Package ‘penaltyLearning’

June 9, 2019

Maintainer Toby Dylan Hocking <toby.hocking@r-project.org>
Author Toby Dylan Hocking
Version 2019.5.29
License GPL-3
Title Penalty Learning
Description Implementations of algorithms from
 Learning Sparse Penalties for Change-point Detection
 using Max Margin Interval Regression, by
 Hocking, Rigail, Vert, Bach
 published in proceedings of ICML2013.
Suggests Segmentor3IsBack, neuroblastoma, microbenchmark, testthat,
 future, future.apply, directlabels (>= 2017.03.31)
Depends R (>= 2.10)
URL https://github.com/tdhock/penaltyLearning
BugReports https://github.com/tdhock/penaltyLearning/issues
Imports data.table (>= 1.9.8), geometry, ggplot2
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-06-09 16:50:03 UTC

R topics documented:

change.colors . 2
change.labels . 3
changeLabel . 3
check_features_targets . 4
check_target_pred . 4
coeff.IntervalRegression . 5
demo8 . 5
featureMatrix . 6
change.colors

Description

character vector of change-point label colors, to be used with ggplot2::scale_*_manual

Usage

"change.colors"
Description

Data table of meta-data for label types.

Usage

"change.labels"

changeLabel

Description

Describe an annotated region label for supervised change-point detection.

Usage

changeLabel(annotation, min.changes, max.changes, color)

Arguments

annotation
min.changes
max.changes
color

Author(s)

Toby Dylan Hocking
check_features_targets

Description

stop with an informative error if there is a problem with the feature or target matrix.

Usage

```
check_features_targets(feature.mat, target.mat)
```

Arguments

- **feature.mat**: n x p numeric input feature matrix.
- **target.mat**: n x 2 matrix of target interval limits.

Value

number of observations/rows.

Author(s)

Toby Dylan Hocking

check_target_pred

Description

stop with an informative error if there are problems with the target matrix or predicted values.

Usage

```
check_target_pred(target.mat, pred)
```

Arguments

- **target.mat**
- **pred**

Value

number of observations.

Author(s)

Toby Dylan Hocking
coef.IntervalRegression

Get the learned coefficients of an IntervalRegression model.

Usage

```r
## S3 method for class 'IntervalRegression'
coef(object, ...)
```

Arguments

- `object`:
- `...`:

Value

numeric matrix [features x regularizations] of learned weights (on the original feature scale), can be used for prediction via `cbind(1,features) %*% weights`.

Author(s)

Toby Dylan Hocking

demo8

PeakSegFPOP demo data set

Description

PeakSegFPOP demo data set with 8 observations

Usage

```r
data("demo8")
```

Format

A list of two objects: feature.mat is an 8 x 36 input feature matrix, and target.mat is a 8 x 2 output limit matrix.
Description

Compute a feature matrix (segmentation problems x features).

Usage

featureMatrix(data.sequences, problem.vars, data.var)

Arguments

- data.sequences: data.frame of sorted sequences of data to segment.
- problem.vars: character vector of columns of data.sequences to treat as segmentation problem IDs.
- data.var: character vector of length 1 (column of data.sequences to treat as data to segment).

Value

Numeric feature matrix. Some entries may be missing or infinite; these columns should be removed before model training.

Author(s)

Toby Dylan Hocking

Examples

data(neuroblastoma, package="neuroblastoma", envir=environment())

one <- subset(neuroblastoma$profiles, profile.id %in% c(1,2))
f.mat <- featureMatrix(one, c("profile.id", "chromosome", "logratio"))
Description

Compute a feature vector of constant length which can be used as an input for supervised penalty learning. The output is a target interval of log(penalty) values that achieve minimum incorrect labels (see targetIntervals).

Usage

\[
\text{featureVector}(\text{data.vec})
\]

Arguments

- `data.vec` numeric vector of ordered data.

Value

Numeric vector of features.

Author(s)

Toby Dylan Hocking

Examples

```r
data(neuroblastoma, package="neuroblastoma", envir=environment())
one <- subset(neuroblastoma$profiles, profile.id=="1" & chromosome=="1")
(f.vec <- featureVector(one$logratio))
```

Description

`ggproto` object for `geom_tallrect`

Usage

"GeomTallRect"
Description

ggplot2 geom with xmin and xmax aesthetics that covers the entire y range, useful for clickSelects background elements.

