Package ‘phase1PRMD’

October 14, 2022

Type Package

Date 2020-03-08

Title Personalized Repeated Measurement Design for Phase I Clinical Trials

Version 1.0.2

Author Lu Zhang, Jun Yin

Maintainer Lu Zhang <luzhangstat@gmail.com>

Description Implements Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints and longitudinal efficacy measure from multiple treatment cycles. The package provides flags to fit a variety of model-based phase I design, including 1 stage models with or without individualized dose modification, 3-stage models with or without individualized dose modification, etc. Functions are provided to recommend dosage selection based on the data collected in the available patient cohorts and to simulate trial characteristics given design parameters.

SystemRequirements JAGS (http://mcmc-jags.sourceforge.net)

Depends R (>= 3.0.0), coda (>= 0.13), ggplot2, stats

Encoding UTF-8

LazyData true

Imports rjags, arrayhelpers, MASS, reshape2, plyr, dplyr, RColorBrewer, gridExtra, kableExtra, knitr

RoxygenNote 7.0.2

Suggests

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-09 06:50:03 UTC
R topics documented:

- eff ... 2
- eff_suggest .. 3
- eff_summary ... 4
- nTTP.array .. 6
- nTTP_summary .. 6
- patlist.display ... 7
- patlist_sim ... 8
- plot.RunPRMD .. 9
- plot.SimPRMD .. 9
- print.summary.RunPRMD 10
- print.summary.SimPRMD 10
- prob ... 11
- RunPRMD ... 11
- SimPRMD .. 15
- summary.RunPRMD .. 20
- summary.SimPRMD .. 21

eff

Efficacy response generation parameters

Description

A list of 4 records the parameters for efficacy measure generation. This serves as an example of the parameter settings for efficacy measure generation in function SimPRMD. Check eff_summary or SimPRMD to see the examples of using dataset eff in generating efficacy measure.

Usage

```r
eff
```

Format

An object of class list of length 4.

Value

- **Dose_Cycle_Meff**

 Dose-cycle mean efficacy matrix. An array of 4 dimension providing the mean of the multivariate Gaussian distribution in efficacy data generation. The dimension of the Dose-cycle mean efficacy matrix is 5 5 6 6 which represents dose efficacy pattern, cycle efficacy pattern, dose and cycle. Patterns are ordered in a way that the first is increasing, the second is flat, the third is platform, the fourth is decreasing, and the fifth is quadratic efficacy across dose levels and cycles.

- **Sigma**

 A 6 by 6 matrix, the covariance matrix of the multivariate Gaussian distribution in efficacy data generation.
A positive number controls the skewness of the distribution of the efficacy response.

An array recording the corresponding mean of the generated efficacy data with parameters specified by eff$Dose_Cycle_Meff, eff$Sigma, and eff$sd_trans.

Description

Suggest the input eff.structure of function SimPRMD with selected eff.sd_tran for given efficacy mean matrix and efficacy standard deviation.

Usage

eff_suggest(eff.M, eff.sd, eff.sd_trans, n.sim = 30000)

Arguments

- eff.M: The efficacy mean matrix whose (i,j)th element save the target mean of the efficacy data.
- eff.sd: The target standard deviation matrix for all dose and cycles. Notice that the generated efficacy may have different standard deviation matrix due to the correlations across cycles.
- eff.sd_trans: The eff.sd_trans for test. Notice variance of the generated efficacy data will be effected by eff.sd_trans.
- n.sim: The number of simulations for the numerical calculation in the function. The default is 30,000.

Value

eff.suggest: The matrix suggested for the input eff.structure of function SimPRMD.

Examples

Provide an target efficacy mean matrix for all dose and cycles
eff.M <- matrix(rep(3:8/10, 6), nrow = 6, ncol = 6)

Give a target standard deviation matrix for all dose and cycles
Notice that the generated efficacy may have difference standard deviation
matrix due to the correlations across cycles
eff.sd <- matrix(0.2, nrow = 6, ncol = 6)

Select a eff.sd_trans for testing. The efficacy variance are mainly
controlled by the eff.sd_trans
eff.sd_trans <- 1.5 # or other positive value
eff_summary

Compute the summary statistics of efficacy measure with specified parameters.

Description

Numerically compute the Mean, marginal standard deviance and marginal correlation matrix of efficacy measure generated with specified parameters. The function provides plots of marginal density of generated efficacy and correlation matrix for each dose. Check details to see the efficacy data generation procedures.

