Package ‘pgraph’

January 21, 2020

Type Package
Title Build Dependency Graphs using Projection
Version 1.6
Date 2020-01-20
Imports SAM, energy, glasso, glmnet, splines
Description Implements a general framework for creating dependency graphs using projection as introduced in Fan, Feng and Xia (2019)<arXiv:1501.01617>. Both lasso and sparse additive model projections are implemented. Both Pearson correlation and distance covariance options are available to generate the graph.
License GPL-2
LazyData TRUE
RoxygenNote 7.0.2
Encoding UTF-8
NeedsCompilation no
Author Yang Feng [aut, cre],
 Jianqing Fan [aut],
 Lucy Xia [aut]
Maintainer Yang Feng <yangfengstat@gmail.com>
Repository CRAN
Date/Publication 2020-01-21 09:20:07 UTC

R topics documented:

 greg ... 2
 pgraph ... 3
 projcore ... 4
 projcov ... 5
 roc ... 6

Index 8
Regularized graphical model estimation

Description

greg calculate the regularized graphical model estimation using lasso, scad and adaptive lasso penalties. It report the results in the form of roc results for each method.

Usage

greg(z, A, eps = 1e-15, rholist = NULL, gamma = 0.5, trace = FALSE)

Arguments

- `z` n * p dimensional matrix
- `A` p * p true graph
- `eps` a tolerance level for thresholding
- `rholist` a sequence of penalty parameters
- `gamma` the adaptive lasso penalty parameter
- `trace` whether to trace to estimation process.

Value

a list.

- `roc.lasso` roc results for lasso
- `roc.scad` roc results for scad
- `roc.alasso` roc results for adaptive lasso

See Also

pgraph, roc, projcov

Examples

```r
set.seed(0)
p = 20;
n = 300;
tmp=runif(p-1,1,3)
s=c(0,cumsum(tmp));
s1=matrix(s,p,p)
cov.mat.true=exp(-abs(s1-t(s1)))
prec.mat.true=solve(cov.mat.true);
a=matrix(rnorm(p*n),n,p)
data.sa=a%*%chol(cov.mat.true);
true.graph = outer(1:p,1:p,f<-function(x,y){(abs(x-y)==1)})
greg.fit = greg(data.sa, true.graph)
```
Calculate the Conditional Dependency Graph

Description

`pgraph` calculate the conditional dependency graph (with/without external factors) via projection using lasso or sparse additive model.

Usage

```r
pgraph(
  z,
  f = NULL,
  method = c("lasso", "sam", "ols"),
  cond = TRUE,
  R = 199,
  randSeed = 0,
  trace = FALSE
)
```

Arguments

- `z`: n * p dimensional matrix
- `f`: n * q factor matrix. Default = 'NULL'.
- `method`: projection method. Default = 'lasso'.
- `cond`: whether to create a conditional graph or unconditional graph. Default = TRUE. If `cond` = FALSE, `f` must be provided.
- `R`: number of random permutations for the test.
- `randSeed`: the random seed for the program. Default = 0.
- `trace`: whether to trace to estimation process.

Value

- A list to be used to calculate the ROC curve.
- `statmat.pearson`: matrix with pearson correlation test
- `statmat.dcov`: matrix with distance covariance test
projcore

Calculate the Projected matrix given factors

Description

projcore calculate the projected matrix given factors.

Usage

projcore(
 x,
 b,
 method = c("lasso", "sam", "ols"),
 one.SE = TRUE,
 refit = TRUE,
 randSeed = 0
)
Arguments

- **x**: first vector
- **y**: second vector
- **b**: factor matrix
- **method**: projection method. Default = 'lasso'.
- **one.SE**: whether to use the 1se rule for glmnet. Default = TRUE.
- **refit**: whether to refit the selected model. Default = TRUE.
- **randSeed**: the random seed for the program. Default = 0.

Value

- **eps**: the residual matrix after projection

See Also

`greg`, `roc`, `pgraph`
refit whether to refit the selected model. Default = TRUE.
R number of random permutations for the test.
randSeed the random seed for the program. Default = 0.
normalized whether to normalized by S2. Default = FALSE.

Value

a list.
test.pearson pearson correlection test statistic
test.dcov distance covariance test statistic
xeps residual of projection of x on b
yeps residual of projection of y on b

See Also

greg, roc, pgraph

Examples

library(splines)
set.seed(0)
K = 3
n = 100
b = matrix(rnorm(K*n),n,K)
bx = 1:3
by = c(1,2,2)
x = b%*%bx+rnorm(n)
y = b%*%by+rnorm(n)
fit1 = projcov(x, y, b, method = 'lasso')
fit2 = projcov(x, y, b, method = 'sam')

roc calculate the fpr and tpr for the roc curve

Usage

roc(a, a0)

Arguments

a p * p estimated graph
a0 p * p true graph
<table>
<thead>
<tr>
<th>roc</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a list.</td>
</tr>
<tr>
<td>tpr</td>
<td>tpr sequence</td>
</tr>
<tr>
<td>fpr</td>
<td>fpr sequence</td>
</tr>
</tbody>
</table>
Index

greg, 2, 4–6
pgraph, 2, 3, 5, 6
projcore, 4
projcov, 2, 4, 5
roc, 2, 4–6, 6