_wars(type = "inter")
```
add_creg_fractionalization

Add fractionalization/polarization estimates from CREG to your dyad-year or state-year data

Description

add_creg_fractionalization() allows you to add information about the fractionalization/polarization of a state’s ethnic and religious groups to your dyad-year or state-year data.

Usage

add_creg_fractionalization(data)

Arguments

data a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame

Details

Please see the information for the underlying data creg, and the associated R script in the data-raw directory, to see how these data are generated.

The creg data have a few duplicates. When standardizing to true CoW codes, the duplicates concern Serbia/Yugoslavia in 1991 and 1992 as well as Russia/the Soviet Union in 1991. When standardizing to true Gleditsch-Ward codes, the duplicates concern Serbia/Yugoslavia in 1991 and Russia/Soviet Union in 1991. In those cases, the function does a group-by arrange for the more fractionalized/polarized estimate under the (reasonable, I think) assumption that these are estimates prior to the dissolution of those states. If this is problematic, feel free to consult the underlying data and merge those in manually.

The underlying data have both Gleditsch-Ward codes and Correlates of War codes. The merge it makes depends on what you declare as the "master" system at the top of the pipe (i.e. in create_dyadyears() or create_stateyears()). If, for example, you run create_stateyears(system="cow") and follow it with add_gwcode_to_cow(), the merge will be on the Correlates of War codes and not the Gleditsch-Ward codes. You can see the script mechanics to see how this is achieved.

Value

add_creg_fractionalization() takes a dyad-year data frame or state-year data frame, whether the primary state identifiers are from the Correlates of War system or the Gleditsch-Ward system, and returns information about the fractionalization and polarization of the state(s) in a given year. The function returns four additional columns when the data are state-year and returns eight additional columns when the data are dyad-year. The columns returned are the fractionalization of ethnic groups, the polarization of ethnic groups, the fractionalization of religious groups, and the polarization of religious groups. When the data are dyad-year, the return doubles because it provides information for both states in the dyad.
Author(s)
Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)
cow_ddy %>% add_creg_fractionalization()
create_stateyears() %>% add_creg_fractionalization()
create_stateyears(system = "gw") %>% add_creg_fractionalization()

add_democracy
Add democracy information to dyad-year or state-year data.

Description
add_democracy() allows you to add estimates of democracy to either dyad-year or state-year data.

Usage
add_democracy(data)

Arguments
data
a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.

Details
The function leans on attributes of the data that are provided by the create_dyadyear() or create_stateyear() function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.
add_gml_mids

Value

add_democracy() takes a dyad-year data frame or state-year data frame and adds information about the level of democracy for the state or two states in the dyad in a given year. If the data are dyad-year, the function adds six total columns for the first state (i.e. ccode1 or gwcode1) and the second state (i.e. ccode2 or gwcode2) about the level of democracy measured by the Varieties of Democracy project (v2x_polyarchy), the Polity project (polity2), and Xavier Marquez’ QuickUDS extensions/estimates. If the data are state-year, the function returns three additional columns to the original data that contain that same information for a given state in a given year.

Author(s)

Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_democracy()

create_stateyears(system="gw") %>% add_democracy()

create_stateyears(system="cow") %>% add_democracy()

add_gml_mids

Add Gibler-Miller-Little (GML) Militarized Interstate Dispute (MID) data to dyad-year data frame

Description

add_gml_mids() merges in GML’s MID data to a dyad-year data frame. The current version of the GML MID data is 2.1.1.
Usage

add_gml_mids(data, keep)

Arguments

data a dyad-year data frame (either "directed" or "non-directed")
keep an optional parameter, specified as a character vector, passed to the function in a `select(one_of(.))` wrapper. This allows the user to discard unwanted columns from the directed dispute data so that the output does not consume too much space in memory. Note: the Correlates of War system codes (`ccode1`, `ccode2`), the observation year (`year`), the presence or absence of an ongoing MID (`gmlmidongoing`), and the presence or absence of a unique MID onset (`gmlmidonset`) are *always* returned. It would be foolish and self-defeating to eliminate those observations. The user is free to keep or discard anything else they see fit.
If `keep` is not specified in the function, the ensuing output returns everything.

Details

Dyads are capable of having multiple disputes in a given year, which can create a problem for merging into a complete dyad-year data frame. Consider the case of France and Italy in 1860, which had three separate dispute onsets that year (MID#0112, MID#0113, MID#0306), as illustrative of the problem. This merging process employs several rules to whittle down these duplicate dyad-years for merging into a dyad-year data frame.

Value

`add_gml_mids()` takes a dyad-year data frame and adds dyad-year dispute information from the GML MID data.

Author(s)

Steven V. Miller

References

Examples

```r
# just call `library(tidyverse)` at the top of the your script
library(magrittr)
cow_ddy %>% add_gml_mids()

# keep just the dispute number and Side A/B identifiers
cow_ddy %>% add_gml_mids(keep=c("dispnum","sidea1", "sidea2"))
```
add_gwcode_to_cow

| add_gwcode_to_cow | Add Gleditsch-Ward state system codes to dyad-year or state-year data with Correlates of War state codes. |

Description

`add_gwcode_to_cow()` allows you to match, as well as one can, Gleditsch-Ward system membership data with Correlates of War state system membership data.

Usage

```r
add_gwcode_to_cow(data)
```

Arguments

- `data` a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.

Details

The `data-raw` directory on the project’s Github contains more information about the underlying data that assists in merging in these codes.

The user will invariably need to be careful and ask why they want these data included. The issue here is that both have a different composition and the merging process will not (and cannot) be perfect. We can note that a case like Serbia/Yugoslavia is not too difficult to handle (since "Serbia" never overlaps with "Yugoslavia" in the Gleditsch-Ward data and Correlates of War understands Serbia as the predecessor state, dominant state, and successor state to Yugoslavia). However, there is greater weirdness with a case like Yemen/Yemen Arab Republic. The script will *not* create state-year or dyad-year duplicates for the Correlates of War codes. The size of the original data remain unchanged. However, there will be some year duplicates for various Gleditsch-Ward codes (e.g. Yemen, again). Use with care. You can also use the countrycode package. Whether you use this function or the countrycode package, do *not* do this kind of merging without assessing the output.

Value

`add_gwcode_to_cow()` takes a dyad-year data frame or state-year data frame that already has Correlates of War state system codes and adds their corollary Gleditsch-Ward codes.

Author(s)

Steven V. Miller
Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_gwcode_to_cow()

create_stateyears() %>% add_gwcode_to_cow()

Description

add_igos() allows you to add information from the Correlates of War International Governmental Organizations data to dyad-year or state-year data, matching on Correlates of War system codes.

Usage

add_igos(data)

Arguments

data a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.

Details

The function leans on attributes of the data that are provided by the create_dyadyear() or create_stateyear() function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.

Value

add_igos() takes a dyad-year data frame or state-year data frame and adds information available from the Correlates of War International Governmental Organizations data. If the data are dyad-year, the function returns the original data with just one additional column for the total number of mutual IGOs for which both members of the dyad are full members. If the data are state-year, the function returns the original data with four additional columns. These are the number of IGOs for which the state is a full member, the number of IGOs for which the state is an associate member, the number of IGOs for which the state is an observer, and the number of IGOs for which the state is involved in any way (i.e. the sum of the other three columns).

Author(s)

Steven V. Miller
add_minimum_distance

References

Examples

```r
# just call library(tidyverse) at the top of the pipe
library(magrittr)

cow_ddy %>% add_igos()
create_stateyears() %>% add_igos()
```

Description

`add_minimum_distance()` allows you to add the minimum distance (in kilometers) to a dyad-year or state-year data frame. These estimates are recorded in the cow_mindist and gw_mindist data that come with this package. The data are current as of the end of 2015.

Usage

```r
add_minimum_distance(data)
```

Arguments

- `data` a dyad-year data frame (either "directed" or "non-directed") or state-year data frame

Details

The function leans on attributes of the data that are provided by the `create_dyadyear()` or `create_stateyear()` function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.
Value

`add_minimum_distance()` takes a dyad-year or state-year data frame and adds the minimum distance between the first state and the second state (in dyad-year data) or the minimum minimum (sic) distance for a given state in a given year.

Author(s)

Steven V. Miller

References

Examples

```r
# just call `library(tidyverse)` at the top of your script
library(magrittr)
cow_ddy %>% add_minimum_distance()

create_dyadyears(system = "gw") %>% add_minimum_distance()

create_stateyears(system = "gw") %>% add_minimum_distance()
```

Description

`add_nmc()` allows you to add the Correlates of War National Material Capabilities data to dyad-year or state-year data.

Usage

`add_nmc(data)`

Arguments

data a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.
Details

The function leans on attributes of the data that are provided by the `create_dyadyear()` or `create_stateyear()` function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.

Value

`add_nmc()` takes a dyad-year data frame or state-year data frame and adds information about the national material capabilities for the state or two states in the dyad in a given year. If the data are dyad-year, the function adds 12 total columns for the first state (i.e. `ccode1`) and the second state (i.e. `ccode2`) for all estimates of national military capabilities provided by the Correlates of War project. If the data are state-year, the function returns six additional columns to the original data that contain that same information for a given state in a given year.

Author(s)

Steven V. Miller

References

Examples

