Package ‘pesel’

October 17, 2023

Type Package
Title Automatic Estimation of Number of Principal Components in PCA
Version 0.7.5
Date 2023-08-14
Author Piotr Sobczyk, Julie Josse, Malgorzata Bogdan
Maintainer Piotr Sobczyk <pj.sobczyk@gmail.com>
License GPL-3
Encoding UTF-8
URL https://github.com/psobczyk/pesel
BugReports https://github.com/psobczyk/pesel/issues
Depends R (>= 3.1.3),
Imports stats, graphics
RoxygenNote 7.2.3
NeedsCompilation no
Repository CRAN
Date/Publication 2023-10-17 13:20:02 UTC

R topics documented:

pesel-package ... 2
pesel ... 3
pesel_heterogeneous ... 4
pesel_homogeneous ... 5

Index 6
Automatic estimation of number of principal components in PCA

Description

Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL).

Details

Version: 0.7.5

Author(s)

Piotr Sobczyk, Julie Josse, Malgorzata Bogdan

Maintainer: Piotr Sobczyk <pj.sobczyk@gmail.com>

References

Piotr Sobczyk, Malgorzata Bogdan, Julie Josse "Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood", Journal of Computational and Graphical Statistics 2017

Examples

EXAMPLE 1 - noise
with(set.seed(23), pesel(matrix(rnorm(10000), ncol = 100), npc.min = 0))

EXAMPLE 2 - fixed effects PCA model
sigma <- 0.5
k <- 5
n <- 100
numb.vars <- 10
factors are drawn from normal distribution
factors <- replicate(k, rnorm(n, 0, 1))
coefficients are drawn from uniform distribution
coeff <- replicate(numb.vars, rnorm(k, 0, 1))
SIGNAL <- scale(factors %*% coeff)
X <- SIGNAL + replicate(numb.vars, sigma * rnorm(n))
pesel(X)
pesel

Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL)

Description

Underlying assumption is that only small number of principal components, associated with largest singular values, is relevant, while the rest of them is noise. For a given numeric data set, function estimates the number of PCs according to penalized likelihood criterion. Function adjusts the model used to the case when number of variables is larger than the number of observations.

Usage

```r
pesel(
  X,
  npc.min = 0,
  npc.max = 10,
  prior = NULL,
  scale = TRUE,
  method = c("heterogenous", "homogenous"),
  asymptotics = NULL
)
```

Arguments

- `X`: a data frame or a matrix containing only continuous variables
- `npc.min`: minimal number of principal components, for all the possible number of PCs between npc.min and npc.max criterion is computed
- `npc.max`: maximal number of principal components, if greater than dimensions of X, min(ncol(X), nrow(X))-1 is used, for all the possible number of PCs between npc.min and npc.max criterion is computed
- `prior`: a numeric positive vector of length npc.max-ncp.min+1. Prior distribution on number of principal components. Defaults to uniform distribution
- `scale`: a boolean, if TRUE (default value) then data is scaled before applying criterion
- `method`: name of criterion to be used
- `asymptotics`: a character, asymptotics ("n" or "p") to be used. Default is NULL for which asymptotics is selected based on dimensions of X

Details

Please note that no categorical variables and missing values are allowed.

Value

- number of components
Examples

EXAMPLE 1 - noise
with(set.seed(23), pesel(matrix(rnorm(10000), ncol = 100), npc.min = 0))

EXAMPLE 2 - fixed effects PCA model
sigma <- 0.5
k <- 5
n <- 100
numb.vars <- 10
factors are drawn from normal distribution
factors <- replicate(k, rnorm(n, 0, 1))
coefficients are drawn from uniform distribution
coeff <- replicate(numb.vars, rnorm(k, 0, 1))
SIGNAL <- scale(factors %*% coeff)
X <- SIGNAL + replicate(numb.vars, sigma * rnorm(n))
pesel(X)

Description

Derived under assumption that number of variables tends to infinity while number of observations is limited.

Usage

pesel_heterogeneous(X, minK, maxK)

Arguments

X a matrix containing only continuous variables
minK minimal number of principal components fitted
maxK maximal number of principal components fitted

Value

numeric vector, PESEL criterion for each k in range [minK, maxK]
Description

Derived under assumption that number of variables tends to infinity while number of observations is limited.

Usage

pesel_homogeneous(X, minK, maxK)

Arguments

- **X**: a matrix containing only continuous variables
- **minK**: minimal number of principal components fitted
- **maxK**: maximal number of principal components fitted

Value

numeric vector, PESEL criterion for each k in range [minK, maxK]
Index

pesel, 3
pesel-package, 2
pesel_heterogeneous, 4
pesel_homogeneous, 5