Package ‘penalized’

October 14, 2022

Version 0.9-52
Date 2022-04-23
Title L1 (Lasso and Fused Lasso) and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model
Author Jelle Goeman, Rosa Meijer, Nimisha Chaturvedi, Matthew Lueder
Maintainer Jelle Goeman <j.j.goeman@lumc.nl>
Depends R (>= 2.10.0), survival, methods
Imports Rcpp
LinkingTo Rcpp, RcppArmadillo
Suggests globaltest
Description Fitting possibly high dimensional penalized regression models. The penalty structure can be any combination of an L1 penalty (lasso and fused lasso), an L2 penalty (ridge) and a positivity constraint on the regression coefficients. The supported regression models are linear, logistic and Poisson regression and the Cox Proportional Hazards model. Cross-validation routines allow optimization of the tuning parameters.
License GPL (>= 2)
NeedsCompilation yes
LazyLoad yes
Repository CRAN
Date/Publication 2022-04-23 14:10:02 UTC
RoxygenNote 7.1.1
R topics documented:

breslow object ... 2
Cross-validation in penalized generalized linear models 3
Netherlands Cancer Institute 70 gene signature ... 7
Penalized generalized linear models .. 8
Penalized regression contrasts ... 10
penfit object ... 12
Plotting the LASSO path .. 13
Prediction from penalized models ... 14

Index 16

breslow object Breslow estimator object

Description

Stores one or more survival stepfunctions of the Kaplan-Meier and Breslow type.

Details

Breslow objects are generally created by the \texttt{penalized} function and related functions.

Slots

time: Object of class "vector". The time points at which the function starts, jumps or ends.
curves: Object of class "matrix". The values of the curve at each time point. Note that the function
is left-continuous. Curves are stored as a matrix of dimension (\# curves) x (\# timepoints).

Methods

"[" (breslow): Coerces the object to a matrix (as as.matrix) and selects rows and/or columns.
"[[" (breslow): Selects a subset of the curves.
\texttt{as.data.frame} (breslow): Returns the "curves" slot together with the "time" slot in a \texttt{data.frame}.
\texttt{as.list} (breslow): Coerces the object to a list.
\texttt{as.matrix} (breslow): Returns the "curves" slot with the "time" slot as column names.
\texttt{plot} (breslow): Straightforward plotting (all curves in one plot).
\texttt{show} (breslow): Summarizes the dimensions of the object.
\texttt{survival} (breslow): Takes a second argument (time). Extracts the value of the survival curve(s) at
any time point.

Author(s)

Jelle Goeman: \texttt{<j.j.goeman@lumc.nl>
Cross-validation in penalized generalized linear models

See Also

penalized.

Cross-validation in penalized generalized linear models
Cross-validated penalized regression

Description

Cross-validating generalized linear models with L1 (lasso or fused lasso) and/or L2 (ridge) penalties, using likelihood cross-validation.

Usage

cvl (response, penalized, unpenalized, lambda1 = 0, lambda2 = 0, positive = FALSE, fused1 = FALSE, data, model = c("cox", "logistic", "linear", "poisson"), startbeta, startgamma, fold, epsilon = 1e-10, maxiter, standardize = FALSE, trace = TRUE, approximate = FALSE)

optL1 (response, penalized, unpenalized, minlambda1, maxlambda1, base1, lambda2 = 0, fused1 = FALSE, positive = FALSE, data, model = c("cox", "logistic", "linear", "poisson"), startbeta, startgamma, fold, epsilon = 1e-10, maxiter = Inf, standardize = FALSE, tol = .Machine$double.eps^0.25, trace = TRUE)

optL2 (response, penalized, unpenalized, lambda1 = 0, minlambda2, maxlambda2, base2, fused1 = FALSE, positive = FALSE, data, model = c("cox", "logistic", "linear", "poisson"), startbeta, startgamma, fold, epsilon = 1e-10, maxiter, standardize = FALSE, tol = .Machine$double.eps^0.25, trace = TRUE, approximate = FALSE)