```r
# just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_nmc()

create_stateyears() %>% add_nmc()
```

`add_peace_years` Add Peace Years to Your Conflict Data

Description

`add_peace_years()` calculates peace years for your ongoing dyadic conflicts. The function works for both the CoW-MID data and the Gibler-Miller-Little (GML) MID data.
add_peace_years

Usage

add_peace_years(data, pad = FALSE)

Arguments

data a dyad-year data frame (either "directed" or "non-directed")
pad an optional parameter, defaults to FALSE. If TRUE, the peace-year calculations
fill in cases where panels are unbalanced/have gaps. Think of a state like Ger-
many disappearing for 45 years as illustrative of this.
If keep is not specified in the function, the ensuing output returns everything.

Details

The function internally uses sbtscs() from stevemisc. In the interest of full disclosure, sbtscs() leans heavily on btscs() from DAMisc. I optimized some code for performance.

Importantly, the underlying function (sbtscs() in stevemisc, by way of btscs() in DAMisc) has important performance issues if you’re trying to run it when your event data are sandwiched by observations without any event data. Here’s what I mean. Assume you got the full Gleditsch-Ward state-year data from 1816 to 2020 and then added the UCDP armed conflict data to it. If you want the peace-years for this, the function will fail because every year from 1816 to 1945 (along with 2020, as of writing) have no event data. You can force the function to "not fail" by setting pad = TRUE as an argument, but it’s not clear this is advisable for this reason. Assume you wanted event data in UCDP for just the extrasystemic onsets. The data start in 1946 and, in 1946, the United Kingdom, Netherlands, and France had extrasystemic conflicts. For *all* years before 1946, the events are imputed as 1 for those countries that had 1s in the first year of observation and everyone else is NA and implicitly assumed to be a zero. For those NAs, the function runs a sequence resulting in some wonky spells in 1946 that are not implied by (the absence of) the data. In fact, none of those are implied by the absence of data before 1946.

The function works just fine if you truncate your temporal domain to reflect the nature of your event data. Basically, if you want to use this function more generally, filter your dyad-year or state-year data to make sure there are no years without any event data recorded (e.g. why would you have a CoW-MID analyses of dyad-years with observations before 1816?). This is less a problem when years with all-NAs succeed (and do not precede) the event data. For example, the UCDP conflict data run from 1946 to 2019 (as of writing). Having 2020 observations in there won’t compromise the function output when pad = TRUE is included as an argument.

Value

add_peace_years() takes a dyad-year data frame and adds peace years for ongoing dyadic conflicts.

Author(s)

Steven V. Miller
add_rugged_terrain

References

Examples

```r
# just call `library(tidyverse)` at the top of your script
library(tidyverse)
cow_ddy %>%
  add_gml_mids(keep = NULL) %>%
  add_cow_mids(keep = NULL) %>%
  add_contiguity() %>%
  add_cow_majors() %>%
  filter_prd() %>%
  add_peace_years()
```

Description

`add_rugged_terrain()` allows you to add information, however crude, about the "ruggedness" of a state’s terrain to your dyad-year or state-year data.

Usage

```r
add_rugged_terrain(data)
```

Arguments

- **data**
 - a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame

Details

Please see the information for the underlying data `rugged`, and the associated R script in the `data-raw` directory, to see how these data are generated. Importantly, these data are time-agnostic and move *slowly*. We’re talking about geography here. Both data sets benchmark around 1999-2000 and it’s a leap of faith to use these data for comparisons across the entirety of the Correlates of War or Gleditsch-Ward system membership. Every use of data of these types have been either
cross-sectional snapshots or for making state-to-state comparisons after World War II (think of your prominent civil war studies here). Be mindful about what you expect to get from these data.

The underlying data have both Gleditsch-Ward codes and Correlates of War codes. The merge it makes depends on what you declare as the "master" system at the top of the pipe (i.e. in `create_dyadyears()` or `create_stateyears()`). If, for example, you run `create_stateyears(system="cow")` and follow it with `add_gwcode_to_cow()`, the merge will be on the Correlates of War codes and not the Gleditsch-Ward codes. You can see the script mechanics to see how this is achieved.

Value

`add_rugged_terrain()` takes a dyad-year data frame or state-year data frame, whether the primary state identifiers are from the Correlates of War system or the Gleditsch-Ward system, and returns information about the "ruggedness" of the state's terrain. The two indicators returned are the "terrain ruggedness index" calculated by Nunn and Puga (2012) and a logarithmic transformation of how mountainous the state is (as calculated by Gibler and Miller [2014]). The dyad-year data get four additional columns (i.e. both indicators for both states in the dyad) whereas the state-year data get just the two additional columns.

Author(s)

Steven V. Miller

References

Examples

```r
# just call `library(tidyverse)` at the top of your script
library(magrittr)

cow_ddy %>% add_rugged_terrain()

create_stateyears() %>% add_rugged_terrain()

create_stateyears(system = "gw") %>% add_rugged_terrain()
```
add_sdp_gdp

Add (Surplus and Gross) Domestic Product Data

Description

add_sdp_gdp() allows you to add estimated GDP and "surplus" domestic product data from a 2020 analysis published in International Studies Quarterly by Anders, Fariss, and Markowitz.

Usage

add_sdp_gdp(data)

Arguments

data a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.

Details

The function leans on attributes of the data that are provided by the create_dyadyear() or create_stateyear() function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe. Users will also want to note that the underlying function access two different data sets. It appears that the results published in the International Studies Quarterly used Correlates of War classification, but a follow-up repository on Github uses Gleditsch-Ward classification. The extent to which these estimates are generated by simulation, it does mean the estimates will be slightly different across both data sets even for common observations (e.g. the United States in 1816).

Because these are large nominal numbers, the estimates have been log-transformed. Users can always exponentiate these if they choose. Researchers can use these data to construct reasonable estimates of surplus GDP per capita, but must exponentiate the underlying variables before doing this.

Value

add_sdp_gdp() takes a dyad-year data frame or state-year data frame and adds information about the estimated gross domestic product (in 2011 USD) for that year, the estimated population in that year, the GDP per capita in that year, and what Anders, Fariss and Markowitz term the "surplus domestic product" in that year. If the data are dyad-year, the function adds eight total columns for the first state (i.e. ccode1) and the second state (i.e. ccode2) for all these estimates. If the data are state-year, the function returns four additional columns to the original data that contain that same information for a given state in a given year.

Author(s)

Steven V. Miller
add_strategic_rivalries

References

Examples

```r
# just call 'library(tidyverse)' at the top of the your script
library(magrittr)
cow_ddy %>% add_sdp_gdp()
create_stateyears() %>% add_sdp_gdp()
create_stateyears(system = "gw") %>% add_sdp_gdp()
```

Description

add_strategic_rivalries() merges in Thompson and Dreyer's (2012) strategic rivalry data to a dyad-year data frame. The right-bound, as of right now, are bound at 2010.

Usage

```r
add_strategic_rivalries(data, across_types = 1)
```

Arguments

data: a dyad-year data frame (either "directed" or "non-directed")

across_types: optional, relevant for state-year, takes a value of 1, 2, or 3 to look for whether one of three types fits criteria for ideological, interventionary, positional, spatial rivalry. Defaults to 1.

Details

add_strategic_rivalries() will include some other information derived from the rivalry data that the user may not want (e.g. start year of the rivalry). Feel free to select those out after the fact. Function includes an on-the-fly adjustment for Austria for rivalry #79. In this case, the Austria-Serbia rivalry continues for two years after Austria-Hungary (ccode: 300) became Austria (ccode: 305).
The `across_types` argument is optional and observed for only state-year calls. It defaults to 1. At the default, the function looks into the rivalry data (in `td_rivalries`) and focuses on the ‘type1’ column. If, say, a state has an ongoing rivalry and it is primarily spatial, it codes that as a spatial rivalry. Assume you input `across_types = 2`, the function then looks across both the ‘type1’ and ‘type2’ columns to see if there is a spatial component to the rivalry as either its primary or secondary dimension. If so, it codes that as a 1. `across_types` must be 1, 2, or 3.

Value

`add_strategic_rivalries()` takes a dyad-year data frame and adds information about ongoing strategic rivalries. It will also include a simple dummy variable for whether there was an ongoing rivalry in the year or not. For state-year data, it returns the count of ongoing strategic rivalries for the state in the year meeting a certain criteria (i.e. whether the state has an interventionary, ideological, positional, or spatial rivalry in an ongoing year, and how many).

Author(s)

Steven V. Miller

References

Examples

```r
# just call 'library(tidyverse)' at the top of the your script
library(magrittr)
cow_ddy %>% add_strategic_rivalries()

# across_types defaults to 1
create_stateyears() %>% add_strategic_rivalries()
```

add_ucdp_acd
Add UCDP Armed Conflict Data to state-year data frame

Description

`add_ucdp_acd()` allows you to add UCDP Armed Conflict data to a state-year data frame

Usage

`add_ucdp_acd(data, type, issue, only_wars = FALSE)`
Arguments

data
state-year data frame

type
the types of armed conflicts the user wants to consider, specified as a character vector. Options include "extrasystemic", "interstate", "intrastate", and "II". "II" is convenience shorthand for "internationalized intrastate". If you want just one (say: "intrastate"), then the type you want in quotes is sufficient. If you want multiple, wrap it in a vector with c().

issue
do you want to subset the data to just different armed conflicts over different types of issues? If so, specify those here as you would with the type argument. Options include "territory", "government", and "both".

only_wars
subsets the conflict data to just those with intensity levels of "war" (i.e. >1,000 deaths). Defaults to FALSE.

Details
Right now, only state-year data are supported. Function is in true pilot mode.

Value

add_ucdp_acd() takes a state-year data frame and returns state-year information from the UCDP Armed Conflict data set (v. 20.1). The variables returned are whether there is an ongoing armed conflict in that year, whether there was an armed conflict episode onset that year, what was the maximum intensity observed that year (if an armed conflict was observed), and a character vector of the associated conflict IDs that year.

Author(s)
Steven V. Miller

References

Examples

just call `library(tidyverse)` at the top of the your script
library(magrittr)
library(dplyr)

create_stateyears(system = "gw") %>%
filter(between(year, 1946, 2019)) %>%
add_ucdp_acd()

create_stateyears(system = "gw") %>%
add_ucdp_onsets

```r
filter(between(year, 1946, 2019)) %>%
  add_ucdp_acd(type = "intrastate", issue = "government")
```

add_ucdp_onsets
Add UCDP onsets to state-year data

Description

`add_ucdp_onsets()` allows you to add information about conflict episode onsets from the UCDP data program to state-year data.

Usage