Usage

eff_summary(
 eff.structure,
 eff.Sigma,
 eff.sd_trans,
 n.sim = 3e+05,
 seed = 123,
 plot.flag = F,
 plot.title = T
)

Arguments

eff.structure A matrix providing the mean of the multivariate Gaussian distribution in efficacy data generation. Specifically, the \((i,j)\)th element represents the mean value of \(i\)th dose and \(j\)th cycle of the Gaussian distribution for efficacy data generation.

eff.Sigma The covariance matrix of the multivariate Gaussian distribution in efficacy data generation.
The user can simulate longitudinal efficacy response with different dose-efficacy and cycle-efficacy pattern using argument `eff.structure`, `eff.Sigma` and `eff.sd_trans`. The sampling process of efficacy response starts from generating $z = z_1, \ldots, z_d$ from multivariate Gaussian distribution $zMVN(\mu, V)$, where μ and V are specified by `eff.structure` and `eff.Sigma`, respectively. Define ϕ be the density of $N(0, \sigma^2)$ with CDF Φ, where σ^2 is set by `eff.sd_trans`. Then the efficacy measure is generated by taking the CDF of z:

$$x = x_1, \ldots, x_d = \Phi(z) = \Phi(z_1), \ldots, \Phi(z_d)$$

. Notice here the variance parameter σ^2_{trans} controls the variance of the generated efficacy.

Value

- `eff.M` A matrix recording the efficacy mean whose (i, j)th element represents the efficacy mean of ith dose level and jth cycle
- `eff.cor.ls` A list with a length of dose levels numbers recording the marginal correlation matrix across cycles of efficacy data for each dose level

Examples

```r
data("eff") # load eff.RData from package phase1PRMD. Details see "?eff"
eff.structure = eff$Dose_Cycle_Meff["plat", "dec", , ]
eff.Sigma = eff$Sigma
eff.sd_trans = eff$sd_trans

# res <- eff_summary(eff.structure, eff.Sigma, eff.sd_trans, n.sim = 300000,
#                     seed = 123)
# res
# set a special cases and check the density and correlation plots
# eff_summary(eff.structure = matrix(eff.structure[cbind(c(1:6), c(1:6))],
#                     nrow = 1, ncol = 6),
#             eff.Sigma, eff.sd_trans, n.sim = 300000, seed = 123,
#             plot.flag = TRUE, plot.title = FALSE)
```
nTTP.array
Generate the nTTP dictionary

Description

nTTP.array generates the nTTP dictionary for all combination of toxicity type and grade with a given toxicity weighted matrix. Used in function nTTP_summary for checking the toxicity scenario.

Usage

nTTP.array(wm, toxmax)

Arguments

- **wm**
 (numeric matrix, m by n) Toxicity weighted matrix, with row be the type of the toxicity and column be the toxicity grade

- **toxmax**
 (scalar) Normalized constant for nTTP

Value

An m dimensional array with dimension \((n, n, \ldots, n)\). The \((d_1, d_2, \ldots, d_m)\), \(d_i = 1, \ldots, m \in (1, \ldots, n)\)th element is the nTTP when the grade of \(i\)th type of toxicity has \(d_i\)th toxicity grade.

Examples

```r
wm = matrix(c(0, 0.5, 0.75, 1, 1.5,
               0, 0.5, 0.75, 1, 1.5,
               0, 0, 0, 0.5, 1),
               byrow = TRUE, ncol = 5)  # weighted matrix for toxicity matrix
# nrow = No.of type; ncol = No. of grade
toxmax = 2.5
nTTP.array(wm, toxmax)
```

nTTP_summary
Generate the mean nTTP score and the probability of observing DLT for all doses and cycles

Description

nTTP_summary generates the mean nTTP score and the probability of observing DLT for all doses and cycles.

Usage

nTTP_summary(Tox.prob.M, nTTP.all, wm)
Arguments

Tox.prob.M Toxicity probability matrix with 4 dimension: dose, cycle, type, grade. Tox.prob.M can be the output of the build-in matrix of function GenToxProb in package phase1RMD. See more details about how to generate toxicity probability matrices in the help document of GenToxProb.

nTTP.all The output of nTTP.array

wm (numerical matrix) Toxicity weighted matrix, with row be the type of the toxicity and column be the toxicity grade

Value

mnTTP.M matrix of mean nTTP for all doses and cycles
pDLT.M matrix of probability of observing DLT for all doses and cycles

Examples

data("prob")

wm <- matrix(c(0, 0.5, 0.75, 1, 1.5,
 0, 0.5, 0.75, 1, 1.5,
 0, 0, 0, 0.5, 1),
 byrow = TRUE, ncol = 5) # weighted matrix for toxicity matrix
nrow = No.of type; ncol = No. of grade

 toxmax <- 2.5

nTTP.all <- nTTP.array(wm, toxmax)

tox.matrix <- prob["MTD4", "flat", , , ,]

nTTP_summary(tox.matrix, nTTP.all, wm)

Description

Display patient records in a human-readable table. Each cell contains 3 values including observed nTTP, DLT, and dose assignment. The higher the dose, the warmer the cell background color is. The black color of the records indicates DLT equals 1.