profL1 (response, penalized, unpenalized, minlambda1, maxlambda1, base1, lambda2 = 0, fused1 = FALSE, positive = FALSE, data, model = c("cox", "logistic", "linear", "poisson"), startbeta, startgamma, fold, epsilon = 1e-10, maxiter = Inf, standardize = FALSE, steps = 100, minsteps = steps/3, log = FALSE, save.predictions = FALSE, trace = TRUE, plot = FALSE)

profL2 (response, penalized, unpenalized, lambda1 = 0, minlambda2, maxlambda2, base2, fused1 = FALSE, positive = FALSE, data, model = c("cox", "logistic", "linear", "poisson"), startbeta, startgamma, fold, epsilon = 1e-10, maxiter, standardize = FALSE, steps = 100, minsteps = steps/2, log = TRUE, save.predictions = FALSE, trace = TRUE, plot = FALSE, approximate = FALSE)
Cross-validation in penalized generalized linear models

Arguments

response
The response variable (vector). This should be a numeric vector for linear regression, a Surv object for Cox regression and factor or a vector of 0/1 values for logistic regression.

penalized
The penalized covariates. These may be specified either as a matrix or as a (one-sided) formula object. See also under data.

unpenalized
Additional unpenalized covariates. Specified as under penalized. Note that an unpenalized intercept is included in the model by default (except in the cox model). This can be suppressed by specifying unpenalized = ~0.

lambda1, lambda2
The fixed values of the tuning parameters for L1 and L2 penalization. Each must be either a single positive numbers or a vector with length equal to the number of covariates in penalized argument. In the latter case, each covariate is given its own penalty weight.

minlambda1, minlambda2, maxlambda1, maxlambda2
The values of the tuning parameters for L1 or L2 penalization between which the cross-validated likelihood is to be profiled or optimized. For fused lasso penalty minlambda2 and maxlambda2 are the tuning parameters for L1 penalty on the differences of the coefficients between which the cross-validated likelihood is to be optimized.

base1, base2
An optional vector of length equal to the number of covariates in penalized. If supplied, profiling or optimization is performed between base1*minlambda1 and base1*maxlambda1; analogous for base2.

fusedl
If TRUE or a vector, the penalization method used is fused lasso. The value for lambda1 is used as the tuning parameter for L1 penalization on the coefficients and the value for lambda2 is used as the tuning parameter for L1 penalization on the differences of the coefficients. Default value is FALSE.

positive
If TRUE, constrains the estimated regression coefficients of all penalized covariates to be non-negative. If a logical vector with the length of the number of covariates in penalized, constrains the estimated regression coefficients of a subset of the penalized covariates to be non-negative.

data
A data.frame used to evaluate response, and the terms of penalized or unpenalized when these have been specified as a formula object.

model
The model to be used. If missing, the model will be guessed from the response input.

startbeta
Starting values for the regression coefficients of the penalized covariates. These starting values will be used only for the first values of lambda1 and lambda2.

startgamma
Starting values for the regression coefficients of the unpenalized covariates. These starting values will be used only for the first values of lambda1 and lambda2.

fold
The fold for cross-validation. May be supplied as a single number (between 2 and n) giving the number of folds, or, alternatively, as a length n vector with values in 1:fold, specifying exactly which subjects are assigned to which fold. The default is fold = 1:n, resulting in leave-one-out (n-fold) cross-validation.
Cross-validation in penalized generalized linear models

epsilon The convergence criterion. As in glm. Convergence is judged separately on the
likelihood and on the penalty.
maxiter The maximum number of iterations allowed in each fitting of the model. Set by
default at 25 when only an L2 penalty is present, infinite otherwise.
standardize If TRUE, standardizes all penalized covariates to unit central L2-norm before
applying penalization.
steps The maximum number of steps between minlambda1 and maxlambda1 or minlambda2
and maxlambda2 at which the cross-validated likelihood is to be calculated.
minsteps The minimum number of steps between minlambda1 and maxlambda1 or minlambda2
and maxlambda2 at which the cross-validated likelihood is to be calculated. If
minsteps is smaller than steps, the algorithm will automatically stop when the
cross-validated likelihood drops below the cross-validated likelihood of the null
model, provided it has done at least minsteps steps.
log If FALSE, the steps between minlambda1 and maxlambda1 or minlambda2 and
maxlambda2 are equidistant on a linear scale, if TRUE on a logarithmic scale.
Please note the different default between optL1 (FALSE) and optL2 (TRUE).
tol The tolerance of the Brent algorithm used for minimization. See also optimize.
save.predictions Controls whether or not to save cross-validated predictions for all values of
lambda.
trace If TRUE, prints progress information. Note that setting trace=TRUE may slow
down the algorithm (but it often feels quicker)
approximate If TRUE, the cross-validated likelihood values are approximated rather than fully
calculated. Note that this option is only available for ridge models.
plot If TRUE, makes a plot of cross-validated likelihood versus lambda.