```r
add_ucdp_onsets(data)
```

Arguments

- `data`
a state-year data frame

Details

The function leans on attributes of the data that are provided by the `create_dyadyear()` or `create_stateyear()` function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe. The underlying data are version 19.1. Importantly, the UCDP yearly onset data are nominally state-year, but technically state-dyad-episode-year for cases of onsets. For example, there are four France-1946 observations because of four new conflict episodes with Cambodia, Laos, Thailand, and Vietnam. There are two Panama-1989 episodes, one for the invasion by the United States and another for a failed coup attempt. That means the are duplicates in the original data that I process into summaries. The user will probably want to consider some kind of recoding here.

Value

`add_ucdp_onsets()` takes a state-year data frame and adds a few summary variables based off armed conflict onsets data provided by UCDP. The variables returned are the sum of new conflict dyads (should they exist) in a given state-year, and the sum of new onset episodes (or new conflicts) that are separated by one, two, three, five, or 10 years since the last conflict episode.

Author(s)

Steven V. Miller

References

Examples

```r
# just call `library(tidyverse)` at the top of the your script
library(magrittr)
library(dplyr)

create_stateyears(system="gw") %>% add_ucdp_onsets()

create_stateyears() %>%
  add_gwcode_to_cow() %>% add_ucdp_onsets()

# Recall, these are summaries. You'll need to post-process to what you want.
create_stateyears(system="gw") %>%
  add_ucdp_onsets() %>%
  mutate(onset = ifelse(sumonset1 > 0, 1, 0))
```

archigos
Archigos: A (Subset of a) Dataset on Political Leaders

Description

These are leader-level data drawn from the Archigos data. Space considerations mean I offer here just a few columns based on these data.

Usage