Usage

patlist.display(patlist, n.dose, n.cycle)
Arguments

patlist
A list of the patient treatment records, which must contain the following variables:

- **PatID** denotes the patient ID where the elements are specified by cohort and subject number. For example, "cohort2subject3" denotes the third subject in the second cohort
- **dose** records the dose assigned for each patient through the whole treatment
- **cycle** shows the treatment cycle information of each record
- **nTTP** records the corresponding nTTP score.
- **dlt** indicates whether a DLT event is observed or not?
- **n.dose** The number of dose in the study
- **n.cycle** The number of cycle in the study

Description

The data "patlist_sim" is a trial generated by "SimPRMD". The model utilized for generating trial is a 3-stage model with individualized dose modification. The MTD = 4 and the MED = 1 since the dose-efficacy pattern when generating the trial was set to be flat. The dose-toxicity trend and efficacy-cycle trend are flat. There are in total 12 cohorts with 3 patients in each cohort. This also serves as an example of the input data of function `RunPRMD`.

Usage

```r
patlist_sim
```

Format

An object of class `list` of length 6.

Value

- **PatID** denotes the patient ID where the elements are specified by cohort and subject number. For example, "cohort2subject3" denotes the third subject in the second cohort
- **dose** records the dose assigned for each patient on different cycles
- **cycle** shows the treatment cycle
- **nTTP** records the corresponding nTTP score.
- **dlt** indicates whether a DLT event is observed or not?
- **efficacy** provides the continuous efficacy for each cycle. The range of efficacy measure is (0, 1).
plot.RunPRMD

Plot nTTP and efficacy boxplots of a RunPRMD object

Description
Plot nTTP boxplots of a RunPRMD object. Plot efficacy boxplots when implementing RunPRMD with option effcy.flag == TRUE.

Usage
```r
## S3 method for class 'RunPRMD'
plot(x, ..., select_cycle = x$cycles)
```

Arguments
- `x` RunPRMD object to summarise
- `...` other arguments ignored (for compatibility with generic)
- `select_cycle` A vector indication the cycle in the boxplot. Default is cycle of x.

Examples
```r
## Check ?RunPRMD for example
```

plot.SimPRMD

Plots of a SimPRMD object

Description
Plot the predictive probability of nTTP < target toxicity for all cycles and doses, the mean nTTP vs cycle1 and cycle > 2 for all doses of a SimPRMD object. Plot median treatment duration boxplot along with the DLT drop off rate when implementing SimPRMD with option DLT.drop.flag = TRUE.

Usage
```r
## S3 method for class 'SimPRMD'
plot(x, ..., title.add = TRUE)
```

Arguments
- `x` SimPRMD object to summarise
- `...` other arguments ignored (for compatibility with generic)
- `title.add` controls whether there is a title on plots or not.
Examples

Check ?SimPRMD for example

Description

Displays a useful description of a summary.RunPRMD object. Call by `link{summary.RunPRMD}`. Check `link{summary.RunPRMD}` for the details of the print information.

Usage

```r
## S3 method for class 'summary.RunPRMD'
print(x, ...)
```

Arguments

- `x`: summary.RunPRMD object to summarise
- `...`: other arguments ignored (for compatibility with generic)

Description

Displays a useful description of a summary.SimPRMD object

Usage

```r
## S3 method for class 'summary.SimPRMD'
print(x, ...)
```

Arguments

- `x`: summary.SimPRMD object to summarise
- `...`: other arguments ignored (for compatibility with generic)
Toxicity probability matrix

Description

A 6 dimension array providing the toxicity probability of different scenarios. The dimension is $4\times 3 \times 6 \times 6 \times 3 \times 5$ which represents scenario, cycle effect, dose level, cycle number, toxicity type, and toxicity grade. Scenarios are ordered in a way that the first scenario is MTD = dose 2, the second is MTD = dose 3, the third is MTD = dose 4, and the fourth is MTD = dose 5. The three Cycle effect trend are decreasing, flat, and increasing toxicity trend over cycles. There are 6 doses, 6 cycles, 3 toxicity types and 5 toxicity grades.

Usage

\[
\text{prob}
\]

Format

An object of class `array` of dimension $4 \times 3 \times 6 \times 6 \times 3 \times 5$.

RunPRMD

Implement a Multi-Stage Phase I Dose-Finding Design to recommend dosage selection based on the data collected in the available patient cohorts

Description

A function to implement a Multi-Stage Phase I Dose-Finding Design to recommend dosage selection based on the data collected in the available patient cohorts. The available models include 1-stage model with/without individualized dose modification, 3-stage model with/without individualized dose modification, 3-stage model with individualized dose modification on stage II and 3-stage model with individualized dose modification on stage I and dose modification on stage II.

