Package ‘photobiologySensors’

February 26, 2018

Type Package
Title Spectral Response Data for Light Sensors
Version 0.4.0
Date 2018-02-26
Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>
License GPL (>= 2)
VignetteBuilder knitr
Depends R (>= 3.3.0), photobiology (>= 0.9.18)
Suggests knitr (>= 1.19), photobiologyWavebands (>= 0.4.2), ggspectra (>= 0.2.2), ggplot2 (>= 2.2.1)
LazyLoad yes
LazyData yes
ByteCompile true
Encoding UTF-8
URL http://www.r4photobiology.info,
 https://bitbucket.org/aphalo/photobiologysensors
BugReports https://bitbucket.org/aphalo/photobiologysensors/issues
RoxygenNote 6.0.1
NeedsCompilation no
Author Pedro J. Aphalo [aut, cre] (<https://orcid.org/0000-0003-3385-972X>)
Repository CRAN
Date/Publication 2018-02-26 19:22:32 UTC
R topics documented:

photobiologySensors-package .. 2
berger_sensors ... 3
deltat_sensors ... 4
ideal_sensors ... 5
kipp_sensors ... 5
licor_sensors ... 6
sensors.mspct ... 7
sglux_sensors ... 8
skye_sensors ... 9
solarlight_sensors .. 10
solarmeter_sensors .. 11
thiesclima_sensors ... 12
uv_sensors ... 13
vitaltech_sensors .. 14

Index 16

photobiologySensors-package

photobiologySensors: Spectral Response Data for Light Sensors

Description

Details

Data for response spectra for different types of broadband sensors. The package contains one collection of spectra for different broadband sensors.

In addition to the spectra the package provides character vectors of names to be used as indexes to subset groups of spectra. In many cases spectral data are normalized to spectral energy responseness equal to one at the wavelength of maximum spectral energy response (peak sensitivity).

The data in this package are not original. Some have been provided by authors of scientific publications and manufacturers. However, most of the spectra have been digitised from manufacturer’s brochures and manuals available on web sites.

Warning!

The spectral data included in this package are not all based on supplier’s specifications and are only for information. The exact response spectrum depends to some extent on testing conditions, but more importantly varies among individual sensor units. Spectral specifications are usually given as typical values. All the sensors for which data are presented here need periodic calibration. In other
words, the data provided here are not a substitute for actual calibration under measuring conditions for each individual sensor unit. For less demanding situations like roughly assessing the suitability of sensors or the need or not of a transfer calibration, the data are good enough. They can be especially useful in teaching.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (https://orcid.org/0000-0003-3385-972X)

See Also

Useful links:

- http://www.r4photobiology.info
- https://bitbucket.org/aphalo/photobiologysensors
- Report bugs at https://bitbucket.org/aphalo/photobiologysensors/issues

Examples

```r
library(photobiology)
library(photobiologyWavebands)
library(ggspectra)

names(sensors.mspct)

licor_sensors
par_sensors
intersect(par_sensors, licor_sensors)

photon_as_default()

response(sensors.mspct$LI_190, w.band = PAR(), quantity = "contribution.pc")

plot(sensors.mspct$LI_190, w.band = PAR(), label.qty = "contribution.pc")
```

berger_sensors

'Berger' UV-Biometer

Description

A vector of indeces for stracting subsets of spectra from the *sensors.mspct* object.

Usage

berger_sensors
Format

A character vector of members of the collection of spectra.

Note

'Berger' UV-Biometer (Fig. 1 in Berger, 1994). Digitized with 'enguage' from manufacturers brochures. These are approximate data, both because of the digitizing process, and because they are either typical values or for a particular sensor unit. Individual sensor units are expected to differ to some degree in spectral response.

References

Examples

berger_sensors

deltat_sensors

Description

A vector of indeces for stracting subsets of spectra from the sensors.mspct object.

Usage

deltat_sensors

Format

A character vector of members of the collection of spectra.

Note

Spectral data digitized from figure in manufacturer's manual. These are typical measured data, and for specific sensor units the calibration data supplied with the sensor must be used as individual units may differ in their spectral response. Furthermore, the digitizing process from figures with a linear scale is prone to errors, which are specially noticeable in regions of low responsivity.

Manufacturer: Delta-T Devices Ltd, CAMBRIDGE CB25 0EJ, UK http://www.delta-t.co.uk/

References

Manufacturer's User Manual Version: 1.0 dated Nov 2010
Idealised sensors

Description
A vector of indices for extracting subsets of spectra from the `sensors.mspct` object.

Usage
```r
ideal_sensors
```

Format
A character vector of members of the collection of spectra.

Note
Flat response to spectral energy irradiance and to spectral photon irradiance.

