Package ‘permutes’

December 16, 2021

Title Permutation Tests for Time Series Data
Version 2.3.2
Author Cesko C. Voeten [aut, cre]
Maintainer Cesko C. Voeten <cvoeten@gmail.com>
Description Helps you determine the analysis window to use when analyzing densely-sampled time-series data, such as EEG data, using permutation testing (Maris & Oostenveld, 2007) <doi:10.1016/j.neumeth.2007.03.024>. These permutation tests can help identify the timepoints where significance of an effect begins and ends, and the results can be plotted in various types of heatmap for reporting. Mixed-effects models are supported using an implementation of the approach by Lee & Braun (2012) <doi:10.1111/j.1541-0420.2011.01675.x>.
Depends R (>= 2.10)
Imports plyr
Suggests buildmer (>= 1.7.1), car, doParallel, dplyr, ggplot2, lmPerm, lme4, permuco, knitr, rmarkdown, viridis
License FreeBSD
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
BugReports https://github.com/cvoeten/permutes/issues
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-12-16 08:20:02 UTC

R topics documented:

 clusterperm.glm .. 2
 clusterperm.glmer ... 3
 clusterperm.lm .. 3
 clusterperm.lmer .. 5
Cluster-based permutation tests for time series data, based on generalized linear models or other buildmer models. This is an alias for clusterperm.lm provided for discoverability.

Usage

clusterperm.glm(...)

Arguments

... Arguments to be passed to clusterperm.lm.

See Also

clusterperm.lm, clusterperm.lmer

Examples

perms <- clusterperm.glm(Fz ~ Deviant * Session, data=MMN, series.var=-Time)
clusterperm.glmer

Cluster-based permutation tests for time series data, based on generalized linear mixed-effects models or other buildmer models. This is an alias for clusterperm.lmer provided for discoverability.

Description

Cluster-based permutation tests for time series data, based on generalized linear mixed-effects models or other buildmer models. This is an alias for clusterperm.lmer provided for discoverability.

Usage

clusterperm.glmer(...)

Arguments

... Arguments to be passed to clusterperm.lmer.

See Also

clusterperm.lmer

Examples

Testing a single EEG electrode, with random effects by participants
perms <- perm.glmer(Fz ~ Deviant * Session + (Deviant * Session | Subject), data=MMN)
Testing a single EEG electrode, with random effects by participants, ANOVA inference
perms <- perm.glmer(Fz ~ Deviant * Session + (Deviant * Session | Subject), data=MMN, type='anova')

clusterperm.lm

Cluster-based permutation tests for time series data, based on mixed-effects models or other buildmer models. This is an alias for clusterperm.lmer, except that random effects are explicitly disallowed.

Description

Cluster-based permutation tests for time series data, based on mixed-effects models or other buildmer models. This is an alias for clusterperm.lmer, except that random effects are explicitly disallowed.
Usage

```r
clusterperm.lm(
    formula,
    data = NULL,
    family = gaussian(),
    weights = NULL,
    offset = NULL,
    series.var,
    buildmerControl = list(direction = "order", crit = "LRT", quiet = TRUE, ddf = "lme4"),
    nperm = 1000,
    type = "regression",
    parallel = FALSE,
    progress = "none"
)
```

Arguments

- **formula**: A normal formula without random effects. This can also be a buildmer terms object, provided `dep` is passed in `buildmerControl`. Only a single response variable is supported. For binomial models, the `cbind` syntax is not supported; please convert your dependent variable to a proportion and use weights instead.
- **data**: The data.
- **family**: The family.
- **weights**: An optional vector of prior case weights. This vector is evaluated in the calling environment, not in the formula or data frame!
- **offset**: An optional vector containing a prior offset term. This vector is evaluated in the calling environment, not in the formula or data frame!
- **series.var**: A one-sided formula giving the variable grouping the time series.
- **buildmerControl**: Options overriding the defaults in `buildmerControl`.
- **nperm**: The number of permutations.
- **type**: A character string of either 'anova' or 'regression'. The former runs an analysis of variance and returns F-values and p-values based on the explained variance of each factor in the design. The latter runs a linear-regression analysis and returns t-values and p-values based on individual effects. When running ANOVA, it is advised to use orthogonal predictors, as type III sums of squares are used.
- **parallel**: Whether to parallelize the permutation testing using `plyr`'s parallel option. Needs some additional set-up; see the `plyr` documentation.
- **progress**: A `plyr` progress bar name, see the `plyr` documentation. If not 'none' while parallel=TRUE, an ad-hoc solution will be used, which will be visible if the cluster nodes were created with outfile="".
clusterperm.lmer