Usage

\[
\text{RunPRMD}(\text{seed = 1234, patlist, patID_act = NULL, cycle_act = NULL, dose_act = NULL, dlt_act = NULL, doses = 1:6, cycles = 1:6, tox_target = 0.28,})
\]
p_tox1 = 0.2,
 p_tox2 = 0.2,
 trialSize = 36,
 chSize = 3,
 thrd1 = 0.28,
 thrd2 = 0.28,
 proxy.thrd = 0.1,
 param.ctrl = list(),
 n.iters = 10000,
 burn.in = 5000,
 thin = 2,
 n.chains = 1,
 effcy.flag = T,
 ICD.flag = T,
 DLT.drop.flag = T,
 testedD = T,
 IED.flag = T,
 ICD_thrd = 0.3
)

Arguments

seed
The seed of R’s random number generator. Default is 1234

patlist
A list of the patient treatment records, which must contains the following variables:

PatID denotes the patient ID where the elements are specified by cohort and subject number. For example, "cohort2subject3" denotes the third subject in the second cohort

dose records the dose level assigned for each patient through the whole treatment

cycle shows the treatment cycle information of each record

nTTP records the corresponding nTTP score.

dlt indicates whether a DLT event is observed or not?

efficacy provides the continuous efficacy for each cycle. Required when effcy.flag == T. The range of efficacy is (0, 1), use -1 for missing efficacy response.

See patlist_sim for an example.

patID_act
A vector recording the patients’ ID who need dose recommendation for next cycle. Default is NULL

cycle_act
A vector recording the current cycle of patID_act. Default is NULL

dose_act
A vector recording the current dose level of patID_act. Default is NULL

dlt_act
A vector indicating whether a dlt is observed in current cycle for current patients. Default is NULL

doses
A vector of doses that users are going to explore. Default is 1:6, where dose 1 through dose 6 are being tested.

cycles
A vector of cycles that the treatment plans to go through. Default is 1:6, where patients will experience up to 6 cycles of the treatment
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tox.target</td>
<td>The target toxicity of the treatment. Default is 0.28. See details below.</td>
</tr>
<tr>
<td>p_tox1</td>
<td>The probability cutoff for cycle 1 toxicity. Default is 0.2. See details below.</td>
</tr>
<tr>
<td>p_tox2</td>
<td>The probability cutoff for later cycles toxicity beyond cycle 1. Default is 0.2. See Details below.</td>
</tr>
<tr>
<td>trialSize</td>
<td>The maximum sample size for trial simulation. Default is 36. Must be the multiple of cohort size (chSize).</td>
</tr>
<tr>
<td>chSize</td>
<td>The cohort size of patients recruited. Default is 3.</td>
</tr>
<tr>
<td>thrd1</td>
<td>An upper bound of toxicity for cycle 1 of the treatment. Default is 0.28. See Details below.</td>
</tr>
<tr>
<td>thrd2</td>
<td>An upper bound of toxicity for late cycles of the treatment, beyond cycle 1. Default is 0.28. See Details below.</td>
</tr>
<tr>
<td>proxy.thrd</td>
<td>A distance parameter to define efficacious doses. Any dose whose predicted efficacy is within proxy.thrd away from the largest one among the safe doses will be declared an efficacious dose.</td>
</tr>
<tr>
<td>param.ctrl</td>
<td>A list specifying the prior distribution for the parameters.</td>
</tr>
<tr>
<td>p1_beta_intercept</td>
<td>the prior mean of intercept of toxicity model assuming a normal prior</td>
</tr>
<tr>
<td>p2_beta_intercept</td>
<td>the precision (inverse of variance) of intercept of toxicity model assuming a normal prior</td>
</tr>
<tr>
<td>p1_beta_cycle</td>
<td>the prior mean of cycle effect of toxicity model assuming a normal prior</td>
</tr>
<tr>
<td>p2_beta_cycle</td>
<td>the precision (inverse of variance) of cycle effect of toxicity model assuming a normal prior</td>
</tr>
<tr>
<td>p1_beta_dose</td>
<td>the prior minimum of dose effect of toxicity model assuming a uniform prior</td>
</tr>
<tr>
<td>p2_beta_dose</td>
<td>the prior maximum of dose effect of toxicity model assuming a uniform prior</td>
</tr>
<tr>
<td>p1_alpha</td>
<td>the prior mean vector of the parameters from efficacy model assuming a multivariate normal prior</td>
</tr>
<tr>
<td>p2_alpha</td>
<td>the prior precision matrix (inverse of covariance matrix) of the parameters from efficacy model assuming a multivariate normal prior</td>
</tr>
<tr>
<td>p1_gamma0</td>
<td>the prior mean of association parameter γ (See Du et al(2017)) of two submodels of the joint model assuming a normal prior</td>
</tr>
<tr>
<td>p2_gamma0</td>
<td>the prior precision (inverse of variance) of association parameter γ of two submodels of the joint model assuming a normal prior. Default is non-informative priors.</td>
</tr>
<tr>
<td>n.iters</td>
<td>Total number of MCMC simulations. Default is 10,000.</td>
</tr>
<tr>
<td>burn.in</td>
<td>Number of burn=ins in the MCMC simulation. Default is 5,000.</td>
</tr>
<tr>
<td>thin</td>
<td>Thinning parameter. Default is 2.</td>
</tr>
<tr>
<td>n.chains</td>
<td>No. of MCMC chains in Bayesian model fitting. Default is 1. Will check the convergence of MCMC chains by the potential scale reduction factor (PSRF) when n.chains > 1.</td>
</tr>
<tr>
<td>effcy.flag</td>
<td>Whether efficacy data is modeled in the model fitting or not. Default is TRUE.</td>
</tr>
</tbody>
</table>
ICD.flag Whether we allow individualized dose modification in stage 1 model or not? Default is TRUE. See details below.