Examples
```r
deltat_sensors
```

Kipp Radiometers

Description
A vector of indices for extracting subsets of spectra from the `sensors.mspct` object.

Usage
```r
kipp_sensors
```

Format
A character vector of members of the collection of spectra.
Details

Kipp CUV 5 Broadband UV Radiometer: Detection system includes optical filters and a photodiode.

Kipp PQS 1 PAR Quantum Sensor: Detection system includes optical filters and a photodiode.

UVS-A-T Radiometer, UVS-B-T Radiometer, Kipp UVS-E-T Erythemal Radiometer: The detection system includes optical filters and a phosphor that determine the spectral response. The phosphor is very sensitive to low levels of ultraviolet radiation and is stimulated by the UV to emit green light, which is detected by a photodiode. The system is temperature stabilised at +25 °C to prevent changes in spectral response and sensitivity with variations in the ambient conditions.

Note

Digitized with 'enguage' from manufacturers brochures. These are approximate data, both because of the digitizing process, and because they are either typical values or for a particular sensor unit. Individual sensor units are expected to differ to some degree in spectral response.

References

Brochure 'Broadband UV Radiometers', Brochure 'PQS 1 PAR Quantum Sensor', Brochure 'Broadband UV Radiometers'.

Examples

```r
licor_sensors
```

<table>
<thead>
<tr>
<th>licor_sensors</th>
<th>LI-COR sensors</th>
</tr>
</thead>
</table>

Description

A vector of indeces for extracting subsets of spectra from the `sensors.mspct` object.

Usage

```r
licor_sensors
```

Format

A character vector of members of the collection of spectra.
Details

In the LI-190 PAR quantum sensor (PAR = photosynthetically active radiation) colored glass filters are used to tailor the silicon photodiode response to the desired quantum response.

The LI-200SA features a silicon photovoltaic detector. This is not a true 'pyranometer' and should be used only in sunlight, and calibrated in sunlight.

The LI-210SA Photometric Sensor utilizes a filtered silicon photodiode to provide a spectral response that matches the CIE curve within ± 5

Note

Digitized with 'enguage' from manufacturers brochures. These are approximate data, both because of the digitizing process, and because they are either typical values or for a particular sensor unit. Individual sensor units are expected to differ to some degree in spectral response.

Manufacturer: LI-COR Inc., Lincoln, Nebraska http://www.licor.com/

References

Brochure from manufacturer.

Examples

licor_sensors

sensors.mspct Spectral response of sensors

Description

A collection of response spectra for various broadband sensors used for measuring ultraviolet and visible radiation. Each spectrum in the collection contains two variables, wavelengths (nm) at either regular or irregular intervals and spectral responsiveness (in energy units). Spectral data are in most cases normalized to one at the wavelength of maximum energy responsivity. Absolute calibration values are given only for data from a publication which reports on multiple units of the same type.

Usage

sensors.mspct

Format

A response_mspct object containing a response_spct objects as named members.

Each member spectrum contains two variables, with responsivity in most cases in relative energy units:

- w.length (nm)
- s.e.response (r.u.)
Note
In addition to this object containing the spectral data, this package provides character vectors useful for subsetting spectra by supplier, type, color, etc.

See Also
source_spct and generic_mspct

Examples
names(sensors.mspct)

sglux_sensors sglux broadband sensors

Description
A vector of indeces for stracting subsets of spectra from the sensors.mspct object.

Usage
sglux_sensors

Format
A character vector of members of the collection of spectra.

Details
sglux SG01D-A UV-A broadband sensor (filtered SiC sensor).
slgux SG01D-B UV-B broadband sensor (filtered SiC sensor, VIS-blind).
slgux SG01D-C UV-C broadband sensor (filtered SiC sensor, "solar-blind").
slgux SG01L SiC broadband sensor (SiC sensor not filtered).
slgux TOCON blue 4 blue light broadband sensor (pre-amplified GaP detector).
TOCON preamplified sensors with similar spectral response as the diodes are also available from sglux. The blue light sensor is only available as preamplified TOCON.

Note
Original data supplied by the manufacturer as a computer readable file. These are typical measured data. Individual sensor units are expected to differ to a small degree in spectral response.
References

personal communication from Dr. Stefan Langer.

Examples

sglux_sensors

skye_sensors

skye_sensors
Skye-Instruments Sensors

Description

A vector of indeces for stracting subsets of spectra from the `sensors.mspct` object.

Usage

skye_sensors

Format

A character vector of members of the collection of spectra.

Details

Note

Spectral data digitized from figures in manufacturer’s manuals. These are typical measured data, and for specific sensor units the calibration data supplied with the sensor must be used as individual may differ in their spectral response. Furthermore, the digitizing process from figures with a linear scale is prone to errors, which are specially noticeable in regions of low responsivity.
References

Examples

skye_sensors

Data kindly made available by Lasse Ylianttila. These are the responses from a unit with higher and lower response to UVA radiation than typical units, as well as the response for a typical unit as observed in an intrument intercomparison.
References

Examples

solarlight_sensors

| solarmeter_sensors | Solarmeter devices |

Description

A vector of indeces for stracting subsets of spectra from the sensors.mspct object.