Details

All five functions return a list with the following named elements:

lambda: For optL1 and optL2 lambda gives the optimal value of the tuning parameters found.
 For profL1 and profL2 lambda is the vector of values of the tuning parameter for which the
cross-validated likelihood has been calculated. Absent in the output of cvl.
cvl: The value(s) of the cross-validated likelihood. For optL1, optL2 this is the cross-validated
likelihood at the optimal value of the tuning parameter.
fold: Returns the precise allocation of the subjects into the cross-validation folds. Note that the
same allocation is used for all cross-validated likelihood calculations in each call to optL1,
optL2, profL1, profL2.
predictions: The cross-validated predictions for the left-out samples. The precise format of the
cross-validated predictions depends on the type of generalized linear model (see breslow for
survival models. The functions profL1 and profL2 return a list here (only if save.predictions
= TRUE), whereas optL1, optL2 return the predictions for the optimal value of the tuning pa-
rameter only.
fullfit: The fitted model on the full data. The functions profL1 and profL2 return a list of
penfit objects here, whereas optL1, optL2 return the full data fit (a single penfit object) for
the optimal value of the tuning parameter only.
Value

A named list. See details.

Note

The `optL1` and `optL2` functions use Brent's algorithm for minimization without derivatives (see also `optimize`). There is a risk that these functions converge to a local instead of to a global optimum. This is especially the case for `optL1`, as the cross-validated likelihood as a function of λ_1 quite often has local optima. It is recommended to use `optL1` in combination with `profL1` to check whether `optL1` has converged to the right optimum.

See also the notes under `penalized`.

Author(s)

Jelle Goeman: <j.j.goeman@lumc.nl>

References

See Also

`penalized`, `penfit`, `plotpath`.

Examples

```r
# More examples in the package vignette:
# type vignette("penalized")

data(nki70)
attach(nki70)

# Finding an optimal cross-validated likelihood
opt <- optL1(Surv(time, event), penalized = nki70[,8:77], fold = 5)
coefficients(opt$fullfit)
plot(opt$predictions)

# Plotting the profile of the cross-validated likelihood
prof <- profL1(Surv(time, event), penalized = nki70[,8:77],
fold = opt$fold, steps=10)
plot(prof$lambda, prof$cvl, type="l")
plotpath(prof$fullfit)
```
Netherlands Cancer Institute 70 gene signature

The 70 gene signature of the Netherlands Cancer Institute for prediction of metastasis-free survival, measured on 144 independent lymph node positive patients.

Description

A data.frame of 144 lymph node positive breast cancer patients on metastasis-free survival, 5 clinical risk factors, and gene expression measurements of 70 genes found to be prognostic for metastasis-free survival in an earlier study. The included variables are

- **time** Metastasis-free follow-up time (months).
- **event** Event indicator. 1 = metastasis or death; 0 = censored.
- **Diam** Diameter of the tumor (two levels).
- **N** Number of affected lymph nodes (two levels).
- **ER** Estrogen receptor status (two levels).
- **Grade** Grade of the tumor (three ordered levels).
- **Age** Patient age at diagnosis (years).
- **TSPYL5...C20orf46** Gene expression measurements of 70 prognostic genes.

Usage

data(nki70)

Format

A data.frame.

Note

The 70 gene signature was trained on lymph node negative patients only.

References

Penalized generalized linear models

Penalized regression

Description

Fitting generalized linear models with L1 (lasso and fused lasso) and/or L2 (ridge) penalties, or a combination of the two.