DLT.drop.flag Whether the patients should suspend the treatment when observing DLT. Default is TRUE.

testedD Default is TRUE. Whether we only allow ICD or IED to be less than or equal to the maximum dose tested in first cycle.

IED.flag Default is TRUE. Whether we allow dose changing for cycle > 1 in stage 2 model or not?

ICD_thrd The cut-off point of the posterior toxicity probability in defining ICD. Default is 0.3. See details below.

Details

The RunPRMD function implement a Multi-Stage Phase I Dose–Finding Design to recommend dosage selection based on the data collected in the available patient cohorts. The function will automatically identify the model and the stage based on all flags and the records. For the details of argument tox.target, p_tox1, p_tox2, thrd1, thrd2 and ICD_thrd, please check the help document of SimPRMD.

Value

patlist The input data patlist

doseA The recommended dose level for cycle 1 for new cohorts

pat_rec The recommended dose for current patients for next cycle

effcy.flag The input argument effcy.flag

doses The input argument doses

cycles The input argument cycles

Examples

data("patlist_sim")
check the whole dataset by function patlist.display
patlist.display(patlist_sim, n.dose = 6, n.cycle = 6)

When we pick the records before 6th cohort enrolled in the study
L <- length(patlist_sim$PatID)
patlist <- lapply(patlist_sim, function(a){a <- a[!(44:L)]})
patlist.display(patlist, n.dose = 6, n.cycle = 6)

#The table shows the current patient in the trial. Now record the active patient ID and records as follows
patID_act <- c("cohort1subject1", "cohort1subject2", "cohort1subject3",
"cohort2subject1", "cohort2subject2", "cohort2subject3",
"cohort3subject2", "cohort3subject3",
"cohort4subject1", "cohort4subject2", "cohort4subject3",
"cohort5subject1", "cohort5subject2", "cohort5subject3")
cycle_act <- c(5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1)
dose_act <- c(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4)
dlt_act <- c(0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0)

test <- RunPRMD(patlist = patlist, patID_act = patID_act,
cycle_act = cycle_act, dose_act = dose_act,
dlt_act = dlt_act, trialSize = 36, chSize = 3,
effcy.flag = TRUE, ICD.flag = TRUE, DLT.drop.flag = TRUE,
IED.flag = TRUE, ICD_thrd = 0.3)

summary(test)
plot(test)
plot(test, select_cycle = 1:2)

SimPRMD
Simulation for a Multi-Stage Phase I Dose-Finding Design

Description

A function to implement simulations for a multi-stage phase I dose-finding design incorporating a longitudinal continuous efficacy outcome and toxicity data from multiple treatment cycles. The available models include 1-stage model with/without individualized dose modification, 3-stage model with/without individualized dose modification, 3-stage model with individualized dose modification on stage II and 3-stage model with individualized dose modification on stage I and dose modification on stage II.