Usage

solarlight_sensors

Format

A character vector of members of the collection of spectra.

Details

SOLARMETER MODEL 6.0 UV METER: Silicon Carbide (SIC) Photodiode packaged in hermetically sealed UV glass window cap. Interference filter coating (Metal Oxide) blocks most UVA.

Manufacturer: Solartech, Inc., 26101 Harbour Pointe Dr N., Harrison Twp, MI 48045

Note

Digitized with 'enguage' from manufacturers brochures. These are approximate data, both because of the digitizing process, and because they are either typical values or for a particular sensor unit. Individual sensor units are expected to differ to some degree in spectral response.

References

digitized from SM60graph.gif from https://www.solarmeter.com/images/SM60graph.gif on 20 December 2013.
Examples

```
solarmeter_sensors
```

thiesclima_sensors
Thies Clima sensors

Description

A vector of indeces for stracting subsets of spectra from the `sensors.mspct` object.

Usage

```
thiesclima_sensors
```

Format

A character vector of members of the collection of spectra.

Details

Thies Clima E1.c broadband UVB sensor
Manufacturer: Thies Clima, Göttingen, DE

Source

Digitized with 'DigitizeIt' from manufacturers manual. These are approximate data, both because of the digitizing process, and because they are either typical values or for a particular sensor unit. Individual sensor units are expected to differ to some degree in spectral response.

Examples

```
thiesclima_sensors
```
uv_sensors

| uv_sensors | Sensors responsive to different wavebands |

Description

Names of datasets containing the wavelengths and tabulated values spectral emittance for broadband sensors from various suppliers.

Usage

- `uv_sensors`
- `uvc_sensors`
- `uvb_sensors`
- `erythemal_sensors`
- `uva_sensors`
- `par_sensors`
- `vis_sensors`
- `photometric_sensors`
- `shortwave_sensors`
- `pyranometer_sensors`
- `red_sensors`
- `far_red_sensors`
- `blue_sensors`
- `multichannel_sensors`

Format

A vector of character strings.

See Also

`sensors.mspct`
Examples

```r
uv_sensors
t_vc_sensors
uvb_sensors
t_uva_sensors
par_sensors
vis_sensors
shortwave_sensors
red_sensors
far_red_sensors
blue_sensors
multichannel_sensors

# select PAR sensors
sensors.mspct[par_sensors]
```

vitaltech_sensors *Vital Technologies sensors*

Description

A vector of indeces for stracting subsets of spectra from the `sensors.mspct` object.

Usage

```r
vitaltech_sensors
```

Format

A character vector of members of the collection of spectra.

Details

Vital "Blue Wave" BW-20 UV-B "erythemal" radiometer. Data for a specific unit included in a sensor intercomparison event.

Source

Data kindly made available by Lasse Ylianttila.
References

Examples

vitaltech_sensors
Index

*Topic datasets
 berger_sensors, 3
deltat_sensors, 4
ideal_sensors, 5
kipp_sensors, 5
licor_sensors, 6
sensors.mspct, 7
sglux_sensors, 8
skye_sensors, 9
solarlight_sensors, 10
solarimeter_sensors, 11
thiesclima_sensors, 12
uv_sensors, 13
vitaltech_sensors, 14
'sensors (uv_sensors), 13

berger_sensors, 3
blue_sensors (uv_sensors), 13
by (uv_sensors), 13
deltat_sensors, 4
erythemal_sensors (uv_sensors), 13
far_red_sensors (uv_sensors), 13
generic_mspct, 8
ideal_sensors, 5
kipp_sensors, 5
licor_sensors, 6
multichannel_sensors (uv_sensors), 13
par_sensors (uv_sensors), 13
photobiologySensors
 (photobiologySensors-package), 2
photobiologySensors-package, 2

photometric_sensors (uv_sensors), 13
pyranometer_sensors (uv_sensors), 13
red_sensors (uv_sensors), 13
sensors.mspct, 3–6, 7, 8–14
sglux_sensors, 8
shortwave_sensors (uv_sensors), 13
skye_sensors, 9
solarlight_sensors, 10
solarimeter_sensors, 11
source_spct, 8
thiesclima_sensors, 12
uv_sensors, 13
uva_sensors (uv_sensors), 13
uvb_sensors (uv_sensors), 13
uvc_sensors (uv_sensors), 13
vis_sensors (uv_sensors), 13
vitaltech_sensors, 14
waveband' (uv_sensors), 13