Usage

penalized (response, penalized, unpenalized, lambda1=0, lambda2=0, positive = FALSE, data, fusedl=FALSE, model = c("cox", "logistic", "linear", "poisson"); startbeta, startgamma, steps =1, epsilon = 1e-10, maxiter, standardize = FALSE, trace = TRUE)

Arguments

response
The response variable (vector). This should be a numeric vector for linear regression, a Surv object for Cox regression and factor or a vector of 0/1 values for logistic regression.

penalized
The penalized covariates. These may be specified either as a matrix or as a (one-sided) formula object. See also under data.

unpenalized
Additional unpenalized covariates. Specified as under penalized. Note that an unpenalized intercept is included in the model by default (except in the Cox model). This can be suppressed by specifying unpenalized = ~0.

lambda1, lambda2
The tuning parameters for L1 and L2 penalization. Each must be either a single positive numbers or a vector with length equal to the number of covariates in penalized argument. In the latter case, each covariate is given its own penalty weight.

positive
If TRUE, constrains the estimated regression coefficients of all penalized covariates to be non-negative. If a logical vector with the length of the number of covariates in penalized, constrains the estimated regression coefficients of a subset of the penalized covariates to be non-negative.

data
A data.frame used to evaluate response, and the terms of penalized or unpenalized when these have been specified as a formula object.

fusedl
If TRUE or a vector, the penalization method used is fused lasso. The value for lambda1 is used as the tuning parameter for L1 penalization on the coefficients and the value for lambda2 is used as the tuning parameter for L1 penalization on the differences of the coefficients. Default value is FALSE.
Penalized generalized linear models

model The model to be used. If missing, the model will be guessed from the response input.

startbeta Starting values for the regression coefficients of the penalized covariates.

startgamma Starting values for the regression coefficients of the unpenalized covariates.

steps If greater than 1, the algorithm will fit the model for a range of steps lambda1-values, starting from the maximal value down to the value of lambda1 specified. This is useful for making plots as in plotpath. With steps = "Park" it is possible to choose the steps in such a way that they are at the approximate value at which the active set changes, following Park and Hastie (2007).

epsilon The convergence criterion. As in glm. Convergence is judged separately on the likelihood and on the penalty.

maxiter The maximum number of iterations allowed. Set by default at 25 when only an L2 penalty is present, infinite otherwise.

standardize If TRUE, standardizes all penalized covariates to unit central L2-norm before applying penalization.

trace If TRUE, prints progress information. Note that setting trace=TRUE may slow down the algorithm up to 30 percent (but it often feels quicker)

Details

The penalized function fits regression models for a given combination of L1 and L2 penalty parameters.

Value

penalized returns a penfit object when steps = 1 or a list of such objects if steps > 1.

Note

The response argument of the function also accepts formula input as in lm and related functions. In that case, the right hand side of the response formula is used as the penalized argument or, if that is already given, as the unpenalized argument. For example, the input penalized(y~x) is equivalent to penalized(y, ~x) and penalized(y~x, ~z) to penalized(y, ~z, ~x).

In case of tied survival times, the function uses Breslow's version of the partial likelihood.

Author(s)

Jelle Goeman: <j.j.goeman@lumc.nl>

References

See Also

penfit for the penfit object returned, plotpath for plotting the solution path, and cvl for cross-validation and optimizing the tuning parameters.
Penalized regression contrasts

Contrast functions for penalized regression

Description

Contrast functions for factors that are appropriate for penalized regression.

Usage

contr.none(n, contrasts)

contr.diff(n, contrasts = TRUE)
Arguments

n: A vector of levels for a factor, or the number of levels.

contrasts: A logical indicating whether contrasts should be computed. This argument is ignored in contr.none.

Details

These functions are used for creating contrast matrices for use in fitting penalized analysis of variance and regression models. The columns of the resulting matrices contain contrasts which can be used for coding a factor with n levels. The returned value contains the computed contrasts.

contr.none returns an identity matrix except when the number of levels is 2, in which case it returns a single contrast. contr.none ensures that all levels of an unordered factor are treated symmetrically in a penalized regression model.

contr.diff returns a lower triangular matrix of ones if contrasts=FALSE and the same matrix without its first column if contrasts=TRUE. This makes sure that penalization is done on the difference between successive levels of an ordered factor. It is not appropriate for unordered factors.