Usage

geom_tallrect(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)

Arguments

mapping
data
stat
position
...
na.rm
show.legend
inherit.aes

Author(s)

Toby Dylan Hocking

Description

Use cross-validation to fit an L1-regularized linear interval regression model by optimizing margin and/or regularization parameters. This function repeatedly calls IntervalRegressionRegularized, and by default assumes that margin=1. To optimize the margin, specify the margin.vec parameter manually, or use IntervalRegressionCVmargin (which takes more computation time but yields more accurate models). If the future package is available, two levels of future_lapply are used to parallelize on validation.fold and margin.
IntervalRegressionCV

Usage

IntervalRegressionCV(feature.mat, target.mat, n.folds = ifelse(nrow(feature.mat) < 10, 3L, 5L), fold.vec = sample(rep(1:n.folds, 1 = nrow(feature.mat))), verbose = 0, min.observations = 10, reg.type = "min", incorrect.labels.db = NULL, initial.regularization = 0.001, margin.vec = 1, ...

Arguments

feature.mat Numeric feature matrix, n observations x p features.
target.mat Numeric target matrix, n observations x 2 limits.
n.folds Number of cross-validation folds.
fold.vec Integer vector of fold id numbers.
verbose numeric: 0 for silent, bigger numbers (1 or 2) for more output.
min.observations stop with an error if there are fewer than this many observations.
reg.type Either "1sd" or "min" which specifies how the regularization parameter is chosen during the internal cross-validation loop. min: first take the mean of the K-CV error functions, then minimize it (this is the default since it tends to yield the least test error). 1sd: take the most regularized model with the same margin which is within one standard deviation of that minimum (this model is typically a bit less accurate, but much less complex, so better if you want to interpret the coefficients).
incorrect.labels.db either NULL or a data.table, which specifies the error function to compute for selecting the regularization parameter on the validation set. NULL means to minimize the squared hinge loss, which measures how far the predicted log(penalty) values are from the target intervals. If a data.table is specified, its first key should correspond to the rownames of feature.mat, and columns min.log.lambda, max.log.lambda, fp, fn, possible.fp, possible.fn; these will be used with ROChange to compute the AUC for each regularization parameter, and the maximum will be selected (in the plot this is negative.auc, which is minimized). This data.table can be computed via labelError(modelSelection(...),...)$model.errors – see example(ROChange). In practice this makes the computation longer, and it should only result in more accurate models if there are many labels per data sequence.
initial.regularization Passed to IntervalRegressionRegularized.
margin.vec numeric vector of margin size hyper-parameters. The computation time is linear in the number of elements of margin.vec – more values takes more computation time, but yields slightly more accurate models (if there is enough data).

Value

List representing regularized linear model.
IntervalRegressionCVmargin

Author(s)

Toby Dylan Hocking

Examples

```r
if(interactive()){
  library(penaltyLearning)
  data("neuroblastomaProcessed", package="penaltyLearning", envir=environment())
  if(require(future)){
    plan(multiprocess)
  }
  set.seed(1)
  i.train <- 1:100
  fit <- with(neuroblastomaProcessed, IntervalRegressionCV(
    feature.mat[i.train,], target.mat[i.train,],
    verbose=FALSE))
  ## When only features and target matrices are specified for
  ## training, the squared hinge loss is used as the metric to
  ## minimize on the validation set.
  plot(fit)
  ## Create an incorrect labels data.table (first key is same as
  ## rownames of feature.mat and target.mat).
  library(data.table)
  errors.per.model <- data.table(neuroblastomaProcessed$errors)
  errors.per.model[, pid.chr := paste0(profile.id, ".", chromosome)]
  setkey(errors.per.model, pid.chr)
  set.seed(1)
  fit <- with(neuroblastomaProcessed, IntervalRegressionCV(
    feature.mat[i.train,], target.mat[i.train,],
    ## The incorrect.labels.db argument is optional, but can be used if
    ## you want to use AUC as the CV model selection criterion.
    incorrect.labels.db=errors.per.model))
  plot(fit)
}
```

IntervalRegressionCVmargin

Description

Use cross-validation to fit an L1-regularized linear interval regression model by optimizing both margin and regularization parameters. This function just calls IntervalRegressionCV with a margin.vec parameter that is computed based on the finite target interval limits. If default parameters are used, this function should be about 10 times slower than IntervalRegressionCV (since this function computes n.margin=10 models per regularization parameter whereas IntervalRegressionCV only computes one). On large (N > 1000 rows) data sets, this function should yield a model which is a little more accurate than IntervalRegressionCV (since the margin parameter is optimized).
Usage

\[
\text{IntervalRegressionCVmargin}(\text{feature.mat}, \text{target.mat},
\quad \log_{10}.\text{diff} = 2, \ n.\text{margin} = 10L, \ldots)
\]