```
archigos
```

Format

A data frame with 3409 observations on the following seven variables.

- ccode a numeric vector for the Correlates of War state code
- leadid the unique leader identifier
- startdate a date for the leader start date
- enddate a date for the leader end date
- entry a character vector for the leader’s entry type
- exit a character vector for the leader’s exit type
- exitcode a character vector for more information about the leader’s exit type
Details

Space considerations mean I can only offer a few columns from the overall data. Archigos data are rich with information. Consult the raw data available on Hein Goeman’s website for more. Data are version 4.1.

References

| atop_alliance | *Alliance Treaty Obligations and Provisions (ATOP) Project Data (v. 5.0)* |

Description

These are directed dyad-year-level data for alliance obligations and provisions from the ATOP project

Usage

atop_alliance

Format

A data frame with 272,046 observations on the following eight variables.

- ccode1: a numeric vector for the Correlates of War state code for the first state
- ccode2: a numeric vector for the Correlates of War state code for the second state
- year: a numeric vector for the year
- atop_defense: a numeric vector that equals 1 if there was an alliance observed with a defense pledge
- atop_offense: a numeric vector that equals 1 if there was an alliance observed with a offense pledge
- atop_neutral: a numeric vector that equals 1 if there was an alliance observed with a neutrality pledge
- atop_nonagg: a numeric vector that equals 1 if there was an alliance observed with a non-aggression pledge
- atop_consul: a numeric vector that equals 1 if there was an alliance observed with a consultation pledge

Details

The data-raw directory on the project’s Github shows how the data were processed.
References

capitals

A complete list of capitals and capital transitions for Correlates of War state system members

Description
This is a complete list of capitals and capital transitions for Correlates of War state system members. I use it internally for calculating capital-to-capital distances in the `add_capital_distances()` function.

Usage
capitals

Format
A data frame with 252 observations on the following 7 variables.

- `ccode` a numeric vector for the Correlates of War state code
- `statename` a character vector for the state
- `capital` a character vector for the name of the capital
- `styear` a character vector for the start year. See details section for more information.
- `endyear` a character vector for the end year. See details section for more information.
- `lat` a numeric vector of the latitude coordinates for the capital
- `lng` a numeric vector of the longitude coordinates for the capital

Details
For convenience, the start year for most states is 1816. Samoa, for example, was not a state in 1816. However, the functions that use the `capitals` data will not create observations for states that did not exist at a given point in time.

The data should be current as of the end of 2019.

Cases where a start year is not 1816 indicate a capital transition. For example, Brazil’s capital moved from Rio de Janeiro to Brasilia (a planned capital) in 1960. Only 25 states in the data experienced a capital transition. The most recent was Burundi in 2018. Indonesia, as of writing, is planning on a capital transition, but this has not been completed yet.

Kazakhstan renamed its capital for the state leader in 2019. These data retain the name of Astana.

The capitals data are not without some peculiarities. Prominently, Portugal transferred the Portuguese court from Lisbon to Rio de Janeiro from 1808 to 1821. *This is recorded in the data.* A knowledge of the inter-state conflict data will note there was no war or dispute between, say,
Portugal and Spain (or Portugal and any other country) at any point during this time, but it does create some weirdness that would suggest a massive distance between two countries, like Portugal and Spain, that are otherwise land-contiguous.

On Spain: the republican government moved the capital at the start of the civil war (in 1936) to Valencia. However, it abandoned this capital by 1937. I elect to not record this capital transition.

The data also do some (I think) reasonable back-dating of capitals to coincide with states in transition without necessarily formal capitals by the first appearance in the state system membership data. These concern Lithuania, Kazakhstan, and the Philippines. Kaunas is the initial post-independence capital of Lithuania. Almaty is the initial post-independence capital of Kazakhstan. Quezon City is the initial post-independence capital of the Philippines. This concerns, at the most, one or two years for each of these three countries.

code_democracy

Democracy data for all Correlates of War states

Description

These are democracy data for all Correlates of War state system members.

Usage

code_democracy

Format

A data frame with 16536 observations on the following 5 variables.

code: the Correlates of War system code
year: a numeric vector for the year
v2polyarchy: the Varieties of Democracy "polyarchy" estimate
polity2: the polity2 score from the Polity project
xm_qudsest: an extension of the Unified Democracy Scores (UDS) estimates, made possibly by the QuickUDS package from Xavier Marquez.

Details

Missing data connote data that are unavailable for various reasons. Either there is no democracy data to code or, in the case of the Polity project, the state system member is outright not evaluated for the variable.

The Polity data are from 2017. The Varieties of Democracy data are version 10. Xavier Marquez’ QuickUDS estimates (i.e. extensions of Pemstein et al. (2010)) come from a package Marquez makes available on his Github (https://github.com/xmarquez/QuickUDS).
References

cow_alliance

Description

These are version 4.1 of the Correlates of War directed dyad-year alliance data.

Usage

cow_alliance

Format

A data frame with 120784 observations on the following 7 variables.

code1 a numeric vector for the Correlates of War state code for the first state
code2 a numeric vector for the Correlates of War state code for the second state
year a numeric vector for the year
cow_defense a numeric vector that equals 1 if the alliance included a defense pledge
cow_neutral a numeric vector that equals 1 if the alliance included a neutrality pledge
cow_nonagg a numeric vector that equals 1 if the alliance included a non-aggression pledge
cow_entente a numeric vector that equals 1 if the alliance included a pledge to consult if a crisis occurred

Details

The directed dyad-year alliance data are for alliance initiations, not straight dyad-years, "per se."
This suggests the presence of duplicate directed dyad-years. For computing ease, given the intended use, I take care of these duplicate dyad-years behind the scenes. Consider the case of the U.S. and Canada in 1958. Therein, there were apparently two separate alliance initiations that included defense pledges. My behind-the-scenes cleaning process groups by code1, code2, and year and summarizes those alliance pledge variables. I then replace any value greater than 1 with 1. This indicates the presence or absence of a defense pledge in a given directed dyad-year.
References

cow_contdir

Correlates of War Direct Contiguity Data (v. 3.2)

Description

These contain an abbreviated version of the "master records" for the Correlates of War direct contiguity data. Data contain a few cosmetic changes to assist with some functions downstream from it.

Usage

`cow_contdir`

Format

A data frame with 2025840 observations on the following 4 variables.

- `ccode1`: a numeric vector for the Correlates of War state code for the first state
- `ccode2`: a numeric vector for the Correlates of War state code for the second state
- `conttype`: a numeric vector for the contiguity relationship
- `begin`: the year-month when this contiguity relationship begins (YYYYMM)
- `end`: the year-month when this contiguity relationship ends (YYYYMM)

Details

The "master record" provided by the Correlates of War is "non-directed." I make these data "directed" for convenience.

For clarity, the contiguity codes range from 1 to 5. 1 = direct land contiguity. 2 = separated by 12 miles of water or fewer (a la Stannis Baratheon). 3 = separated by 24 miles of water or fewer (but more than 12 miles). 4 = separated by 150 miles of water or fewer (but more than 24 miles). 5 = separated by 400 miles of water or fewer (but more than 150 miles). Cases of separation by more than 400 miles of water are not included in the master record (but are easily discerned based on complete dyad-year data).

References

cow_ddy

A directed dyad-year data frame of Correlates of War state system members

Description

This is a complete directed dyad-year data frame of Correlates of War state system members. I offer it here as a shortcut for various other functions when I am working on new additions and don’t want to invest time in waiting for \texttt{create_dyadyears()} to run.

Usage

\texttt{cow_ddy}

Format

A data frame with 2063670 observations on the following 3 variables.

\begin{itemize}
\item \texttt{ccode1} a numeric vector for the Correlates of War state code for the first state
\item \texttt{ccode2} a numeric vector for the Correlates of War state code for the second state
\item \texttt{year} a numeric vector for the year
\end{itemize}

Details

Data are a quick generation from the \texttt{create_dyadyears()} function in this package.

cow_gw_years

Correlates of War and Gleditsch-Ward states, by year

Description

This is a complete (I believe) data set on Correlates of War states and Gleditsch-Ward states, a byproduct of a \texttt{full_join()} between \texttt{gw_states} and \texttt{cow_states} that leans largely on the state abbreviation variable.

Usage

\texttt{cow_gw_years}
cow_igo_ny

Format

A data frame with 16936 observations on the following 6 variables.

- gwcode: a Gleditsch-Ward state code
- stateabb: the state abbreviation, which was the greatest source of agreement between both data sets
- gw_statename: the state name as it appears in the Gleditsch-Ward data
- ccode: a Correlates of War state code
- cow_statename: the state name as it appears in the Correlates of War data
- year: a numeric vector for the year

Details

The data-raw directory on the project’s Github contains more information about how these data were created. I’m going to use it for internal stuff. The workflow is going to treat the Correlates of War state system membership codes as more of the “master” codes, for which the user can add Gleditsch-Ward identifiers as they see fit. Data are extended to 2020, assuming no changes to state system membership for either data set.

cow_igo_ny Correlates of War Non-Directed Dyad-Year International Governmental Organizations (IGOs) Data

Description

This is a non-directed dyad-year version of the Correlates of War IGOs data. I use it internally for merging IGOs data into dyad-year data.

Usage

cow_igo_ny

Format

A data frame with 917695 observations on the following 4 variables.

- ccode1: the Correlates of War state system code for the first state
- ccode2: the Correlates of War state system code for the second state
- year: the year
- dyadigos: the sum of mutual IGOs for which each state appears as a full member in a given year
Details

The data-raw directory on the project’s Github contains additional information about how these data were generated from the otherwise enormous dyad-year IGOs data provided by the Correlates of War project. Given the size of that data, and the size limitations of R packages for CRAN, the data I provide here can only be simpler summaries. If you want specifics, you’ll need to consult the underlying raw data provided on the Correlates of War project.

References

cow_igo_sy

Correlates of War State-Year International Governmental Organizations (IGOs) Data

Description

This is a state-year version of the Correlates of War IGOs data. I use it internally for merging IGOs data into state-year data.

Usage

cow_igo_sy

Format

A data frame with 1557 observations on the following 5 variables.

code the Correlates of War state system code for the state
year the year
sum_igo_full the sum of IGOs for which the state is a full member in a given year sum_igo_associate the sum of IGOs for which the state is just an associate member in a given year sum_igo_observer the sum of IGOs for which the state is just an observer in a given year sum_igo_anytype the sum of IGOs for which the state is a member of any kind in a given year.

Details

The data-raw directory on the project’s Github contains additional information about how these data were generated from the otherwise enormous dyad-year IGOs data provided by the Correlates of War project. Given the size of that data, and the size limitations of R packages for CRAN, the data I provide here can only be simpler summaries. If you want specifics, you’ll need to consult the underlying raw data provided on the Correlates of War project.
References

cow_majors

Correlates of War Major Powers Data (1816-2016)

Description

These are the Correlates of War major powers data.

Usage

cow_majors

Format

A data frame with 14 observations on the following 8 variables.

ccode a numeric vector for the Correlates of War country code
styear the start year as a major power
stmonth the start month as a major power
stday the start day as a major power
endyear the end year as a major power
endmonth the end month as a major power
endday the end day as a major power
version a version identifier

Details