Value

contr.diff returns a matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts is FALSE.

contr.none returns a matrix with n rows and n columns, except when n=2 when it returns a matrix with 2 rows and one column.

Author(s)

Jelle Goeman: <j.j.goeman@lumc.nl>

See Also

penalized, contr.treatment, contr.poly, contr.helmert, contr.SAS, contr.sum.

Examples

Three levels
levels <- LETTERS[1:3]
contr.none(levels)
contr.diff(levels)

Two levels
levels <- LETTERS[1:2]
contr.none(levels)
Description
Stores the result of a call to `penalized`.

Slots
- `penalized`: Object of class "vector". Regression coefficients for the penalized covariates.
- `unpenalized`: Object of class "vector". Regression coefficients for the unpenalized covariates.
- `residuals`: Object of class "vector". Unstandardized residuals for each subject in the fitted model. Martingale residuals are given for the cox model.
- `fitted`: Object of class "vector". Fitted values (means) for each subject in the fitted model. In the cox model, this slot holds the relative risks.
- `lin.pred`: Object of class "vector". Linear predictors for each subject in the fitted model.
- `loglik`: Object of class "numeric". Log likelihood of the fitted model. For the Cox model, reports the full likelihood rather than the partial likelihood.
- `penalty`: Object of class "vector". L1 and L2 penalties of the fitted model.
- `iterations`: Object of class "numeric". Number of iterations used in the fitting process.
- `converged`: Object of class "logical". Whether the fitting process was judged to be converged.
- `model`: Object of class "character". The name of the generalized linear model used.
- `lambda1`: Object of class "vector". The lambda1 parameter(s) used.
- `lambda2`: Object of class "vector". The lambda2 parameter(s) used.
- `nuisance`: Object of class "list". The maximum likelihood estimates of any nuisance parameters in the model.
- `weights`: Object of class "vector". The weights of the covariates used for standardization.
- `formula`: Object of class "list". A named list containing the unpenalized and penalized formula objects, if present.

Methods
- `basehaz` (penfit): Returns the baseline hazard (a `data.frame`) if a cox model was fitted, `NULL` otherwise. An additional argument `center` (default `TRUE`) can be used to give the survival curve at the covariate mean (`center = TRUE`) rather than at zero.
- `basesurv` (penfit): Returns the baseline survival curve (a `breslow` object) if a cox model was fitted, `NULL` otherwise. An additional argument `center` (default `TRUE`) can be used to give the survival curve at the covariate mean (`center = TRUE`) rather than at zero.
- `coef` (penfit): Returns the regression coefficients. Accepts a second argument "which", that takes values "nonzero" (the default), "all", "penalized" or "unpenalized" for extracting only the nonzero, the penalized or the unpenalized regression coefficients. A third argument "standardize" (default `FALSE`) can be used to let the method return the regression coefficients for the standardized covariates.
Plotting the LASSO path

coefficients (penfit): synonym for coef above.
fitted (penfit): Returns the fitted values for each subject (i.e. the predicted means). In the Cox model, this method returns the relative risks for each individual.
fitted.values (penfit): synonym for fitted above.
linear.predictors (penfit): Returns the linear predictors for each subject.
loglik (penfit): Returns the log likelihood of the fitted model.
penalty (penfit): Returns the L1 and L2 penalties of the fitted model.
residuals (penfit): Returns the residuals.
show (penfit): Summarizes the fitted model.
weights (penfit): Returns the weights used for standardization.
predict (penfit): Calculates predictions for new subjects. See predict.

Author(s)
Jelle Goeman: <j.j.goeman@lumc.nl>

See Also
penalized.

Plotting the LASSO path

Description
Plotting a LASSO path fitted using penalized with steps > 1.

Usage
plotpath(object, labelsize = 0.6, standardize = FALSE, ...)