Details

If not explicitly overridden in the buildmerControl argument, the function changes a few buildmer
defaults to make more sense for permutation testing. This includes setting direction='order' and
quiet=TRUE. Set these options explicitly to override this behavior. Because model comparisons are
used for efficient permutation testing, REML is not supported. Omega squared is not available for
mixed-effects ANOVA; the w2 column will not be included in the resulting permutes object. The
returned object provides the raw bootstrap samples in the pb attribute. These are used to compute
a corrected p-value using Maris & Oostenveld’s (2007) cluster mass statistic, but can also be used
by the user to compute other such statistics. These obviously significantly increase the size of the R
object; if this becomes a problem, there is no harm in deleting them using e.g. attr(x,’perms’) <-NULL.

Value

A data frame.

See Also

cclusterperm.lmer

Examples

perms <- clusterperm.lm(Fz ~ Deviant * Session,data=MMN,series.var=~Time)

clusterperm.lmer Cluster-based permutation tests for time series data, based on mixed-
effects models or other buildmer models.

Description

Cluster-based permutation tests for time series data, based on mixed-effects models or other buildmer
models.

Usage

clusterperm.lmer(
 formula,
 data = NULL,
 family = gaussian(),
 weights = NULL,
 offset = NULL,
 series.var = ~0,
 buildmerControl = list(direction = "order", crit = "LRT", quiet = TRUE),
 nperm = 1000,
 type = "regression",
 parallel = FALSE,
 progress = "none"
)
Arguments

- **formula**: A normal formula, possibly using lme4-style random effects. This can also be a buildmer terms object, provided dep is passed in buildmerControl. Only a single response variable is supported. For binomial models, the cbind syntax is not supported; please convert your dependent variable to a proportion and use weights instead.

- **data**: The data.

- **family**: The family.

- **weights**: An optional vector of prior case weights. This vector is evaluated in the calling environment, not in the formula or data frame!

- **offset**: An optional vector containing a prior offset term. This vector is evaluated in the calling environment, not in the formula or data frame!

- **series.var**: A one-sided formula giving the variable grouping the time series.

- **buildmerControl**: Options overriding the defaults in buildmerControl.

- **nperm**: The number of permutations.

- **type**: A character string of either 'anova' or 'regression'. The former runs an analysis of variance and returns F-values and p-values based on the explained variance of each factor in the design. The latter runs a linear-regression analysis and returns t-values and p-values based on individual effects. When running ANOVA, it is advised to use orthogonal predictors, as type III sums of squares are used.

- **parallel**: Whether to parallelize the permutation testing using plyr's parallel option. Needs some additional set-up; see the plyr documentation.

- **progress**: A plyr .progress bar name, see the plyr documentation. If not 'none' while parallel=TRUE, an ad-hoc solution will be used, which will be visible if the cluster nodes were created with outfile=''.

Details

If not explicitly overridden in the buildmerControl argument, the function changes a few buildmer defaults to make more sense for permutation testing. This includes setting direction='order' and quiet=TRUE. Set these options explicitly to override this behavior. Because model comparisons are used for efficient permutation testing, REML is not supported. Omega squared is not available for mixed-effects ANOVA; the w2 column will not be included in the resulting permutes object. The returned object provides the raw bootstrap samples in the pb attribute. These are used to compute a corrected p-value using Maris & Oostenveld's (2007) cluster mass statistic, but can also be used by the user to compute other such statistics. These obviously significantly increase the size of the R object; if this becomes a problem, there is no harm in deleting them using e.g. attr(x, 'perms') <-NULL.