Arguments

- **feature.mat**: Numeric feature matrix, n observations x p features.
- **target.mat**: Numeric target matrix, n observations x 2 limits.
- **log10.diff**: Numeric scalar: factors of 10 below the largest finite limit difference to use as a minimum margin value (difference on the log10 scale which is used to generate margin parameters). Bigger values mean a grid of margin parameters with a larger range. For example if the largest finite limit in target.mat is 26 and the smallest finite limit is -4 then the largest limit difference is 30, which will be used as the maximum margin parameter. If log10.diff is the default of 2 then that means the smallest margin parameter will be 0.3 (two factors of 10 smaller than 30).
- **n.margin**: Integer scalar: number of margin parameters, by default 10.
- **...**: Passed to IntervalRegressionCV.

Value

Model fit list from IntervalRegressionCV.

Author(s)

Toby Dylan Hocking

Examples

```r
if(interactive()){
  library(penaltyLearning)
  data("neuroblastomaProcessed", package="penaltyLearning", envir=environment())
  if(require(future)){
    plan(multiprocess)
  }
  set.seed(1)
  fit <- with(neuroblastomaProcessed, IntervalRegressionCVmargin(
    feature.mat, target.mat, verbose=1))
  plot(fit)
  print(fit$plot.heatmap)
}
```
Description

Solve the squared hinge loss interval regression problem for one regularization parameter: \(w^* = \argmin_w L(w) + \text{regularization} \cdot \|w\|_1 \) where \(L(w) \) is the average squared hinge loss with respect to the targets, and \(\|w\|_1 \) is the L1-norm of the weight vector (excluding the first element, which is the un-regularized intercept or bias term). This function performs no scaling of input features, and is meant for internal use only! To learn a regression model, try IntervalRegressionCV or IntervalRegressionUnregularized.

Usage

\[
\text{IntervalRegressionInternal}(\text{features}, \text{targets}, \text{initial.param.vec}, \text{regularization}, \text{threshold} = 0.001, \text{max.iterations} = 1000, \text{weight.vec} = \text{NULL}, \text{Lipschitz} = \text{NULL}, \text{verbose} = 2, \text{margin} = 1)
\]

Arguments

- **features**: Scaled numeric feature matrix (problems x features). The first column/feature should be all ones and will not be regularized.
- **targets**: Numeric target matrix (problems x 2).
- **initial.param.vec**: Initial guess for weight vector (features).
- **regularization**: Degree of L1-regularization.
- **threshold**: When the stopping criterion gets below this threshold, the algorithm stops and declares the solution as optimal.
- **max.iterations**: If the algorithm has not found an optimal solution after this many iterations, increase Lipschitz constant and max.iterations.
- **weight.vec**: A numeric vector of weights for each training example.
- **Lipschitz**: A numeric scalar or NULL, which means to compute Lipschitz as the mean of the squared L2-norms of the rows of the feature matrix.
- **verbose**: Cat messages: for restarts and at the end if >= 1, and for every iteration if >= 2.
- **margin**: Margin size hyper-parameter, default 1.

Value

Numeric vector of scaled weights \(w \) of the affine function \(f_w(X) = X \%*% w \) for a scaled feature matrix \(X \) with the first row entirely ones.

Author(s)

Toby Dylan Hocking
IntervalRegressionRegularized

Description

Repeatedly use IntervalRegressionInternal to solve interval regression problems for a path of regularization parameters. This function does not perform automatic selection of the regularization parameter; instead, it returns regression models for a range of regularization parameters, and it is up to you to select which one to use. For automatic regularization parameter selection, use IntervalRegressionCV.

Usage

IntervalRegressionRegularized(feature.mat, target.mat,
 initial.regularization = 0.001, factor.regularization = 1.2,
 verbose = 0, margin = 1, ...)

Arguments

- target.mat: Numeric target matrix.
- initial.regularization: Initial regularization parameter.
- factor.regularization: Increase regularization by this factor after finding an optimal solution. Or NULL to compute just one model (initial.regularization).
- verbose: Print messages if >= 1.
- margin: Non-negative margin size parameter, default 1.
- ...: Other parameters to pass to IntervalRegressionInternal.