Data are provided "as-is" with no additional re-cleaning before inclusion into this data set (beyond eliminating the state abbreviation).

References

Description

These are directed dyadic dispute year data derived from the Correlates of War (CoW) Militarized Interstate Dispute (MID) project. Data are from version 5.0. These were whittled to where there is no duplicate dyad-years. Its primary aim here is merging into a dyad-year data frame.

Usage

cow_mid_ddydisps

Format

A data frame with 10234 observations on the following 25 variables.

dispnum a numeric vector for the CoW-MID dispute number
ccode1 a numeric vector for the focal state in the dyad
ccode2 a numeric vector for the target state in the dyad
year a numeric vector for the dispute-year
cowmidongoing a numeric vector for whether there was a dispute ongoing in that year
cowmidonset a numeric vector for whether it was the onset of a new dispute (or new participant-entry into a recurring dispute)
sidea1 is ccode1 on side A of the dispute?
sidea2 is ccode2 on side A of the dispute?
fatality1 a numeric vector for the overall fatality level of ccode1 in the dispute
fatality2 a numeric vector for the overall fatality level of ccode2 in the dispute
fatalpre1 a numeric vector for the known fatalities (with precision) for ccode1 in the dispute
fatalpre2 a numeric vector for the known fatalities (with precision) for ccode2 in the dispute
hiact1 a numeric vector for the highest action of ccode1 in the dispute
hiact2 a numeric vector for the highest action of ccode2 in the dispute
hostlev1 a numeric vector for the hostility level of ccode1 in the dispute
hostlev2 a numeric vector for the hostility level of ccode2 in the dispute
orig1 is ccode1 an originator of the dispute?
orig2 is ccode2 an originator of the dispute?
fatality a numeric vector for the fatality level of the dispute
hostlev a numeric vector for the hostility level of the MID
mindur a numeric vector for the minimum duration of the MID
maxdur a numeric vector for the maximum duration of the MID
recip a numeric vector for whether a MID was reciprocated
stmon a numeric vector for the start month of the MID
Details

The process of creating these is described at one of the references below. Importantly, these data are somewhat "naive." That is: they won’t tell you, for example, that Brazil and Japan never directly fought each other during World War II. Instead, it will tell you that there were two years of overlap for the two on different sides of the conflict and that the highest action for both was a war. The data are thus similar to what the EUGene program would create for users back in the day. Use these data with that limitation in mind.

References

cow_mid_dirdisps Directed Dyadic Dispute-Year Data (CoW-MID, v. 5.0)

Description

These are directed dyadic dispute year data derived from the Correlates of War (CoW) Militarized Interstate Dispute (MID) project. Data are from version 5.0.

Usage

cow_mid_dirdisps

Format

A data frame with 11390 observations on the following 18 variables.

- dispnum: a numeric vector for the CoW-MID dispute number
- ccode1: a numeric vector for the focal state in the dyad
- ccode2: a numeric vector for the target state in the dyad
- year: a numeric vector for the dispute-year
- dispongoing: a numeric vector for whether there was a dispute ongoing in that year
- disponset: a numeric vector for whether it was the onset of a new dispute (or new participant-entry into a recurring dispute)
- sidea1: is ccode1 on side A of the dispute?
- sidea2: is ccode2 on side A of the dispute?
- fatality1: a numeric vector for the overall fatality level of ccode1 in the dispute
- fatality2: a numeric vector for the overall fatality level of ccode2 in the dispute
fatalpre1 a numeric vector for the known fatalities (with precision) for ccode1 in the dispute
fatalpre2 a numeric vector for the known fatalities (with precision) for ccode2 in the dispute
hiact1 a numeric vector for the highest action of ccode1 in the dispute
hiact2 a numeric vector for the highest action of ccode2 in the dispute
hostlev1 a numeric vector for the hostility level of ccode1 in the dispute
hostlev2 a numeric vector for the hostility level of ccode2 in the dispute
orig1 is ccode1 an originator of the dispute?
orig2 is ccode2 an originator of the dispute?

Details

The process of creating these is described at one of the references below. Importantly, these data are somewhat "naive." That is: they won’t tell you, for example, that Brazil and Japan never directly fought each other during World War II. Instead, it will tell you that there were two years of overlap for the two on different sides of the conflict and that the highest action for both was a war. The data are thus similar to what the EUGene program would create for users back in the day. Use these data with that limitation in mind.

References

cow_mid_disps Abbreviate CoW-MID Dispute-level Data (v. 5.0)

Description

This is an abbreviated version of the dispute-level CoW-MID data.

Usage

cow_mid_disps

Format

A data frame with 2436 observations on the following 7 variables.
dispnum a numeric vector for the CoW-MID dispute number
outcome a numeric vector for the outcome of the MID
styear a numeric vector for the start year of the MID
cow_mindist

stmon a numeric vector for the start month of the MID
settle a numeric vector for the how dispute was settled
fatality a numeric vector for the fatality level of the dispute
mindur a numeric vector for the minimum duration of the MID
maxdur a numeric vector for the maximum duration of the MID
hiact a numeric vector for the highest action of the MID
hostlev a numeric vector for the hostility level of the MID
recip a numeric vector for whether a MID was reciprocated

details

These data are purposely light on information; they’re not intended to be used for dispute-level analyses, per se. They’re intended to augment the directed dyadic dispute-year data by adding in variables that serve as exclusion rules to whittle the data from dyadic dispute-year to just dyad-year data.

references

cow_mindist The Minimum Distance Between States in the Correlates of War System, 1946-2015

description

These are non-directed dyad-year data for the minimum distance between states in the Correlates of War state system from 1946 to 2015. The data are generated from the cshapes package.

usage

cow_mindist

format

A data frame with 817053 observations on the following 4 variables.
cocode1 the Correlates of War state system code for the first state
cocode2 the Correlates of War state system code for the second state
year the year
mindist the minimum distance between states on Dec. 31 of the year, in kilometers
Details

The data are generated from the cshapes package. The package authors purport that the data are generated to be compatible with Correlates of War system codes, but a review I did several years ago for an unrelated project (published in 2017 in Conflict Management & Peace Science, which you should cite for all your articles if you're reading this) suggested the output does not seem to perfectly meet that billing. These included oddball cases like Zanzibar, United Arab Republic, Comoros, East Germany, and a few others. I pre-process these as outlined in the associated file in the data-raw directory on the project's Github.

Data are automatically generated (by default) as directed dyad-years. I elect to make them non-directed for space considerations. Making non-directed dyad-year data into directed dyad-year data isn’t too difficult in R. It just looks weird to see the code that does it.

Most of the data I prove elsewhere in this package are to be understood as the data as they were at the *start* of the year. This is how I process, for example, the capitals data as they get merged in the add_capital_distance() function. However, the script that generates these data are set at Dec. 31 of the year and not Jan. 1. I do this for concerns of maximizing data coverage. If you wanted the same effect, just lag the data a year.

References

Description

These are version 5.0 of the Correlates of War National Military Capabilities data. Data omit the state abbreviation and version identifier for consideration.

Usage

cow_nmc

Format

A data frame with 15171 observations on the following 9 variables.
ccode a numeric vector for the Correlates of War country code
year the year
milex an estimate of military expenditures (in thousands). See details section for more.
milper an estimate of the size of military personnel (in thousands) for the state
irst an estimate of iron and steel production (in thousands of tons)
pec an estimate of primary energy consumption (thousands of coal-ton equivalents)
tpop an estimate of the total population size of the state (in thousands)
upop an estimate of the urban population size of the state (in thousands). See details section for more.

cinc The Composite Index of National Capability ("CINC") score. See details section for more.

Details

The user will want to be a little careful with how some of these data are used, beyond the typical caveat about how difficult it is to pin-point how many thousands of coal-tons a state like Baden was producing in the 19th century.

First, military expenditures are denominated in British pounds sterling for observations between 1816 and 1913. The observations from 1914 and beyond are denominated in current United States dollars. This is according to the manual.

Second, urban population size is an estimate based on, well, an estimate of the size of the population living in an area with 100,000 or more people.

Third, the Composite Index of National Capability score is calculated as each state’s world share of each of the six composite indicators also included in the data in a given year. It theoretically is bound between 0 and 1. A state with a 1 is 100 in the world, 2) is the only state with a military, 3) does all the iron and steel production, 4) all the world’s primary energy consumption, and 5) is the only state in the world with a population and an urban population. Incidentally, the maximum scores observed in the data belong to the United States in 1945.

References

cow_sdp_gdp (Surplus and Gross) Domestic Product for Correlates of War States

Description

These are state-year level data for surplus and gross domestic product for Correlates of War state system members. Data also include population estimates for per capita standardization.

Usage

cow_sdp_gdp
Format
A data frame with 27753 observations on the following five variables.

ccode a numeric vector for the Correlates of War state code
year a numeric vector for the year
wbgdp2011est a numeric vector for the estimated natural log of GDP in 2011 USD (log-transformed)
wbpopest a numeric vector for the estimated population size (log-transformed)
sdpest a numeric vector for the estimated surplus domestic product (log-transformed)
wbgdppc2011est a numeric vector for the estimated GDP per capita (log-transformed)

Details
These were extracted from the actual replication files from International Studies Quarterly. Because these data are ultimately being simulated, a user can expect some slight differences between the Correlates of War version of these data (which Anders et al. published) and the Gleditsch-Ward version of these data (which appear to be the one the authors will more vigorously support going forward).

References

Description
These are the Correlates of War state system membership data.

Usage

cow_states

Format
A data frame with 243 observations on the following 10 variables.

stateabb a character vector for the state abbreviation
ccode a numeric vector for the Correlates of War country code
statename a character vector for the state name
styear the start year in the system
stmonth the start month in the system
stday the start day in the system
cow_trade_ndy

endyear the end year in the system
endmonth the end month in the system
endday the end day in the system
version a version identifier

Details

Data are provided "as-is" with no additional re-cleaning before inclusion into this data set.

References

cow_trade_ndy Correlates of War Dyadic Trade Data Set (v. 4.0)

Description

These are dyad-year-level data for national trade from the Correlates of War project.

Usage

cow_trade_ndy

Format

A data frame with 673654 observations on the following seven variables.

code1 a numeric vector for the Correlates of War state code for the first state
code2 a numeric vector for the Correlates of War state code for the second state
year the year
flow1 imports of code1 from code2, in current million USD
flow2 imports of code2 from code1, in current million USD
smoothflow1 smoothed flow1 values
smoothflow2 smoothed flow2 values

Details

The data-raw directory on the project’s Github shows how the data were processed.

References

Barbieri, Katherine and Omar M.G. Keshk. 2016. Correlates of War Project Trade Data Set Codebook, Version 4.0. Online: https://correlatesofwar.org
Description

These are state-year-level data for national trade from the Correlates of War project.

Usage

cow_trade_sy

Format

A data frame with 14410 observations on the following four variables.

ccode the Correlates of War state system code
year the year
imports total imports of the state in current million USD
exports total exports of the state in current million USD

Details

The data-raw directory on the project’s Github shows how the data were processed.

References

Barbieri, Katherine and Omar M.G. Keshk. 2016. Correlates of War Project Trade Data Set Codebook, Version 4.0. Online: https://correlatesofwar.org

Description

These are a modified version of the inter-state war data from the Correlates of War project. Data are version 4.0. The temporal domain is 1816-2007. Data are functionally directed dyadic war-year.