Arguments

object A list of link{penfit} objects calculated for the same data but different lambda1 values. This object can be created using the link{penalized} function using the steps argument.
labelsize Sets the size of the variable labels in the plot. Set to zero for no variable labels.
standardize If TRUE, plots the regression coefficients for the covariates standardize to unit second central moment. See penalized for details on standardization. Note that the standardization in plotpath can also be used if standardization was not used in penalized.
... Any other arguments will be forwarded to the plot function.
Author(s)

Jelle Goeman: <j.j.goeman@lumc.nl>

See Also

penalized, penfit.

Examples

data(nki70)

Fit the model with the steps argument and plot
pen <- penalized(Surv(time, event), penalized = nki70[,8:77],
 data = nki70, lambda1=1, steps = 20)

plotpath(pen)

Description

Predicting a response for new subjects based on a fitted penalized regression model.

Usage

S4 method for signature 'penfit'
predict(object, penalized, unpenalized, data)

Arguments

object The fitted model (a penfit object).

penalized The matrix of penalized covariates for the new subjects.

unpenalized The unpenalized covariates for the new subjects.

data A data.frame used to evaluate the terms of penalized or unpenalized when these have been specified as a formula object.
Details

The user need only supply those terms from the original call that are different relative to the original call that produced the `penfit` object. In particular, if penalized and/or unpenalized was specified in matrix form, a matrix must be given with the new subjects’ data. The columns of these matrices must be exactly the same as in the matrices supplied in the original call that produced the `penfit` object. If either penalized or unpenalized was given as a formula in the original call, the user of `predict` must supply a new `data` argument. As with matrices, the new `data` argument must have a similar make-up as the `data` argument in the original call that produced the `penfit` object. In particular, any factors in `data` must have the same levels.

Value

The predictions, either as a vector (logistic and Poisson models), a matrix (linear model), or a `breslow` object (Cox model).

Examples

data(nki70)

pen <- penalized(Surv(time, event), penalized = nki70[1:50,8:77],
 unpenalized = ~ER+Age+Diam+N+Grade, data = nki70[1:50,], lambda1 = 10)

predict(pen, nki70[51:52,8:77], data = nki70[51:52,])
Index

* datasets
 Netherlands Cancer Institute 70
gene signature, 7

* multivariate
 Cross-validation in penalized generalized linear models, 3
 Penalized generalized linear models, 8
 penfit object, 12
 Plotting the LASSO path, 13
 Prediction from penalized models, 14

* regression
 Cross-validation in penalized generalized linear models, 3
 Penalized generalized linear models, 8
 Penalized regression contrasts, 10
 penfit object, 12
 Plotting the LASSO path, 13
 Prediction from penalized models, 14

* survival
 breslow object, 2
 [,breslow,ANY,ANY,ANY-method (breslow object), 2
 [,breslow-method (breslow object), 2
 [[,breslow-method (breslow object), 2
 as.data.frame,breslow-method (breslow object), 2
 as.data.frame,penfit-method (penfit object), 12
 as.list,breslow-method (breslow object), 2
 as.matrix,breslow-method (breslow object), 2
 basehaz,penfit-method (penfit object), 12
 basesurv (penfit object), 12
 basesurv,penfit-method (penfit object), 12
 breslow, 5, 12, 15
 breslow (breslow object), 2
 breslow object, 2
 breslow-class (breslow object), 2
 coef,penfit-method (penfit object), 12
 coefficients,penfit-method (penfit object), 12
 contr.diff (Penalized regression contrasts), 10
 contr.helmert, 11
 contr.none (Penalized regression contrasts), 10
 contr.poly, 11
 contr.SAS, 11
 contr.sum, 11
 contr.treatment, 11
 Cross-validation in penalized generalized linear models, 3
 cvl, 9
 cvl (Cross-validation in penalized generalized linear models), 3
 data.frame, 7
 fitted,penfit-method (penfit object), 12
 fitted.values,penfit-method (penfit object), 12
 formula, 4, 8, 14
 glm, 5, 9
 linear.predictors (penfit object), 12
 linear.predictors,penfit-method (penfit object), 12
 lm, 9
 loglik (penfit object), 12
 loglik,penfit-method (penfit object), 12