Value

List representing fit model. You can do fit$predict(feature.matrix) to get a matrix of predicted log penalty values. The param.mat is the n.features * n.regularization numeric matrix of optimal coefficients (on the original scale).

Author(s)

Toby Dylan Hocking
Examples

```r
if(interactive()){
  library(penaltyLearning)
  data("neuroblastomaProcessed", package="penaltyLearning", envir=environment())
  i.train <- 1:500
  fit <- with(neuroblastomaProcessed, IntervalRegressionRegularized(
    feature.mat[i.train,], target.mat[i.train,]))
  plot(fit)
}
```

Description

Use `IntervalRegressionRegularized` with `initial.regularization=0` and `factor.regularization=NULL`, meaning fit one un-regularized interval regression model.

Usage

`IntervalRegressionUnregularized(...)`

Arguments

... passed to `IntervalRegressionRegularized`.

Value

List representing fit model, see help(`IntervalRegressionRegularized`) for details.

Author(s)

Toby Dylan Hocking
Description

Compute incorrect labels for several change-point detection problems and models. Use this function after having computed changepoints, loss values, and model selection functions (see modelSelection). The next step after labelError is typically computing target intervals of log(penalty) values that predict changepoints with minimum incorrect labels for each problem (see targetIntervals).

Usage

```r
labelError(models, labels, changes, change.var = "chromStart",
           label.vars = c("min", "max"), model.vars = "n.segments",
           problem.vars = character(0), annotations = change.labels)
```

Arguments

- `models` data.frame with one row per (problem,model) combination, typically the output of modelSelection(...). There is a row for each changepoint model that could be selected for a particular segmentation problem. There should be columns `problem.vars` (for problem ID) and `model.vars` (for model complexity).
- `labels` data.frame with one row per (problem,region). Each label defines a region in a particular segmentation problem, and a range of predicted changepoints which are consistent in that region. There should be a column "annotation" with takes one of the corresponding values in the annotation column of change.labels (used to determine the range of predicted changepoints which are consistent). There should also be a columns `problem.vars` (for problem ID) and `label.vars` (for region start/end).
- `changes` data.frame with one row per (problem,model,change), for each predicted changepoint (in each model and segmentation problem). Should have columns `problem.vars` (for problem ID), `model.vars` (for model complexity), and `change.var` (for changepoint position).
- `change.var` character(length=1): column name of predicted change-point position in labels. The default "chromStart" is useful for genomic data with segment start/end positions stored in columns named chromStart/chromEnd. A predicted changepoint at position X is interpreted to mean a changepoint between X and X+1.
- `label.vars` character(length=2): column names of start and end positions of labels, in same units as change-point positions. The default is c("min", "max"). Labeled regions are (start,end] – open on the left and closed on the right, so for example a 0changes annotation between start=10 and end=20 means that any predicted changepoint at 11, ..., 20 is a false positive.
- `model.vars` character: column names used to identify model complexity. The default "n.segments" is for change-point models such as in the Segmentor3IsBack and changepoint packages.
problem.vars character: column names used to identify data set / segmentation problem, should be present in all three data tables (models, labels, changes).

annotations data.table with columns annotation, min.changes, max.changes, possible.fn, possible.fp which is joined to labels in order to determine how to compute false positives and false negatives for each annotation.

Value

list of two data.tables: label.errors has one row for every combination of models and labels, with status column that indicates whether or not that model commits an error in that particular label; model.errors has one row per model, with columns for computing target intervals and ROC curves (see targetIntervals and ROChange).

Author(s)