Usage

cow_war_inter
Format

A data frame with 1932 observations on the following 15 variables.

- **warnum**: the Correlates of War war number
- **ccode1**: the Correlates of War state code for side1
- **ccode2**: the Correlates of War state code for side2
- **year**: a numeric vector for the year
- **cowinteronset**: a dummy variable for whether this is an inter-state war onset (i.e. either the year in `StartYear1` or `StartYear2` in the raw data)
- **cowinterongoing**: a numeric constant of 1
- **sidea1**: a numeric vector for the side in the war for `ccode1`, either 1 or 2
- **sidea2**: a numeric vector for the side in the war for `ccode2`, either 1 or 2
- **initiator1**: a dummy variable that equals 1 if `ccode1` initiated the war
- **initiator2**: a dummy variable that equals 1 if `ccode2` initiated the war
- **outcome1**: the outcome for `ccode1` as numeric vector. Outcomes are 1 (winner), 2 (loser), 3 (compromise/tied), 4 (transformed into another type of war), 5 (ongoing at end of 2007, which is not observed in these data), 6 (stalemate), 7 (conflict continues below severity of war), and 8 (changed sides)
- **outcome2**: the outcome for `ccode2` as numeric vector. Outcomes are 1 (winner), 2 (loser), 3 (compromise/tied), 4 (transformed into another type of war), 5 (ongoing at end of 2007, which is not observed in these data), 6 (stalemate), 7 (conflict continues below severity of war), and 8 (changed sides)
- **batdeath1**: the estimated deaths for `ccode1` (-9 = unknown)
- **batdeath2**: the estimated deaths for `ccode2` (-9 = unknown)
- **resume**: a dummy variable that equals 1 if this is a conflict resumption episode

Details

See `data-raw` directory for how these data were generated. These data are here if you want it, but I caution against using them as gospel. There are a few problems here. One: -9s proliferate the data for battle deaths on either side, which is unhelpful. There are 10 cases where the sum of battle deaths is exactly 1,000 or 1,001. This is suspicious. The "side" variables are not well-explained—in fact they’re not explained at all in the codebook—and this can lead a user astray if they want to interpret them analogous to the `sidea` variables in the Correlates of War Militarized Interstate Dispute data. You probably want to use the initiator variables for this. Further, the war data routinely betray the MID data and the two do not speak well to each other. The language Sarkees and Wayman (2010) use in their book talk about how MIDs "precede" a war or are "associated" with a war, which forgets the war data are supposed to be a subset of the MID data. In one case (Gulf War), they get the associated dispute number wrong and, in one prominent case (War of Bosnian Independence), they argue no MID exists at all (it’s actually MID#3557).

References

Description

These are a modified version of the intra-state war data from the Correlates of War project. Data are version 4.1. The temporal domain is 1816-2007.

Usage

cow_war_intra

Format

A data frame with 1361 observations on the following 17 variables.

- **warnum**: the Correlates of War war number
- **warname**: the Correlates of War war name
- **wartype**: a character vector for the type of war, either "local issues" or "central control"
- **year**: a numeric vector for the year
- **cowintraonset**: a dummy variable for whether this is a civil war onset (i.e. either the year in StartYear1 or StartYear2 in the raw data)
- **cowintraongoing**: a numeric constant of 1
- **resume_combat**: a dummy variable for whether this is a resumption of a conflict (i.e. StartYear2 is not -8)
- **primary_state**: a dummy variable for whether the state is the primary state having the civil war
- **ccodea**: the Correlates of War state code for the participant on Side A. -8 = not applicable (participant is not a state)
- **sidea**: the name of the participant on Side A. -8 = not applicable (no additional party on this side)
- **ccodeb**: the Correlates of War state code for the participant on Side B. -8 = not applicable (participant is not a state)
- **sideb**: the name of the participant on Side B. -8 = not applicable (no additional party on this side)
- **intnl**: a dummy variable for if this is an internationalized civil war
- **outcome**: an unordered-categorical variable for the outcome of the civil war. Values include 1 (Side A wins), 2 (Side B wins), 3 (Compromise), 4 (war transformed into another type of war), 5 (war is ongoing at the end of 2007), 6 (stalemate), 7 (conflict continues below severity of war)
- **sideadeaths**: the estimated deaths for the Side A participant (-9 = unknown, -8 = not applicable)
- **sidebdeaths**: the estimated deaths for the Side B participant (-9 = unknown, -8 = not applicable)
- **ongo2007**: a dummy variable for if this war is ongoing as of the end of 2007

Details

See data-raw directory for how these data were generated.
create_dyadyears

Create dyad-years from state system membership data

Description

create_dyadyears() allows you to dyad-year data from either the Correlates of War (CoW) state system membership data or the Gleditsch-Ward (gw) system membership data. The function leans on internal data provided in the package.

Usage

create_dyadyears(system = "cow", mry = TRUE, directed = TRUE)

Arguments

- **system**: a character specifying whether the user wants Correlates of War state-years ("cow") or Gleditsch-Ward ("gw") state-years. Correlates of War is the default.
- **mry**: optional, defaults to TRUE. If TRUE, the function extends the script beyond the most recent system membership updates to include observation to the most recently concluded calendar year. For example, the Gleditsch-Ward data extend to the end of 2017. When `mry == TRUE`, the function returns more recent years (e.g. 2018, 2019) under the assumption that states alive at the end of 2017 are still alive today. Use with some care.
- **directed**: optional, defaults to TRUE. If TRUE, the function returns so-called "directed" dyad-year data. In directed dyad-year data, France-Germany (220-255) and Germany-France (255-220) are observationally different. If FALSE, the function returns non-directed data. In non-directed data, France-Germany and Germany-France in the same year are the same observation. The standard here is to drop cases where the country code for the second observation is less than the country code for the first observation.

Value

create_dyadyears() takes state system membership data provided by either Correlates of War or Gleditsch-Ward and returns a dyad-year data frame.

Author(s)

Steven V. Miller

References

create_statedays

Create state-days from state system membership data

Description

create_statedays() allows you to create state-day data from either the Correlates of War (CoW) state system membership data or the Gleditsch-Ward (gw) system membership data. The function leans on internal data provided in the package.

Usage

create_statedays(system = "cow", mry = TRUE)

Arguments

- **system**: a character specifying whether the user wants Correlates of War state-years ("cow") or Gleditsch-Ward ("gw") state-years. Correlates of War is the default.
- **mry**: optional, defaults to TRUE. If TRUE, the function extends the script beyond the most recent system membership updates to include observation to the most recently concluded calendar year. For example, the Gleditsch-Ward data extend to the end of 2017. When mry == TRUE, the function returns more recent years (e.g. 2018, 2019) under the assumption that states alive at the end of 2017 are still alive today. Use with some care.

Value

create_statedays() takes state system membership data provided by either Correlates of War or Gleditsch-Ward and returns a simple state-day data frame.
Author(s)

Steven V. Miller

References

Examples

CoW is default, will include years beyond 2016 (most recent CoW update)
create_statedays()

Gleditsch-Ward, include most recent years
create_statedays(system="gw")

Gleditsch-Ward, don't include most recent years
create_statedays(system="gw", mry=FALSE)

create_stateyears Create state-years from state system membership data

Description

create_stateyears() allows you to generate state-year data from either the Correlates of War (CoW) state system membership data or the Gleditsch-Ward (gw) system membership data. The function leans on internal data provided in the package.

Usage

create_stateyears(system = "cow", mry = TRUE)

Arguments

system a character specifying whether the user wants Correlates of War state-years ("cow") or Gleditsch-Ward ("gw") state-years. Correlates of War is the default.

mry optional, defaults to TRUE. If TRUE, the function extends the script beyond the most recent system membership updates to include observation to the most recently concluded calendar year. For example, the Gleditsch-Ward data extend to the end of 2017. When mry == TRUE, the function returns more recent years (e.g. 2018, 2019) under the assumption that states alive at the end of 2017 are still alive today. Use with some care.
Value
create_stateyears() takes state system membership data provided by either Correlates of War or Gleditsch-Ward and returns a simple state-year data frame.

Author(s)
Steven V. Miller

References

Examples

CoW is default, will include years beyond 2016 (most recent CoW update)
create_stateyears()

Gleditsch-Ward, include most recent years
create_stateyears(system="gw")

Gleditsch-Ward, don't include most recent years
create_stateyears(system="gw", mry=FALSE)

creg
Composition of Religious and Ethnic Groups (CREG) Fractionalization/Polarization Estimates

Description
This is a data set with state-year estimates for ethnic and religious fractionalization/polarization, by way of the Composition of Religious and Ethnic Groups (CREG) project at the University of Illinois. I-L-L.

Usage
creg

Format
A data frame with 11523 observations on the following 9 variables.
country a character vector of the state name
ccode a Correlates of War state code
gwcode a Gleditsch-Ward state code
creg.ccode a numeric code for the state, mostly patterned off Correlates of War codes but with
important differences. See details section for more.

year the year
ethfrac an estimate of the ethnic fractionalization index. See details for more.
ethpol an estimate of the ethnic polarization index. See details for more.
relfrac an estimate of the religious fractionalization index. See details for more.
relpol an estimate of the religious polarization index. See details for more.

Details

The data-raw directory on the project’s Github contains more information about how these data
were created. Pay careful attention to how I assigned CoW/G-W codes. The underlying data are
version 1.02.

The state codes provided by the CREG project are mostly Correlates of War codes, but with some
differences. Summarizing these differences: the state code for Serbia from 1992 to 2013 is actually
the Gleditsch-Ward code (340). Russia after the dissolution of the Soviet Union (1991-onward) is
393 and not 365. The Soviet Union has the 365 code. Yugoslavia has the 345 code. The code
for Yemen (678) is effectively the Gleditsch-Ward code because it spans the entire post-World War
II temporal domain. Likewise, the code for post-unification Germany is the Gleditsch-Ward code
(260) as well. The codebook actually says it’s 265 (which would be East Germany’s code), but this
is assuredly a typo based on the data.

The codebook cautions there are insufficient data for ethnic group estimates for Cameroon, France,
India, Kosovo, Montenegro, Mozambique, and Papua New Guinea. The French case is particularly
disappointing but the missing data there are a function of both France’s constitution and modelling
issues for CREG (per the codebook). There are insufficient data to make religious group estimates
for China, North Korea, and the short-lived Republic of Vietnam.

The fractionalization estimates are the familiar Herfindahl-Hirschman concentration index. The
polarization formula comes by way of Montalvo and Reynal-Querol (2000), though this book does
not appear to be published beyond its placement online. I recommend Montalvo and Reynal-Querol

In the most literal sense of "1", the group proportions may not sum to exactly 1 because of rounding
in the data. There were only two problem cases in these data worth mentioning. First, in both
data sets, there would be the occasional duplicates of group names by state-year (for example:
Afghanistan in 1951 in the ethnic group data and the United States in 1948 in the religious group
data). In those cases, the script I make available in the data-raw directory just select distinct values
and that effectively fixes the problem of duplicates, where they do appear. Finally, Costa Rica had a
curious problem for most years in the religious group data. All Costa Rica years have group data for
Protestants, Roman Catholics, and "others." Up until 1964 or so, the "others" are zero. Afterward,
there is some small proportion of "others". However, the sum of Protestants, Roman Catholics, and
"others" exceeds 1 (pretty clearly) and the difference between the sum and 1 is entirely the "others."
So, I drop the "others" for all years. I don’t think that’s terribly problematic, but it’s worth saying
that’s what I did.

References

Alesina, Alberto, Arnaud Devleeschauwer, William Easterly, Sergio Kurlat and Romain Wacziarg.

filter_prd
Filter dyad-year data to include just politically relevant dyads

Description

filter_prd() filters a dyad-year data frame to just those that are "politically relevant." This is useful for discarding unnecessary (and unwanted) observations that just consume space in memory.

Usage