Usage

SimPRMD(
 seed = 1234,
 numTrials = 100,
 doses = 1:6,
 cycles = 1:6,
 eff.structure = matrix(0, nrow = 6, ncol = 6),
 eff.Sigma = diag(6),
 eff.sd_trans = 1.5,
 tox.target = 0.28,
 p_tox1 = 0.2,
 p_tox2 = 0.2,
 trialSize = 36,
 chSize = 3,
 thrd1 = 0.28,
 thrd2 = 0.28,
 proxy.thrd = 0.1,
 tox.matrix = NULL,
 wm = matrix(c(0, 0.5, 0.75, 1, 1.5, 0, 0.5, 0.75, 1, 1.5, 0, 0, 0, 0.5, 1), byrow = T,
ncol = 5),
toxmax = 2.5,
toxtype = NULL,
intercept.alpha = NULL,
coef.beta = NULL,
cycle.gamma = NULL,
param.ctrl = list(),
n.iters = 10000,
burn.in = 5000,
thin = 2,
n.chains = 1,
effcy.flag = T,
ICD.flag = T,
DLT.drop.flag = T,
testedD = T,
IED.flag = T,
ICD_thrd = 0.3
)

Arguments

seed
The seed of R's random number generator. Default is 1234

numTrials
An integer specifying the number of simulations

doses
A vector of doses that users are going to explore. Default is 1:6, where dose 1 through dose 6 are being tested.

cycles
A vector of cycles that the treatment plans to go through. Default is 1:6, where patients will experience up to 6 cycles of the treatment

eff.structure
A matrix provides the mean of the multivariate Gaussian distribution in efficacy data generation. Specifically, the \((i,j)\)th element represents the mean value of \(i\)th dose level and \(j\)th cycle of the Gaussian distribution for efficacy data generation. Default is a 6 by 6 zero matrix

eff.Sigma
The covariance matrix of the multivariate Gaussian distribution in efficacy data generation. See details below.

eff.sd_trans
A positive number controls the skewness of the distribution of the efficacy response. Default is 1.5. See details below.

tox.target
The target toxicity of the treatment. Default is 0.28. See details below.

p_tox1
The probability cutoff for cycle 1 toxicity. Default is 0.2. See details below.

p_tox2
The probability cutoff for later cycles toxicity beyond cycle 1. Default is 0.2. See Details below.

trialSize
The maximum sample size for trial simulation. Default is 36. Must be the multiple of cohort size, represented by chSize

chSize
The cohort size of patients recruited. Default is 3.

thr1
An upper bound of toxicity for cycle 1 of the treatment. Default is 0.28. See Details below.
thrd2 An upper bound of toxicity for late cycles of the treatment, beyond cycle 1. Default is 0.28. See Details below.

proxy.thrd A distance parameter to define efficacious doses. Any dose whose predicted efficacy is within proxy.thrd away from the largest one among the safe doses will be declared an efficacious dose.

tox.matrix Optional. A four-dimension array specifying the probabilities of the occurrences of certain grades for certain types of toxicities, at each dose level and cycle under consideration. Dimension 1 refers to doses; dimension 2 corresponds to cycles of the treatment; dimension 3 regards the types of toxicities while dimension 4 relates to grades. If null, which is default choice, the arguments toxtype, intercept.alpha, coef.beta, cycle.gamma must be provided to simulate this array.

wm Clinical weight matrix, where toxicity types define the rows while the toxicity grades define the columns. Usually solicited from physicians.

toxmax The normalization constant used in computing nTTP score. For details, see Ezzalfani et al(2013).

toxtype Only specified when tox.matrix is null. This argument, a character vector, specifies toxicity types considered in the trial.

intercept.alpha Only specified when tox.matrix is null. A four element numeric vector specifying the intercepts for the cumulative probabilities of the occurrences of grades 0-4 of toxicities in proportional odds model. See Details below.

coef.beta Only specified when tox.matrix is null. A n numeric vector specifying the slope for dose in proportional odds model for n types of toxicities. See Details below.

cycle.gamma Only specified when tox.matrix is null. A scalar controlling the cycle effect in simulation in proportional odds model. See Details below.

param.ctrl A list specifying the prior distribution for the parameters.

p1_beta_intercept the prior mean of intercept of toxicity model assuming a normal prior

p2_beta_intercept the precision (inverse of variance) of intercept of toxicity model assuming a normal prior

p1_beta_cycle the prior mean of cycle effect of toxicity model assuming a normal prior

p2_beta_cycle the precision (inverse of variance) of cycle effect of toxicity model assuming a normal prior

p1_beta_dose the prior minimum of dose effect of toxicity model assuming a uniform prior

p2_beta_dose the prior maximum of dose effect of toxicity model assuming a uniform prior

p1_alpha the prior mean vector of the parameters from efficacy model assuming a multivariate normal prior

p2_alpha the prior precision matrix (inverse of covariance matrix) of the parameters from efficacy model assuming a multivariate normal prior