Toby Dylan Hocking

Examples

if(interactive()){

 library(penaltyLearning)
 library(data.table)
 data(neuroblastoma, package="neuroblastoma", envir=environment())
 pro4 <- subset(neuroblastoma$profiles, profile.id==4)
 ann4 <- subset(neuroblastoma$annotations, profile.id==4)
 label <- function(annotation, min, max){
 data.table(profile.id=4, chromosome="14", min, max, annotation)
 }
 ann <- rbind(ann4,
 label("1change", 70e6, 80e6),
 label("0changes", 20e6, 60e6))
 max.segments <- 5
 segs.list <- list()
 models.list <- list()
 for(chr in unique(ann$chromosome)){
 pro <- subset(pro4, chromosome==chr)
 fit <- Segmentor3IsBack::Segmentor(
 pro$logratio, model=2, Kmax=max.segments)
 model.df <- data.frame(loss=fit@likelihood, n.segments=1:max.segments)
 models.list[[chr]] <- data.table(chromosome=chr, model.df)
 for(n.segments in 1:max.segments){
 end <- fit@breaks[n.segments, 1:n.segments]
 data.before.change <- end[-n.segments]
 data.after.change <- data.before.change+1
 pos.before.change <- as.integer(
 (pro$position[data.before.change]+pro$position[data.after.change])/2)
 start <- c(1, data.after.change)
 chromStart <- c(pro$position[1], pos.before.change)
 chromEnd <- c(pos.before.change, max(pro$position))
 }
 }
}
seg.list[[paste(chr, n.segments)]] <- data.table(
 chromosome=chr,
 n.segments,
 start,
 end,
 chromStart,
 chromEnd,
 mean=fit@parameters[n.segments, 1:n.segments])
}
}
segs <- do.call(rbind, segs.list)
models <- do.call(rbind, models.list)

changes <- segs[1 < start,]
error.list <- labelError(
 models, ann, changes,
 problem_vars="chromosome", # for all three data sets.
 model_vars="n.segments", # for changes and selection.
 change.var="chromStart", # column of changes with breakpoint position.
 label_vars=c("min", "max")) # limit of labels in ann.

library(ggplot2)
ggplot()+
 theme_bw()+
 theme_no_space()+
 facet_grid(n.segments ~ chromosome, scales="free", space="free")+
 scale_x_continuous(breaks=c(100, 200))+
 scale_linetype_manual("error type",
 values=c(correct=0,"false negative"=3,"false positive"=1))+
 scale_fill_manual("label", values=change.colors)+
 geom_tallrect(aes(xmin=1e6, xmax=max(1e6),
 color="grey",
 fill=NA,
 data=error.list$label.errors)+
 geom_tallrect(aes(xmin=min/1e6, xmax=max/1e6,
 fill=annotation, linetype=status),
 data=error.list$label.errors)+
 geom_point(aes(position/1e6, logratio),
 data=subset(pro4, chromosome %in% ann$chromosome),
 shape=1)+
 geom_segment(aes(chromStart/1e6, mean, xend=chromEnd/1e6, yend=mean),
 data=segs,
 color="green",
 size=1)+
 geom_vline(aes(xintercept=chromStart/1e6),
 data=changes,
 linetype="dashed",
 color="green")
}
Description

Find the run of minimum cost with the largest size. This function uses a linear time C implementation, and is meant for internal use. Use targetIntervals for real data.

Usage

largestContinuousMinimumC(cost, size)

Arguments

cost numeric vector of cost values.
size numeric vector of interval size values.

Value

Integer vector length 2 (start and end of target interval relative to cost and size).

Author(s)

Toby Dylan Hocking

Examples

library(penaltyLearning)
data(neuroblastomaProcessed, envir=environment())
one.problem.error <-
 neuroblastomaProcessed$errors[, profile.id=="4" & chromosome=="1"]
indices <- one.problem.error[, largestContinuousMinimumC(
 errors, max.log.lambda-min.log.lambda)]
one.problem.error[indices["start":indices["end"]],]
Description

Find the run of minimum cost with the largest size. This function uses a two pass R implementation, and is meant for internal use. Use targetIntervals for real data.

Usage

```r
largestContinuousMinimumR(cost, size)
```

Arguments

- `cost` numeric vector of cost values.
- `size` numeric vector of interval size values.

Value

Integer vector length 2 (start and end of target interval relative to cost and size).

Author(s)

Toby Dylan Hocking

Examples

```r
library(penaltyLearning)
data(neuroblastomaProcessed, envir=environment())
one.problem.error <- neuroblastomaProcessed$errors[profile.id=="4" & chromosome=="1"]indices <- one.problem.error[, largestContinuousMinimumR(errors, max.log.lambda-min.log.lambda)]one.problem.error[indices["start"]:indices["end"],]
```
Description

Given loss.vec L_i, model.complexity K_i, the model selection function i*(lambda) = argmin_i L_i + lambda*K_i, compute all of the solutions (i, min.lambda, max.lambda) with i being the solution for every lambda in (min.lambda, max.lambda). Use this function after having computed changepoints and loss values for each model, and before using labelError. This function uses the linear time algorithm implemented in C code (modelSelectionC).