Value

A data frame.
Examples

Testing a single EEG electrode, with random effects by participants
perms <- clusterperm.lmer(Fz ~ Deviant * Session + (Deviant * Session | Subject),
data=MMN,series.var=~Time)
Testing a single EEG electrode, with random effects by participants, ANOVA inference
perms <- clusterperm.lmer(Fz ~ Deviant * Session + (Deviant * Session | Subject),
data=MMN,series.var=~Time,type='anova')

Description
ERP data from Jager (in prep.). See the vignettes for details.

Usage
data(MMN)

Format
A standard data frame.

perm.glm
A general permutation test for mixed-effects models or other buildmer models. This is an alias for perm.lm provided for discoverability.

Description
A general permutation test for mixed-effects models or other buildmer models. This is an alias for perm.lm provided for discoverability.

Usage
perm.glm(...)

Arguments
Arguments to be passed to perm.lm.

See Also
perm.lm, perm.lmer
Examples

```r
perms <- perm.glm(Fz ~ Deviant * Session, data=MMN[MMN$Time > 150 & MMN$Time < 250,])
```

perm.glmer

A general permutation test for mixed-effects models or other buildmer models. This is an alias for perm.lmer provided for discoverability.

Description

A general permutation test for mixed-effects models or other buildmer models. This is an alias for perm.lmer provided for discoverability.

Usage

```r
perm.glmer(...)
```

Arguments

... Arguments to be passed to perm.lmer.

See Also

perm.lmer

Examples

```r
# Testing a single EEG electrode, with random effects by participants
perms <- perm.glmer(Fz ~ Deviant * Session + (Deviant * Session | Subject),
                     data=MMN[MMN$Time > 150 & MMN$Time < 250,])
# Testing a single EEG electrode, with random effects by participants, ANOVA inference
perms <- perm.glmer(Fz ~ Deviant * Session + (Deviant * Session | Subject),
                     data=MMN[MMN$Time > 150 & MMN$Time < 250,], type='anova')
```
perm.lm

A general permutation test for mixed-effects models or other buildmer models. This is an alias for perm.lmer, except that random effects are explicitly disallowed.

Description

A general permutation test for mixed-effects models or other buildmer models. This is an alias for perm.lmer, except that random effects are explicitly disallowed.

Usage

perm.lm(
 formula,
 data = NULL,
 family = gaussian(),
 weights = NULL,
 offset = NULL,
 buildmerControl = list(direction = "order", crit = "LRT", quiet = TRUE, ddf = "lme4"),
 nperm = 1000,
 type = "regression",
 progress = TRUE
)

Arguments

formula A normal formula, possibly using lme4-style random effects. This can also be a buildmer terms object, provided dep is passed in buildmerControl. Only a single response variable is supported. For binomial models, the cbind syntax is not supported; please convert your dependent variable to a proportion and use weights instead.

data The data.

family The family.

weights An optional vector of prior case weights. This vector is evaluated in the calling environment, not in the formula or data frame!

offset An optional vector containing a prior offset term. This vector is evaluated in the calling environment, not in the formula or data frame!

buildmerControl Options overriding the defaults in buildmerControl.

nperm The number of permutations.

type A character string of either 'anova' or 'regression'. The former runs an analysis of variance and returns F-values and p-values based on the explained variance of each factor in the design. The latter runs a linear-regression analysis and returns t-values and p-values based on individual effects. When running ANOVA, it is advised to use orthogonal predictors, as type III sums of squares are used.
progress Logical indicating whether to print progress messages during the permutation testing.

Details

If not explicitly overridden in the buildmerControl argument, the function changes a few buildmer defaults to make more sense for permutation testing. This includes setting direction='order' and quiet=TRUE. Set these options explicitly to override this behavior. Because model comparisons are used for efficient permutation testing, REML is not supported. Omega squared is not available for mixed-effects ANOVA; the w^2 column will not be included in the resulting permutes object. The returned object provides the raw bootstrap samples in the pb attribute. These are used to compute a corrected p-value using Maris & Oostenveld’s (2007) cluster mass statistic, but can also be used by the user to compute other such statistics. These obviously significantly increase the size of the R object; if this becomes a problem, there is no harm in deleting them using e.g. attr(x,'perms') <-NULL.