p1_gamma0 the prior mean of association parameter γ (See Du et al(2017)) of two submodels of the joint model assuming a normal prior
p2_gamma0 the prior precision (inverse of variance) of association parameter γ of two submodels of the joint model assuming a normal prior. Default is non-informative priors.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.iters</td>
<td>Total number of MCMC simulations. Default is 10,000.</td>
</tr>
<tr>
<td>burn.in</td>
<td>Number of burn-inns in the MCMC simulation. Default is 5,000.</td>
</tr>
<tr>
<td>thin</td>
<td>Thinning parameter. Default is 2.</td>
</tr>
<tr>
<td>n.chains</td>
<td>No. of MCMC chains in Bayesian model fitting. Default is 1</td>
</tr>
<tr>
<td>effcy.flag</td>
<td>Whether we include efficacy response in modeling or not?</td>
</tr>
<tr>
<td>ICD.flag</td>
<td>Whether we allow dose changing for cycle > 1 in stage 1 model or not?</td>
</tr>
<tr>
<td>DLT.drop.flag</td>
<td>Whether the patients should suspend the treatment when observing DLT. Default is TRUE.</td>
</tr>
<tr>
<td>testedD</td>
<td>Default is TRUE. Whether we only allow ICD or IED among cycle 1 tested dose level</td>
</tr>
<tr>
<td>IED.flag</td>
<td>Default is TRUE. Whether we allow dose changing for cycle > 1 in stage 2 model or not?</td>
</tr>
<tr>
<td>ICD_thrd</td>
<td>The cut-off point of the posterior toxicity probability in defining ICD. Default is 0.3.</td>
</tr>
</tbody>
</table>

Details

The user can simulate efficacy response with different dose-efficacy and cycle-efficacy pattern using argument `eff.structure`, `eff.Sigma` and `eff.sd_trans`. The sampling process of efficacy response start from generating sample $z = z_1, \ldots, z_d$ from multivariate Gaussian distribution

$$z \sim MVN(\mu, V)$$

, where μ and V are specified by `eff.structure` and `eff.Sigma`, respectively. Define ϕ be the density of $N(0, \sigma^2)$ with CDF Φ, and σ^2 is set by `eff.sd_trans`. Then the efficacy response is generated by taking the CDF of z:

$$x = x_1, \ldots, x_d = \Phi(z) = \Phi(z_1), \ldots, \Phi(z_d)$$

is the generated efficacy response. Notice here the variance parameter σ^2_{trans} controls the variance of the generated efficacy.

The user can simulate longitudinal efficacy response with different dose-efficacy and cycle-efficacy pattern using argument `eff.structure`, `eff.Sigma` and `eff.sd_trans`. The sampling process of efficacy response starts from generating $z = z_1, \ldots, z_d$ from multivariate Gaussian distribution

$$z \sim MVN(\mu, V)$$

, where μ and V are specified by `eff.structure` and `eff.Sigma`, respectively. Define ϕ be the density of $N(0, \sigma^2)$ with CDF Φ, where σ^2 is set by `eff.sd_trans`. Then the efficacy measure is generated by taking the CDF of z:

$$x = x_1, \ldots, x_d = \Phi(z) = \Phi(z_1), \ldots, \Phi(z_d)$$
. Notice here the variance parameter σ^2_{trans} controls the variance of the generated efficacy. $p_{\text{tox1}}, p_{\text{tox2}}, \text{thrd1}$ and thrd2 are used to define allowable (safe) doses the probability conditions for cycle 1:

$$P(nTTP1 < \text{thrd1}) > p_{\text{tox1}}$$

and for cycle > 1:

$$p(nTTP2 < \text{thrd2}) > p_{\text{tox2}}$$

, where $nTTP1$ and $nTTP2$ denote the posterior estimate of nTTP for cycle 1 and the average of cycle > 1. When we implement model with individualized dose modification, we only check the condition for cycle 1 for defining allowable (safe) doses.

ICD_thrd are used to find ICD. ICD is defined as the maximum dose which satisfy the condition

$$P(nTTP_i < \text{target.tox}) > \text{ICD}_i_\text{hrd}$$

, where $nTTP_i$ is the individualized posterior predicted nTTP score. The individualized dose modification for next cycle will not escalate more than 1 dose from the current dose.

Value

- **senerio_sum**: contains mnTTP_M the matrix of mean nTTP for each dose and cycle and pDLT_M matrix of probability of observing DLT for each dose and cycle
- **eff_sum**: When effcy.flag == TRUE, contains eff.M the mean efficacy for each dose and cycle and err.cor.1s A list with a length of dose levels numbers recording the marginal correlation matrix across cycles of efficacy data for each dose level
- **list_simul**: A list of length numTrials. Each element includes patlist which records all the treatment and outcome information; dose_aloca which shows the cycle 1 dose allocation; doseA which saves the recommended dose level for cycle 1 at the end of the phase I simulation, equals "early break" if the trial was stop before finishing the trial; n.cohort indicates the last cohort in the trial; pp.nTTPM gives the posterior probability of nTTP less than target toxicity tox.target for all dose level any cycles and message saves the message of each trial.
- **chSize**: The input argument chSize
- **sim.time**: Time cost in simulation
- **doses**: The input argument doese
- **cycles**: The input argument cycles
- **effcy.flag**: The input argument effcy.flag
- **proxy.thrd**: The input argument proxy.thrd
- **DLT.drop.flag**: The input argument DLT.drop.flag

