Package ‘pedigree’

February 20, 2015

Type Package
Title Pedigree functions
Version 1.4
Date 2012-11-27
Depends Matrix, HaploSim (>= 1.8.4), reshape
Description Pedigree related functions
License GPL (>= 2)
Author Albart Coster [aut, cre]
Maintainer Albart Coster <albart@dairyconsult.nl>
Repository CRAN
Date/Publication 2013-11-03 18:33:22
NeedsCompilation yes

R topics documented:

pedigree-package .. 2
add.Inds .. 2
blup .. 3
calcG .. 4
calcInbreeding ... 4
countGen .. 5
countOff ... 6
gblup ... 6
makeA .. 7
makeAinv .. 8
orderPed .. 9
trimPed .. 10

Index 11
add.Inds

Description

Package with functions to analyse and transform pedigree data. A pedigree is a data.frame where the first column contains an ID, and the second and third columns contain ID of first and second parent.

Author(s)

Albart Coster: <albart.coster@wur.nl>

See Also

trimPed, orderPed, countGen, makeA, makeAinv, calcInbreeding, add.Inds

add.Inds

Function to add missing individuals to a pedigree

Description

Function add.Inds() adds missing individuals to a pedigree and returns the complete pedigree as a data.frame with the same headers as the original pedigree. Remember to check for errors beforehand with function errors.ped. Unknown parents should be coded as NA.

Usage

add.Inds(ped)

Arguments

ped data.frame with three columns: id, id parent1, id parent2

Value

data.frame of three columns with identical header as input.

Author(s)

Albart Coster, Albart.Coster@wur.nl

See Also

orderPed
blup

Function to calculate breeding values using an animal model

Description

Fit an animal model to data, use a given variance ratio \(\alpha = \frac{\sigma_e^2}{\sigma_a^2} \). Calculate inverse of the additive genetic relationship matrix using function `makeInv()` of this package.

Usage

```r
blup(formula, ped, alpha, trim = FALSE)
```

Arguments

- `formula`: formula of the model, do not include the random effect due to animal (generally ID).
- `ped`: `data.frame` with columns corresponding to ID, SIRE, DAM and the columns in the formula.
- `alpha`: Variance ratio \(\frac{\sigma_e^2}{\sigma_a^2} \).
- `trim`: If TRUE, trims the pedigree using the available phenotype data using function `trimPed`.

Value

Vector of solutions to the model, including random animal effects.

See Also

`SamplePedigree`, `gblup`, `makeInv`, `blup`

Examples

```r
example(gblup)
sol <- blup(P~1, ped = ped, alpha = 1/h2 - 1)
```
calcG

Function to calculate a relationship matrix from marker data (usually allele count data), G matrix.

Description

Function to calculate a relationship matrix from marker data. Option to return the inverse of matrix. Inverse calculated using Matrix package.

Usage

calcG(M, data = NULL, solve = FALSE)

Arguments

 M Matrix of marker genotypes, usually the count of one of the two SNP alleles at each markers (0, 1, or 2).
 data Optional logical vector which can tell of which individuals we have phenotypes.
 solve Logic, if TRUE then function returns the inverse of the relationship matrix.

Value

Matrix of class dgeMatrix.

See Also

SamplePedigree, gblup, makeAinv, blup

Examples

e.example(gblup)
 G <- calcG(M)
 Ginv <- calcG(M, solve = TRUE)

calcInbreeding

Calculates inbreeding coefficients for individuals in a pedigree.

Description

Calculates inbreeding coefficients of individuals in a pedigree.

Usage

calcInbreeding(ped)
countGen

Arguments

ped data.frame with three columns: id,id parent1,id parent2

Value

Logical.

Examples

id <- 1:6
dam <- c(0,0,1,1,4,4)
sire <- c(0,0,2,2,3,5)
ped <- data.frame(id,dam,sire)
(F <- calcInbreeding(ped))

countGen

Count generation number for each individual in a pedigree.

Description

Counts generation number for individuals in a pedigree.

Usage

countGen(ped)

Arguments

ped data.frame with three columns: id,id parent1,id parent2

Value

Numeric vector

Examples

id <- 1:5
dam <- c(0,0,1,1,4)
sire <- c(0,0,2,2,3)
ped <- data.frame(id,dam,sire)
(gens <- countGen(ped))
countOff

Function that counts the number of offspring (and following generations for each individual in a pedigree).

Description

Function to count the number of offspring for each individual in a pedigree. With loops, offspring of later generations will be counted several times.

Usage

countOff(ped)

Arguments

ped data frame with three columns: id, id parent1, id parent2

Value

Numeric vector with number of offspring for each individual in the pedigree.