Value

A data frame.

Examples

Testing a single EEG electrode, with random effects by participants
perms <- perm.lm(Fz ~ Deviant * Session,data=MMN[MMN$Time > 150 & MMN$Time < 250,])
Testing a single EEG electrode, with random effects by participants, ANOVA inference
perms <- perm.lm(Fz ~ Deviant * Session,data=MMN[MMN$Time > 150 & MMN$Time < 250,],type='anova')

description

A general permutation test for mixed-effects models or other buildmer models.

Usage

perm.lmer(
 formula,
 data = NULL,
 family = gaussian(),
 weights = NULL,
 offset = NULL,
 buildmerControl = list(direction = "order", crit = "LRT", quiet = TRUE, ddf = "lme4"),
 nperm = 1000,
perm.lmer

```r
  type = "regression",
  progress = TRUE
)
```

Arguments

- **formula**: A normal formula, possibly using `lme4`-style random effects. This can also be a `buildmer` terms object, provided `dep` is passed in `buildmerControl`. Only a single response variable is supported. For binomial models, the `cbind` syntax is not supported; please convert your dependent variable to a proportion and use weights instead.

- **data**: The data.

- **family**: The family.

- **weights**: An optional vector of prior case weights. This vector is evaluated in the calling environment, not in the formula or data frame!

- **offset**: An optional vector containing a prior offset term. This vector is evaluated in the calling environment, not in the formula or data frame!

- **buildmerControl**: Options overriding the defaults in `buildmerControl`.

- **nperm**: The number of permutations.

- **type**: A character string of either 'anova' or 'regression'. The former runs an analysis of variance and returns F-values and p-values based on the explained variance of each factor in the design. The latter runs a linear-regression analysis and returns t-values and p-values based on individual effects. When running ANOVA, it is advised to use orthogonal predictors, as type III sums of squares are used.

- **progress**: Logical indicating whether to print progress messages during the permutation testing.

Details

If not explicitly overridden in the `buildmerControl` argument, the function changes a few `buildmer` defaults to make more sense for permutation testing. This includes setting `direction='order'` and `quiet=TRUE`. Set these options explicitly to override this behavior. Because model comparisons are used for efficient permutation testing, REML is not supported. Omega squared is not available for mixed-effects ANOVA; the `w2` column will not be included in the resulting `permutes` object. The returned object provides the raw bootstrap samples in the `pb` attribute. These are used to compute a corrected p-value using Maris & Oostenveld’s (2007) cluster mass statistic, but can also be used by the user to compute other such statistics. These obviously significantly increase the size of the R object; if this becomes a problem, there is no harm in deleting them using e.g. `attr(x, 'perms') <-NULL`.

Value

A data frame.
Examples

Testing a single EEG electrode, with random effects by participants
perms <- perm.lmer(Fz ~ Deviant * Session + (Deviant * Session | Subject),
 data=MMN[MMN$Time > 150 & MMN$Time < 250,])

Testing a single EEG electrode, with random effects by participants, ANOVA inference
perms <- perm.lmer(Fz ~ Deviant * Session + (Deviant * Session | Subject),
 data=MMN[MMN$Time > 150 & MMN$Time < 250,], type='anova')

Description

Permutation tests for time series data, based on classic linear regression or ANOVA. This is a legacy function that is primarily provided for backward compatibility. You should probably use permutelm or permutelmer instead. permu.test is the only function to support multivariate responses, although multivariate data can trivially be recoded into a univariate model. permu.test does not support random effects or corrected p-values (e.g. the cluster mass test), which are supported by permutelm.