```r
filter_prd(data)
```

Arguments

data a dyad-year data frame (either "directed" or "non-directed")

Details

"Political relevance" can be calculated a few ways. Right now, the function considers only "direct" contiguity and Correlates of War major power status. You can employ maximalist definitions of "direct contiguity" to focus on just the land-contiguous. This function is inclusive of any type of contiguity relationship.

As of the slated release of version 0.5, filter_prd() is a shortcut for add_contiguity() and/or add_cow_majors() if the function is executed in the absence of the data needed to create politically relevant dyads. See the example below for what this means.

Value

filter_prd() takes a dyad-year data frame, assuming it has columns for major power status and contiguity type, calculates whether the dyad is "politically relevant", and subsets the data frame to just those observations.

Author(s)

Steven V. Miller

References

Examples

```r
# just call `library(tidyverse)` at the top of your script
library(magrittr)

A <- cow_ddy %>% add_contiguity() %>% add_cow_majors() %>% filter_prd()

A

# you can also use it as a shortcut for the other functions required
# to calculate politically relevant dyads.
B <- cow_ddy %>% filter_prd()

B

identical(A, B)
```

gml_dirdisp
Directed dispute-year data (Gibler, Miller, and Little, 2016)

Description

These are directed dispute-year data from the most recent version (2.1.1) of the Gibler-Miller-Little (GML) militarized interstate dispute (MID) data. They are used internally for merging into full dyad-year data frames.

Usage

gml_dirdisp

Format

A data frame with 10330 observations on the following 39 variables.

- dispnum the dispute number
- ccode1 a numeric vector for the Correlates of War state code for the first state
- ccode2 a numeric vector for the Correlates of War state code for the second state
- year a numeric vector for the year
- midongoing a constant of 1 for ongoing disputes
- midonset a numeric vector that equals 1 for the onset year of a given dispute
- sidea1 is the first state (in ccode1) on the side that took the first militarized action?
- sidea2 is the second state (in ccode2) on the side that took the first militarized action?
Details

Data are the directed dispute-year data made available in version 2.1.1 of the GML MID data. I would caution against using the `revtype` variables. They are not informative. They are however included for legacy reasons.

References

Description

These are directed dyadic dispute year data derived from the Correlates of War (CoW) Militarized Interstate Dispute (MID) project. Data are from version 5.0. These were whittled to where there is no duplicate dyad-years. Its primary aim here is merging into a dyad-year data frame.

Usage

gml_mid_ddydisps

Format

A data frame with 9262 observations on the following 25 variables.

dispnum a numeric vector for the dispute number
ccode1 a numeric vector for the focal state in the dyad
ccode2 a numeric vector for the target state in the dyad
year a numeric vector for the dispute-year
gmlmidongoing a numeric vector for whether there was a dispute ongoing in that year
gmlmidonset a numeric vector for whether it was the onset of a new dispute (or new participant-entry into a recurring dispute)
sidea1 is ccode1 on side A of the dispute?
sidea2 is ccode2 on side A of the dispute?
fatality1 a numeric vector for the overall fatality level of ccode1 in the dispute
fatality2 a numeric vector for the overall fatality level of ccode2 in the dispute
fatalpre1 a numeric vector for the known fatalities (with precision) for ccode1 in the dispute
fatalpre2 a numeric vector for the known fatalities (with precision) for ccode2 in the dispute
hiact1 a numeric vector for the highest action of ccode1 in the dispute
hiact2 a numeric vector for the highest action of ccode2 in the dispute
hostlev1 a numeric vector for the hostility level of ccode1 in the dispute
hostlev2 a numeric vector for the hostility level of ccode2 in the dispute
orig1 is ccode1 an originator of the dispute?
orig2 is ccode2 an originator of the dispute?
fatality a numeric vector for the fatality level of the dispute
hostlev a numeric vector for the hostility level of the MID
mindur a numeric vector for the minimum duration of the MID
maxdur a numeric vector for the maximum duration of the MID
recip a numeric vector for whether a MID was reciprocated
stmon a numeric vector for the start month of the MID
Details

The process of creating these is described at one of the references below. Importantly, these data are somewhat "naive." That is: they won’t tell you, for example, that Brazil and Japan never directly fought each other during World War II. Instead, it will tell you that there were two years of overlap for the two on different sides of the conflict and that the highest action for both was a war. The data are thus similar to what the EUGene program would create for users back in the day. Use these data with that limitation in mind.

References

gwcode_democracy
Democracy data for all Gleditsch-Ward states

Description

These are democracy data for all Correlates of War state system members.

Usage

gwcode_democracy

Format

A data frame with 18289 observations on the following 5 variables.

- gwcode the Gleditsch-Ward system code
- year a numeric vector for the year
- v2x_polyarchy the Varieties of Democracy "polyarchy" estimate
- polity2 the the polity2 score from the Polity project
- xm_qudsest an extension of the Unified Democracy Scores (UDS) estimates, made possibly by the QuickUDS package from Xavier Marquez.

Details

Missing data connote data that are unavailable for various reasons. Either there is no democracy data to code or, in the case of the Polity project, the state system member is outright not evaluated for the variable.

The Polity data are from 2017. The Varieties of Democracy data are version 10. Xavier Marquez’ QuickUDS estimates (i.e. extensions of Pemstein et al. (2010)) come from a package Marquez makes available on his Github (https://github.com/xmarquez/QuickUDS).
References

gw_cow_years Gleditsch-Ward states and Correlates of War, by year

Description

This is a complete (I believe) data set on Gleditsch-Ward states and Correlates of War states, a byproduct of a `full_join()` between `gw_states` and `cow_states` that leans largely on the state abbreviation variable.

Usage

`gw_cow_years`

Format

A data frame with 18425 observations on the following 6 variables.

- **gwcode**: a Gleditsch-Ward state code
- **stateabb**: the state abbreviation, which was the greatest source of agreement between both data sets
- **gw_statename**: the state name as it appears in the Gleditsch-Ward data
- **ccode**: a Correlates of War state code
- **cow_statename**: the state name as it appears in the Correlates of War data
- **year**: a numeric vector for the year

Details

The `data-raw` directory on the project's Github contains more information about how these data were created. I'm going to use it for internal stuff. The workflow is going to treat the Gleditsch-Ward state system membership codes as more of the "master" codes, for which the user can add Correlates of War identifiers as they see fit. Data are extended to 2020, assuming no changes to state system membership for either data set.
gw_ddy

Description

This is a complete directed dyad-year data frame of Gleditsch-Ward state system members. I offer it here as a shortcut for various other functions.

Usage

`gw_ddy`

Format

A data frame with 1999558 observations on the following 4 variables.

- `gwcode1` a numeric vector for the Correlates of War state code for the first state
- `gwcode2` a numeric vector for the Correlates of War state code for the second state
- `year` a numeric vector for the year

Details

Data are a quick generation from the `create_dyadyears(system="gw")` function in this package.

gw_mindist

Description

These are non-directed dyad-year data for the minimum distance between states in the Gleditsch-Ward state system from 1946 to 2015. The data are generated from the `cshapes` package.

Usage

`gw_mindist`

Format

A data frame with 868813 observations on the following 4 variables.

- `gwcode1` the Gleditsch-Ward state system code for the first state
- `gwcode2` the Gleditsch-Ward state system code for the second state
- `year` the year
- `mindist` the minimum distance between states on Dec. 31 of the year, in kilometers
Details

The data are generated from the cshapes package. The package authors purport that the data are generated to be compatible with the Gleditsch-Ward system. I trust them on this; indeed, Gleditsch is one of the authors of the cshapes package. However, I’m not sure how exhaustive the coverage is. For example, Tibet is missing in these data and it should not be. I do not use Gleditsch-Ward codes for my own research, so my quality control here for functions using these data will be minimal. I can only confirm there are no duplicates in the data.

Data are automatically generated (by default) as directed dyad-years. I elect to make them non-directed for space considerations. Making non-directed dyad-year data into directed dyad-year data isn’t too difficult in R. It just looks weird to see the code that does it.

Most of the data I prove elsewhere in this package are to be understood as the data as they were at the *start* of the year. This is how I process, for example, the capitals data as they get merged in the add_capital_distance() function. However, the script that generates these data are set at Dec. 31 of the year and not Jan. 1. I do this for concerns of maximizing data coverage. If you wanted the same effect, just lag the data a year.

References

Description

These are state-year level data for surplus and gross domestic product for Correlates of War state system members. Data also include population estimates for per capita standardization.

Usage

gw_sdp_gdp

Format

A data frame with 27387 observations on the following five variables.

gwcode	a numeric vector for the Gleditsch-Ward state code
year	a numeric vector for the year
wbgdp2011est	a numeric vector for the estimated natural log of GDP in 2011 USD (log-transformed)
wbpopest	a numeric vector for the estimated population size (log-transformed)
sdpest	a numeric vector for the estimated surplus domestic product (log-transformed)
wbgdppc2011est	a numeric vector for the estimated GDP per capita (log-transformed)
Details

These were provided by Anders on a separate Github repository for this project. Because these data are ultimately being simulated, a user can expect some slight differences between the Correlates of War version of these data (which Anders et al. published) and the Gleditsch-Ward version of these data (which appear to be the one the authors will more vigorously support going forward).

References

__gw_states__

Gleditsch-Ward (Independent States) System Membership Data (1816-2017)

Description

These are the independent states in Gleditsch and Ward’s data.

Usage

`gw_states`

Format

A data frame with 216 observations on the following 5 variables.

- `gwcode` a numeric vector for the Gleditsch-Ward country code
- `stateabb` a character vector for state abbreviation
- `statename` a character vector for the state name
- `startdate` the start date in the data
- `enddate` the end date in the data

Details

Data originally provided by Gleditsch with no column names. Column names were added before some light re-cleaning in order to generate these data.

References

hief

Historical Index of Ethnic Fractionalization data

Description

This is a data set with state-year estimates for ethnic fractionalization.

Usage

hief

Format

A data frame with 8808 observations on the following 5 variables.

- **ccode**: a Correlates of War state code
- **gwcode**: a Gleditsch-Ward state code
- **year**: the year
- **efindex**: a numeric vector for the estimate of ethnic fractionalization

Details

The data-raw directory on the project’s Github contains more information about how these data were created.

References

maoz_powers

Zeev Maoz’ Regional/Global Power Data

Description

These are Zeev Maoz’ data for what states are regional or global powers at a given point time. They are extensions of the Correlates of War major power data, which only codes "major" power without consideration of regional or global distinctions. Think of Austria-Hungary as intuitive of the issue here. Austria-Hungary is a major power in the Correlates of War data, but there is good reason to treat Austria-Hungary as a major power only within Europe. That is what Zeev Maoz tries to do here.

Usage

maoz_powers
Format

A data frame with 20 observations on the following 5 variables.

- ccode a numeric vector for the Correlates of War country code
- regstdate the start date for regional power status
- regenddate the end date for regional power status
- globstdate the start date for global power status
- globenddate the end date for global power status

References

ps_bib

A BibTeX Data Frame of Citations

Description

This is a BibTeX file, loaded as a data frame, to assist the user in properly citing the source material that is used in this package.

Usage

ps_bib

Format

A data frame with 37 observations on the following 40 variables.

- CATEGORY the BibTeX entry type
- BIBTEXKEY the BibTeX unique entry key
- ADDRESS another BibTeX field
- ANNOTE another BibTeX field
- AUTHOR a list of authors for this entry
- BOOKTITLE another BibTeX field, for book title (if appropriate)
- CHAPTER another BibTeX field, for chapter (if appropriate)
- CROSSREF another BibTeX field
- EDITION another BibTeX field, for edition of book (if appropriate)
- EDITOR another BibTeX field, for book editor (if appropriate)
- HOWPUBLISHED another BibTeX field
- INSTITUTION another BibTeX field
- JOURNAL another BibTeX field, for the journal name (if appropriate)
KEY another BibTeX field
MONTH another BibTeX field
NOTE another BibTeX field
NUMBER another BibTeX field, for journal volume number (if appropriate)
ORGANIZATION another BibTeX field
PAGES another BibTeX field, for pages of the entry
PUBLISHER another BibTeX field, for book publisher (if appropriate)
SCHOOL another BibTeX field
SERIES another BibTeX field
TITLE another BibTeX field, for title of the entry
TYPE another BibTeX field
VOLUME another BibTeX field, for journal volume (if appropriate)
YEAR another BibTeX field, for year of publication
KEYWORDS another BibTeX field, used primarily for selective filtering in this package
URL another BibTeX field, for website (if appropriate)
OWNER another BibTeX field
TIMESTAMP another BibTeX field, used occasionally when I started populating my master file (you will see some old entries here)
DOI another BibTeX field, for a digital object identifier (used rarely)
EPRINT another BibTeX field
JOURNALTITLE another BibTeX field, which I think is actually a BibLaTeX field
ISSN another BibTeX field
ABSTRACT another BibTeX field, for entry abstract (if appropriate)
COPYRIGHT another BibTeX field
JSTOR_ARTICLETYPE another BibTeX field
JSTOR_FORMATTEDDATE another BibTeX field
DATE.ADDED another BibTeX field
DATE.MODIFIED another BibTeX field

Details
See data-raw directory for how these data were generated. The data were created by bib2df, which is now a package dependency. I assume the user has some familiarity with BibTeX. Some entries were copy-pasted from my master bibliography file that I started in 2008 or so.
Description

`ps_cite()` allows the user to get citations to scholarship that they should include in their papers that incorporate the functions and data in this package.

Usage