Usage

modelSelection(models, loss = "loss", complexity = "complexity")

Arguments

models data.frame with one row per model. There must be at least two columns models[[loss]] and models[[complexity]], but there can also be other meta-data columns.

loss character: column name of models to interpret as loss L_i.

complexity character: column name of models to interpret as complexity K_i.

Value

data.frame with a row for each model that can be selected for at least one lambda value, and the following columns. (min.lambda, max.lambda) and (min.log.lambda, max.log.lambda) are intervals of optimal penalty constants, on the original and log scale; the other columns (and rownames) are taken from models. This should be used as the models argument of labelError.

Author(s)

Toby Dylan Hocking
Usage

modelSelectionC(loss.vec, model.complexity, model.id)

Arguments

loss.vec numeric vector: loss L_i
model.complexity numeric vector: model complexity K_i
model.id vector: indices i

Value
data.frame with a row for each model that can be selected for at least one lambda value, and the following columns. (min.lambda, max.lambda) and (min.log.lambda, max.log.lambda) are intervals of optimal penalty constants, on the original and log scale; model.complexity are the K_i values; model.id are the model identifiers (also used for row names); and model.loss are the C_i values.

Author(s)

Toby Dylan Hocking

Examples

library(penaltyLearning)
data(neuroblastoma, package="neuroblastoma", envir=environment())
pro <- subset(neuroblastoma$profiles, profile.id==1 & chromosome=="X")
max.segments <- 20
fit <- Segmentor3lsBack::Segmentor(pro$logratio, 2, max.segments)
seg.vec <- 1:max.segments
exact.df <- modelSelectionC(fit$likelihood, seg.vec, seg.vec)
Solve the optimization using grid search.
L.grid <- with(exact.df, {
 seq(min(max.log.lambda)-1, max(min.log.lambda)+1, l=100)
})
lambda.grid <- exp(L.grid)
kstar.grid <- sapply(lambda.grid, function(lambda){
 crit <- with(exact.df, model.complexity * lambda + model.loss)
picked <- which.min(crit)
 exact.df$model.id[picked]
})
grid.df <- data.frame(log.lambda=L.grid, segments=kstar.grid)
library(ggplot2)
Compare the results.
ggplot()+
 ggtitle("grid search (red) agrees with exact path computation (black)")+
 geom_segment(aes(min.log.lambda, model.id, xend=max.log.lambda, yend=model.id),
 data=exact.df)
modelSelectionR

Exact model selection function

Description
Given loss.vec L_i, model.complexity K_i, the model selection function i*(lambda) = argmin_i L_i + lambda*K_i, compute all of the solutions (i, min.lambda, max.lambda) with i being the solution for every lambda in (min.lambda, max.lambda). This function uses the quadratic time algorithm implemented in R code. This function is mostly meant for internal use – it is instead recommended to use modelSelection.

Usage
modelSelectionR(loss.vec, model.complexity, model.id)

Arguments
loss.vec numeric vector: loss L_i
model.complexity numeric vector: model complexity K_i
model.id vector: indices i

Value
data.frame with a row for each model that can be selected for at least one lambda value, and the following columns. (min.lambda, max.lambda) and (min.log.lambda, max.log.lambda) are intervals of optimal penalty constants, on the original and log scale; model.complexity are the K_i values; model.id are the model identifiers (also used for row names); and model.loss are the C_i values.

Author(s)
Toby Dylan Hocking

Examples

if(interactive()){
 library(penaltyLearning)
data(neuroblastoma, package="neuroblastoma", envir=environment())
one <- subset(neuroblastoma$profiles, profile.id==599 & chromosome=="14")
max.segments <- 1000
fit <- Segmentor3IsBack::Segmentor(one$logratio, model=2, Kmax=max.segments)
neuroblastomaProcessed

Processed neuroblastoma data set with features and targets

Description

Features are inputs and targets are outputs for penalty learning functions like penaltyLearning::IntervalRegressionCV. data(neuroblastoma, package="neuroblastoma") was processed by computing optimal Gaussian segmentation models from 1 to 20 segments (cghseg:::segmeanCO or Segmentor3IsBack::Segmentor), then label error was computed using neuroblastoma$annotations (penaltyLearning::labelError), then target intervals were computed (penaltyLearning::targetInterval). Features were also computed based on neuroblastoma$profiles.

Usage

data("neuroblastomaProcessed")

Format

List of two matrices: feature.mat is n.observations x n.features, and target.mat is n.observations x 2, where n.observations=3418 and n.features=117.
oneSkip

Description

A loss and model complexity function which never selects one of the models, using a linear penalty.