Author(s)

Albart Coster

Examples

example(countGen)
countOff(ped)

gblup

Function to calculate breeding values using an animal model and a relationship matrix calculated from the markers (G matrix)

Description

Fit an animal model to data, use a given variance ratio \(\alpha = \frac{\sigma^2_e}{\sigma^2_a} \). Calculate genetic relationship matrix using the function calcG of this package.

Usage

gblup(formula, data, M, lambda)
Arguments

- **formula**: formula of the model, do not include the random effect due to animal (generally ID).
- **data**: data.frame with columns corresponding to ID and the columns mentioned in the formula.
- **M**: Matrix of marker genotypes, usually the count of one of the two SNP alleles at each markers (0, 1, or 2).
- **lambda**: Variance ratio \(\frac{\sigma^2_e}{\sigma^2_a} \)

Value

Vector of solutions to the model, including random animal effects.

See Also

SamplePedigree, gblup, makeAinv, blup

Examples

```r
h2 <- 0.5
eexample(SamplePedigree)
ped <- pHList$ped
hList <- pHList$hList
qtlList <- ListQTL(hList = hList, frqtl = 0.1, sigma2qtl = 1)
qtl <- tapply(unlist(qtlList),list(rep(names(qtlList),times = unlist(lapply(qtlList,length)))),
    unlist(lapply(qtlList,function(x)seq(1,length(x)))),mean,na.rm = TRUE)
quilt <- melt(qtl)
names(qtl) <- c("POS","TRAIT","a")
HH <- getAll(hList,translatePos = FALSE)
rownames(HH) <- sapply(hList,function(x)x@hid)
QQ <- HH[,match(qtl$POS,colnames(HH))]
g <- QQ
ped$G <- with(ped,g[match(hID0,rownames(g))]+g[match(hID1,rownames(g))])
sigmae <- sqrt(var(ped$G)/h2 - var(ped$G))
ped$P <- ped$G + rnorm(nrow(ped),0,sigmae)
M <- with(ped,HH[match(hID0,rownames(HH)),]+HH[match(hID1,rownames(HH)),])
rownames(M) <- ped$ID
sol <- gblup(P-1, data = ped[,c('ID','P')],M = M,lambda = 1/h2 - 1)
```

Description

Makes the A matrix for a part of a pedigree and stores it in a file called A.txt.
Usage
makeA(ped,which)

Arguments
ped data frame with three columns: id, id parent1, id parent2
which Logical vector specifying between which individuals additive genetic relationship is required. Goes back through the whole pedigree but only for subset of individuals.

Value
Logical.

Examples
id <- 1:6
dam <- c(0,0,1,1,4,4)
sire <- c(0,0,2,2,3,5)
ped <- data.frame(id,dam,sire)
makeA(ped,which = c(rep(FALSE,4),rep(TRUE,2)))
A <- read.table("A.txt")

makeAinv

Makes inverted A matrix for a pedigree

Description
Makes inverted A matrix for a pedigree and stores it in a file called Ainv.txt.

Usage
makeAinv(ped)

Arguments
ped data frame with three columns: id, id parent1, id parent2

Value
Logical.
orderPed

Orders a pedigree

Description

Orders a pedigree so that offspring follow parents.

Usage

`orderPed(ped)`

Arguments

- `ped`: data.frame with three columns: id, id parent1, id parent2

Value

numerical vector

Examples

```r
code
```
trimPed

Function to trim a pedigree based on available data

Description
Trims a pedigree given a vector of data. Branches without data are trimmed off the pedigree.

Usage
`trimPed(ped, data, ngenback = NULL)`

Arguments
- `ped`
data frame with three columns: id, id parent1, id parent2
- `data`
TRUE-FALSE vector. Specifies if data for an individual is available.
- `ngenback`
Number of generations back. Specifies the number of generations to keep before the individuals with data.

Value
Logical vector specifying if an individual should stay in the pedigree.

Examples
```r
id <- 1:5
dam <- c(0,0,1,1,4)
sire <- c(0,0,2,2,3)
data <- c(FALSE,FALSE,TRUE,FALSE,FALSE)
ped <- data.frame(id,dam,sire)
y <- trimPed(ped,data)
ped <- ped[y,]
```
Index

*Topic utilities
 addInds, 2
 blup, 3
 calcG, 4
 calcInbreeding, 4
 countGen, 5
 countOff, 6
 gblup, 6
 makeA, 7
 makeAinv, 8
 orderPed, 9
 pedigree-package, 2
 trimPed, 10

addInds, 2, 2
blup, 3, 3, 4, 7
calcG, 4
calcInbreeding, 2, 4
countGen, 2, 5
countOff, 6
gblup, 3, 4, 6, 7
makeA, 2, 7
makeAinv, 2–4, 7, 8
orderPed, 2, 9
pedigree (pedigree-package), 2
pedigree-package, 2
SamplePedigree, 3, 4, 7
trimPed, 2, 3, 10