```r
ps_cite(x)
```

Arguments

- `x` a character vector

Details

The base functionality here is simple pattern-matching on keywords in `ps_bib`. This simple pattern-matching is in base R. I assume the user has some familiarity with BibTeX.

Value

`ps_cite()` takes a character vector and scans the `ps_bib` data in this package to return a BibTeX citation (or citations) for the researcher to use to properly cite the material they are getting from this package. The citations are returned as a full BibTeX entry (or entries) that they can copy-paste into their own BibTeX file.

Author(s)

Steven V. Miller

Examples

```r
# You can cite the package
ps_cite("peacesciencer")

# You can do partial matching
ps_cite("democracy")

# Or more partial matching
ps_cite("alliance")

# You can also get all citations for a particular function
ps_cite("add_archigos()")
```
Description

This is a data set on state-level estimates for the "ruggedness" of a state’s terrain.

Usage

rugged

Format

A data frame with 192 observations on the following 6 variables.

- **ccode**: a Correlates of War state code
- **gwcode**: a Gleditsch-Ward state code
- **rugged**: the terrain ruggedness index
- **newlmntnest**: the (natural log) percentage estimate of the state’s terrain that is mountainous

Details

The data-raw directory on the project’s Github contains more information about how these data were created. It goes without saying that these data move *slowly* so the data are really only applicable for making state-to-state comparisons and not states-in-time comparisons. The terrain ruggedness index is originally introduced by Riley et al. (1999) but is amended by Nunn and Puga (2012). The mountain terrain data was originally created by Fearon and Laitin (2003) but extended and amended by Gibler and Miller (2014). The data are functionally time-agnostic—use with caution in your state-year analyses—but all data sets seem to benchmark around 1999-2000. I’m not sure it matters *that* much, but it matters a little at the margins, I suppose, if you suspect there are major differences in interpretation of how much more "rugged" the Soviet Union was than Russia, or Yugoslavia than Serbia.

References

td_rivalries

Thompson and Dreyer’s (2012) Strategic Rivalries, 1494-2010

Description

A simple summary of all strategic (inter-state) rivalries from Thompson and Dreyer (2012).

Usage

```
 td_rivalries
```

Format

A data frame with 197 observations on the following 10 variables.

- `rivalryno`: a numeric vector for the rivalry number
- `rivalryname`: a character vector for the rivalry name
- `ccode1`: the Correlates of War state code for the state with the lowest Correlates of War state code in the rivalry
- `ccode2`: the Correlates of War state code for the state with the highest Correlates of War state code in the rivalry
- `styear`: a numeric vector for the start year of the rivalry
- `endyear`: a numeric vector for the end year of the rivalry
- `region`: a character vector for the region of the rivalry, per Thompson and Dreyer (2012)
- `type1`: a character vector for the primary type of the rivalry (spatial, positional, ideological, or interventionary)
- `type2`: a character vector for the secondary type of the rivalry, if applicable (spatial, positional, ideological, or interventionary)
- `type3`: a character vector for the tertiary type of the rivalry, if applicable (spatial, positional, ideological, or interventionary)

Details

Information gathered from the appendix of Thompson and Dreyer (2012). Ongoing rivalries are right-bound at 2010, the date of publication for Thompson and Dreyer’s handbook. Users are free to change this if they like. Data are effectively identical to `strategic_rivalries` in `stevemisc`, but include some behind-the-scenes processing (described in a blog post on http://svmiller.com) that is available to see on the project’s Github repository. The data object is also renamed to avoid a conflict.

References

Description

These are (kind of) dyadic, but mostly state-level data, used internally for doing stuff with the UCDP armed conflict data

Usage

ucdp_acd

Format

A data frame with 4164 observations on the following 15 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>conflict_id</td>
<td>a conflict identifier, not to be confused with an episode identifier (which I don’t think UCDP offers)</td>
</tr>
<tr>
<td>year</td>
<td>a numeric vector for the year</td>
</tr>
<tr>
<td>gwno_a</td>
<td>the Gleditsch-Ward state code for the state on side A of the armed conflict</td>
</tr>
<tr>
<td>gwno_a_2nd</td>
<td>the Gleditsch-Ward state code for the state that actively supported side A of the armed conflict with the use of troops</td>
</tr>
<tr>
<td>gwno_b</td>
<td>the Gleditsch-Ward state code for the actor on side B of the armed conflict</td>
</tr>
<tr>
<td>gwno_b_2nd</td>
<td>the Gleditsch-Ward state code for the state that actively supported side B of the armed conflict with the use of troops</td>
</tr>
<tr>
<td>incompatibility</td>
<td>a character vector for the main conflict issue ("territory", "government", "both")</td>
</tr>
<tr>
<td>intensity_level</td>
<td>a numeric vector for the intensity level in the calendar year (1 = minor (25-999 deaths), 2 = war (>1,000 deaths))</td>
</tr>
<tr>
<td>type_of_conflict</td>
<td>a character vector for the type of conflict ("extrasystemic", "interstate", "intrastate", "II"). "II" is a simple abbreviation of "internationalized intrastate"</td>
</tr>
<tr>
<td>start_date</td>
<td>a date of the first battle-related death in the conflict, not to be confused with the first battle-related death of the episode</td>
</tr>
<tr>
<td>start_prec</td>
<td>the level of precision for start_date</td>
</tr>
<tr>
<td>start_date2</td>
<td>a date of the first battle-related death in the episode, not to be confused with the first battle-related death of the conflict</td>
</tr>
<tr>
<td>start_prec2</td>
<td>the level of precision for start_date2</td>
</tr>
<tr>
<td>ep_end</td>
<td>a dummy variable for whether the conflict episode ended in the calendar year of observation</td>
</tr>
<tr>
<td>ep_end_date</td>
<td>the episode end date, if applicable</td>
</tr>
</tbody>
</table>

Details

The data-raw directory on the project’s Github will show how I processed the multiple strings for when there are multiple states on a given side.
References

ucdp_onsets

UCDP Onset Data (v. 19.1)

Description

These are state-year level data for armed conflict onsets provided by the Uppsala Conflict Data Program (UCDP).

Usage

ucdp_onsets

Format

A data frame with 10142 observations on the following eight variables.

- gwcode: a numeric vector for the Gleditsch-Ward state code
- year: a numeric vector for the year
- sumnewconf: a numeric vector for the sum of new conflicts/conflict-dyads
- sumonset1: a numeric vector for the sum of new conflict episodes, whether because this is a new conflict or because there is more than one year since last conflict episode
- sumonset2: a numeric vector for the sum of new conflict episodes, whether because this is a new conflict or because there is more than two years since last conflict episode
- sumonset3: a numeric vector for the sum of new conflict episodes, whether because this is a new conflict or because there is more than three years since last conflict episode
- sumonset5: a numeric vector for the sum of new conflict episodes, whether because this is a new conflict or because there is more than five years since last conflict episode
- sumonset10: a numeric vector for the sum of new conflict episodes, whether because this is a new conflict or because there is more than 10 years since last conflict episode

Details

The user will want to note that the data provided by UCDP are technically not country-year observations. They instead duplicate observations for cases of new conflicts or new conflict episodes. Further, the original data do not provide any information about the conflict-dyad in question to which those duplicates pertain. That means the most these data can do for the package’s mission is provide summary information. The user should probably recode these variables into something else they may want for a particular application.
References

Index

* datasets

archigos, 32
atop_alliance, 33
capitals, 34
ccode_democracy, 35
cow_alliance, 36
cow_contdir, 37
cow_ddy, 38
cow_gw_years, 38
cow_igo_ndy, 39
cow_igo_sy, 40
cow_majors, 41
cow_mid_ddydisps, 42
cow_mid_dirdisps, 43
cow_mid_disps, 44
cow_mindist, 45
cow_nmc, 46
cow_sdp_gdp, 47
cow_states, 48
cow_trade_ndy, 49
cow_trade_sy, 50
cow_war_inter, 50
cow_war_intra, 52
creg, 56
gml_dirdisp, 59
gml_mid_ddydisps, 61
gw_cow_years, 63
gw_ddy, 64
gw_mindist, 64
gw_sdp_gdp, 65
gw_states, 66
gwcode_democracy, 62
hief, 67
maoz_powers, 67
ps_bib, 68
rugged, 71
td_rivalries, 72
ucdp_acd, 73
ucdp_onsets, 74
add_archigos, 3
add_atop_alliance, 4
add_capital_distance, 5
add_ccode_to_gw, 6
add_contiguity, 7
add_cow_alliance, 9
add_cow_majors, 10
add_cow_mids, 11
add_cow_trade, 12
add_cow_wars, 13
add_creg_fractionalization, 15
add_democracy, 16
add_gml_mids, 17
add_gwcode_to_cow, 19
add_igos, 20
add_minimum_distance, 21
add_nmc, 22
add_peace_years, 23
add_ruggedTerrain, 25
add_sdp_gdp, 27
add_strategic_rivalries, 28
add_ucdp_acd, 29
add_ucdp_onsets, 31
archigos, 32
atop_alliance, 33

capitals, 34
ccode_democracy, 35
cow_alliance, 36
cow_contdir, 37
cow_ddy, 38
cow_gw_years, 38
cow_igo_ndy, 39
cow_igo_sy, 40
cow_majors, 41
cow_mid_ddydisps, 42
cow_mid_dirdisps, 43
cow_mid_disps, 44
cow_mindist, 45
cow_nmc, 46
cow_sdp_gdp, 47
cow_states, 48
cow_trade_ndy, 49
cow_trade_sy, 50
cow_war_inter, 50
cow_war_intra, 52
create_dyadyears, 53
create_statedays, 54
create_stateyears, 55
creg, 56
filter_prd, 58
gml_dirdisp, 59
gml_mid_ddydisps, 61
gw_cow_years, 63
gw_ddy, 64
gw_mindist, 64
gw_sdp_gdp, 65
gw_states, 66
gwcode_democracy, 62
hief, 67
maoz_powers, 67
ps_bib, 68
ps_cite, 70
rugged, 71
td_rivalries, 72
ucdp_acd, 73
ucdp_onsets, 74