Usage

permu.test(
 formula,
 data,
 subset = NULL,
 type = "anova",
 parallel = FALSE,
 progress = "text",
 ...
)

Arguments

 formula A formula of the following form: outcome ~ predictors | series variable. Multivariate outcomes (e.g. 32 EEG electrodes) are supported; use cbind(Fp1,Fp2,etc) ~ predictors | series.
permu.test

The dataset referencing these predictors.

subset If specified, will only analyze the specified subset of the data.

type A character string of either 'anova' or 'regression'. The former runs an analysis of variance and returns F-values and p-values based on the explained variance of each factor in the design. The latter runs a linear-regression analysis and returns t-values and p-values based on individual effects. When running ANOVA, it is advised to use orthogonal predictors, as type III sums of squares are used.

parallel Whether to parallelize the permutation testing using plyr's parallel option. Needs some additional set-up; see the plyr documentation.

progress A plyr .progress bar name, see the plyr documentation. Ignored if parallel=TRUE.

... Other arguments to be passed to lm/aovp

Value

A data frame.

See Also

clusterperm.lm, clusterperm.lmer

Examples

EEG data example using the MMN dataset

Run permutation tests on all electrodes and timepoints, reporting p-values for the three # manipulated factors
perms <- permu.test(cbind(Fp1, AF3, F7, F3, FC1, FC5, C3, CP1, CP5, P7, P3, Pz, PO3, O1, O2, O3, PO4, P4, P8, CP6, CP2, C4, FC6, FC2, F4, F8, AF4, Fp2, Fz, Cz) ~ Deviant * Session | Time, data=MMN)

Run the tests in parallel on two CPU threads
first, set up the parallel backend
library(doParallel)
c1 <- makeCluster(2)
registerDoParallel(c1)
perms <- permu.test(cbind(Fp1, AF3, F7, F3, FC1, FC5, C3, CP1, CP5, P7, P3, Pz, PO3, O1, O2, PO4, P4, P8, CP6, CP2, C4, FC6, FC2, F4, F8, AF4, Fp2, Fz, Cz) ~ Deviant * Session | Time, data=MMN, parallel=TRUE)
stopCluster(c1)

Plot the results by F-value, removing points that were not significant in the # permutation tests
plot(perms, sig='p')

t-values instead of F-values
perms <- permu.test(cbind(Fp1, AF3, F7, F3, FC1, FC5, C3, CP1, CP5, P7, P3, Pz, PO3, O1, O2, PO4, P4, P8, CP6, CP2, C4, FC6, FC2, F4, F8, AF4, Fp2, Fz, Cz) ~ Deviant * Session | Time, data=MMN, type='regression')
plot.permutes

Create a heatmap of the results of cluster-based permutation testing.

Description

Create a heatmap of the results of cluster-based permutation testing.

Usage

S3 method for class 'permutes'
plot(
 x,
 type = c("LRT", "F", "t", "beta", "w2", "cluster_mass"),
 breaks = NULL,
 sig = NULL,
 ...
)

Arguments

x Output of `permu.test` or `clusterperm.lmer` or associated functions. You may want to subset it if you want to simulate zooming in.

type The quantity to plot. For ANOVA, the options are 'LRT' (default; this is the permutation statistic, which is a likelihood-ratio-test statistic), 'F', 'p' (this is the permutation p-value of the permutation statistic), or 'w2' (omega squared; not available for mixed-effects models). For regression, the options are 't', 'beta', or 'p'.

breaks The granularity of the labels of the x axis. Pass `unique(x[,2])` to get a tick for every timepoint. Combine this trick with subsetting of your dataset, and perhaps averaging over all your dependent variables, to 'zoom in' on your data to help you determine precisely where significance begins and stops to occur.

sig An optional column name. If specified, only cases with a value of <.05 in this column will be plotted. NULL by default, but suggested to be set to 'p.cluster_mass' for easy visualization of the cluster-mass-test results, or 'p' to directly use the permutation p-values.

... Other arguments, which will be ignored (the ellipsis is provided for consistency with the generic plot() method).

Value

A ggplot2 object.
Index

* datasets
 MMN, 7

clusterperm.glm, 2
clusterperm.glmer, 3
clusterperm.lm, 3
clusterperm.lmer, 5

MMN, 7

perm.glm, 7
perm.glmer, 8
perm.lm, 9
perm.lmer, 10
permu.test, 12
plot.permutes, 14