Usage

data("oneSkip")

Format

A list of two data.frames (input and output).

Source

example(exactModelSelection) in PeakSegDP package.

plot.IntervalRegression

Description

Plot an IntervalRegression model.

Usage

S3 method for class 'IntervalRegression'
plot(x, ...)

Arguments

x

...

Value

a ggplot.

Author(s)

Toby Dylan Hocking
`predict.IntervalRegression`

Description

Compute model predictions.

Usage

```r
## S3 method for class 'IntervalRegression'
predict(object, X, ...)
```

Arguments

- `object`
- `X`
- `...`

Value

numeric matrix of predicted log(penalty) values.

Author(s)

Toby Dylan Hocking

`print.IntervalRegression`

Description

print learned model parameters.

Usage

```r
## S3 method for class 'IntervalRegression'
print(x, ...)
```

Arguments

- `x`
- `...`
Author(s)

Toby Dylan Hocking

ROC curve for changepoints

Description

Compute a Receiver Operating Characteristic curve for a penalty function.

Usage

`ROChange(models, predictions, problem.vars = character())`

Arguments

- **models**: data.frame describing the number of incorrect labels as a function of log(lambda), with columns min.log.lambda, max.log.lambda, fp, fn, possible.fp, possible.fn, etc. This can be computed via `labelError(modelSelection(...), ...)$model.errors` – see examples.
- **predictions**: data.frame with a column named pred.log.lambda, the predicted log(penalty) value for each segmentation problem.
- **problem.vars**: character: column names used to identify data set / segmentation problem.

Value

list of results describing ROC curve: roc is a data.table with one row for each point on the ROC curve; thresholds is the two rows of roc which correspond to the predicted and minimal error thresholds; auc.polygon is a data.table with one row for each vertex of the polygon used to compute AUC; auc is the numeric Area Under the ROC curve, actually computed via `geometry::polyarea` as the area inside the auc.polygon.

Author(s)

Toby Dylan Hocking

Examples

```r
library(penaltyLearning)
library(data.table)

data(neuroblastomaProcessed, envir=environment())
## Get incorrect labels data for one profile.
 pid <- 11
 pro.errors <- neuroblastomaProcessed$errors[profile.id==pid,]
## Get the feature that corresponds to the BIC penalty = log(n),
```
Description

The squared hinge loss.

Usage

```
squared.hinge(x, e = 1)
```

Arguments

- `x`
- `e`

Author(s)

Toby Dylan Hocking
targetIntervalResidual

Description
Compute residual of predicted penalties with respect to target intervals. This function is useful for visualizing the errors in a plot of log(penalty) versus a feature.

Usage
targetIntervalResidual(target.mat, pred)

Arguments
target.mat n x 2 numeric matrix: target intervals of log(penalty) values that yield minimal incorrect labels.
pred numeric vector: predicted log(penalty) values.

Value
numeric vector of n residuals. Predictions that are too high (above target.mat[,2]) get positive residuals (too few changepoints), and predictions that are too low (below target.mat[,1]) get negative residuals.

Author(s)
Toby Dylan Hocking

Examples
library(penaltyLearning)
library(data.table)
data(neuroblastomaProcessed, envir=environment())
The BIC model selection criterion is lambda = log(n), where n is
the number of data points to segment. This implies log(lambda) =
log(log(n)), which is the log2.n feature.
row.name.vec <- grep("^([4-520])\[]",
 rownames(neuroblastomaProcessed$feature.mat),
 value=TRUE)
feature.mat <- neuroblastomaProcessed$feature.mat[row.name.vec,]
target.mat <- neuroblastomaProcessed$target.mat[row.name.vec,]
pred.dt <- data.table(
 row.name=row.name.vec,
 target.mat,
 feature.mat[, "log2.n", drop=FALSE])
pred.dt[, pred.log.lambda := log2.n]
```
pred.dt[, residual := targetIntervalResidual(cbind(min.L, max.L),
   pred.log.lambda)]
library(ggplot2)
limits.dt <- pred.dt[, data.table(
   log2.n,
   log.penalty=c(min.L, max.L),
   limit=rep(c("min", "max"), each=.N))[is.finite(log.penalty)]

ggplot()+
  geom_abline(slope=1, intercept=0)+
  geom_point(aes(
    log2.n,
    log.penalty,
    fill=limit),
    data=limits.dt,
    shape=2))+
  geom_segment(aes(
    log2.n, pred.log.lambda,
    xend=log2.n, yend=pred.log.lambda-residual),
    data=pred.dt,
    color="red")+
  scale_fill_manual(values=c(min="white", max="black"))
```

Description
Compute a ROC curve using a target interval matrix. A prediction less than the lower limit is considered a false positive (penalty too small, too many changes), and a prediction greater than the upper limit is a false negative (penalty too large, too few changes). **WARNING:** this ROC curve is less detailed than the one you get from ROChange! Use ROChange if possible.