Examples

```r
data("prob")  # load prob.RData from package phaseI, Details see "?prob"
data("eff")    # load eff.RData from package phaseI. Details see "?eff"

eff.structure = eff$Dose_Cycle_Meff[2, 2, , ]

eff.Sigma = eff$Sigma
```
eff.sd_trans = eff$sd_trans

wm <- matrix(c(0, 0.5, 0.75, 1, 1.5,
 0, 0.5, 0.75, 1, 1.5,
 0, 0, 0.5, 1),
 byrow = TRUE, ncol = 5) # weighted matrix for toxicity matrix
nrow = No. of type; ncol = No. of grade

toxmax <- 2.5
tox.matrix <- prob["MTD4", "flat", , ,]

#------- a flat dose-toxicity, dose-efficacy, cycle-efficacy pattern------#
simul1 <- SimPRMD(numTrials = 1, tox.matrix = tox.matrix,
 eff.structure = eff.structure, eff.Sigma = eff.Sigma,
 eff.sd_trans = eff.sd_trans, wm = wm, toxmax = toxmax,
 trialSize = 36)

#------- a flat dose-toxicity pattern model ------#
simul2 <- SimPRMD(numTrials = 1, toxtype = c("H", "L", "M"),
 intercept.alpha = c(1.9, 2.3, 2.6, 3.1),
 coef.beta = c(-0.3, -0.2, -0.25),
 cycle.gamma = 0, tox.target = 0.23,
 thrd1 = 0.23, thrd2 = 0.23, p_tox1 = 0.2, p_tox2 = 0.2,
 ICD.flag = FALSE, IED.flag = FALSE, effcy.flag = TRUE)

summary(simul2)
plot(simul2)

summary.RunPRMD
Summary a RunPRMD object

Description

Summary a RunPRMD object. Print the information of recommended dosage selection along with the mean nTTP and the number of DLT for all doses and cycles. Will print the mean efficacy for all doses and cycles when implementing RunPRMD with option effcy.flag = TRUE. The collected data is displayed in a human-readable table whose cell contain 3 values including observed nTTP, DLT, and dose assignment. The higher the dose, the warmer the cell background color is. The black color of the records indicates DLT equals 1.

Usage

S3 method for class 'RunPRMD'
summary(object, ...)

Arguments

object RunPRMD object to summarise
...
other arguments ignored (for compatibility with generic)

Value

object The output of function RunPRMD
m.nttp.M The mean nTTP for all doses and cycles
dlt.count.M The number of DLT for all doses and cycles
eff.M The mean efficacy for all doses and cycles. Return NULL when object$effcy.flag == TRUE

Examples

Check ?RunPRMD for example

summary.SimPRMD Summary a SimPRMD object

Description

Summary a SimPRMD object

Usage

S3 method for class 'SimPRMD'
summary(object, ...)

Arguments

object SimPRMD object to summarise
...
other arguments ignored (for compatibility with generic)

Value

senerio_sum Output senerio_sum of function SimPRMD
eff_sum Output eff_sum of function SimPRMD
n.trial The number of trials in the simulation
alloc.perc The dose allocation percentage for cycle1
n.stop The number of early stop cases
m.n.pat The average number of patient in each trial
m.dlt.rt dlt rate
c1_dlt.rt Cycle 1 dlt rate
cs_dlt.rt Subsequent cycle (cycle > 1) dlt rate
alloc.perc Dose allocation of cycle 1
sbsq.alloc Dose allocation of subsequent cycles (cycle > 1)
rec.prec The percentage of Recommended doses for cycle 1
effcy.flag Argument effcy.flag of function SimPRMD
DLT.drop.flag Argument DLT.drop.flag of function SimPRMD

Examples

Check ?SimPRMD for example
Index

* datasets
 eff, 2
 patlist_sim, 8
 prob, 11

 eff, 2
 eff_suggest, 3
 eff_summary, 2, 4

 GenToxProb, 7

 nTTP.array, 6, 7
 nTTP_summary, 6, 6

 patlist.display, 7
 patlist_sim, 8, 12
 plot.RunPRMD, 9
 plot.SimPRMD, 9
 print.summary.RunPRMD, 10
 print.summary.SimPRMD, 10
 prob, 11

 RunPRMD, 8, 11, 20

 SimPRMD, 2, 9, 14, 15
 summary.RunPRMD, 20
 summary.SimPRMD, 21