Usage
```
targetIntervalROC(target.mat, pred)
```

Arguments
- `target.mat` n x 2 numeric matrix: target intervals of log(penalty) values that yield minimal incorrect labels.
- `pred` numeric vector: predicted log(penalty) values.

Value
list describing ROC curves, same as ROChange.
Author(s)

Toby Dylan Hocking

Examples

```r
library(penaltyLearning)
library(data.table)
data(neuroblastomaProcessed, env=environment())

pid.vec <- c("1", "4")
chr <- 2
incorrect.labels <-
  neuroblastomaProcessed$errors[profile.id%in%pid.vec & chromosome==chr]
pid.chr <- paste0(pid.vec, ".", chr)
target.mat <- neuroblastomaProcessed$target.mat[pid.chr, , drop=FALSE]
pred.dt <- data.table(profile.id=pid.vec, pred.log.lambda=1.5)
roc.list <- list(
  labels=ROChange(incorrect.labels, pred.dt, "profile.id"),
  targets=targetIntervalROC(target.mat, pred.dt$pred.log.lambda))

err <- data.table(incorrect=names(roc.list))[,{
  roc.list[[incorrect]]$roc
}, by=incorrect]
library(ggplot2)
ggplot()+
ggtitle("incorrect targets is an approximation of incorrect labels")+
  scale_size_manual(values=c(labels=2, targets=1))+
  geom_segment(aes(
    min.thresh, errors,
    color=incorrect,
    size=incorrect,
    xend=max.thresh, yend=errors),
    data=err)
```

targetIntervals

Compute target intervals

Description

Compute target intervals of log(penalty) values that result in predicted changepoint models with minimum incorrect labels. Use this function after labelError, and before IntervalRegression*.

Usage

```r
targetIntervals(models, problem.vars)
```
Arguments

models
data.table with columns errors, min.log.lambda, max.log.lambda, typically labelError()$model.errors.

problem.vars
character: column names used to identify data set / segmentation problem.

Value

data.table with columns problem.vars, one row for each segmentation problem. The "min.log.lambda", and "max.log.lambda" columns give the largest interval of log(penalty) values which results in the minimum incorrect labels for that problem. This can be used to create the target.mat parameter of the IntervalRegression* functions.

Author(s)

Toby Dylan Hocking

Examples

library(penaltyLearning)
data(neuroblastomaProcessed, envir=environment())
targets.dt <- targetIntervals(
 neuroblastomaProcessed$errors,
 problem.vars=c("profile.id", "chromosome"))

theme_no_space theme no space

Description

ggplot2 theme element for no space between panels.

Usage

theme_no_space(...)

Arguments

...

Author(s)

Toby Dylan Hocking
Index

*Topic datasets
 demo8, 5
 neuroblastomaProcessed, 23
 oneSkip, 24
 change.colors, 2
 change.labels, 3
 changeLabel, 3
 check_features_targets, 4
 check_target_pred, 4
 coef.IntervalRegression, 5

 demo8, 5
 featureMatrix, 6
 featureVector, 7
 geom_tallrect, 8
 GeomTallRect, 7
 IntervalRegressionCV, 8
 IntervalRegressionCVMargin, 10
 IntervalRegressionInternal, 12
 IntervalRegressionRegularized, 13
 IntervalRegressionUnregularized, 14
 labelError, 15
 largestContinuousMinimumC, 18
 largestContinuousMinimumR, 19
 modelSelection, 20
 modelSelectionC, 20
 modelSelectionR, 22
 neuroblastomaProcessed, 23
 oneSkip, 24
 plot.IntervalRegression, 24
 predict.IntervalRegression, 25
 print.IntervalRegression, 25
 R0Change, 26
 squared.hinge, 27
 targetIntervalResidual, 28
 targetIntervalROC, 29
 targetIntervals, 30
 theme_no_space, 31