Package ‘phybreak’

July 30, 2017

Type Package
Title Analysis of Outbreaks with Sequence Data
Version 0.2.0
Date 2017-07-26
Description Implementation the outbreak analysis method described by Klinkenberg et al (2017) <doi:10.1371/journal.pcbi.1005495>. Simulate outbreaks, analyse datasets by creating samples from the posterior distribution with a Markov-Chain Monte Carlo sampler, and summarize the output.
License GPL (>= 2)
LazyData TRUE
Depends R(>= 3.1.0), phangorn, ape
Imports Rcpp (>= 0.12.1), methods, stats, stringr, utils
Suggests coda, phytools, OutbreakTools, testthat, knitr, rmarkdown
LinkingTo Rcpp
RoxygenNote 6.0.1
VignetteBuilder knitr
NeedsCompilation yes
Author Don Klinkenberg [aut, cre]
Maintainer Don Klinkenberg <don@xsTallNnl>
Repository CRAN
Date/Publication 2017-07-30 14:49:53 UTC

R topics documented:

AvianFluH7N7_2003 .. 2
burnin.phybreak .. 3
FMD_2001 ... 4
FMD_2007 ... 4
get.phybreak .. 5
Description

DNA sequences (base order randomized) of NA, HA, and PB2 genes of samples taken from farms during the Dutch avian influenza (H7N7) epidemic in 2003. The dataset contains 241 farms, of which 231 were sampled and sequenced (for the other 10, identified by the prefix UNK, only the detection day + 2 days is given, as in Klinkenberg et al (2017)). The labels of the sequences refer to the labels in GISAID (www.gisaid.org), where the sequences in correct base order can be found.

Usage

AvianFluH7N7_2003

Format

A list with four elements:

- sequences_HA the HA gene
- sequences_NA the NA gene
- sequences_PB2 the PB2 gene
- sampledays the days at which the samples were taken (or the detection day + 2 days, for the 10 unsampled farms)

References

burnin.phybreak

MCMC updating of a phybreak-object.

Description
This function allows the MCMC chain to burn in. If used after samples have been taken (with sample.phybreak), these samples will be returned unchanged in the output.

Usage
burnin.phybreak(phybreak.object, ncycles, keepphylo = NULL, phylotopology_only = 0)

Arguments
phybreak.object
An object of class phybreak.
ncycles
Number of iterations to be carried out. Each iteration does one update of all parameters and tree updates with each host as focal host once.
keepphylo
The proportion of tree updates keeping the phylotree intact. If there is more than one sample per host, keepphylo should be 0. If set to NULL (default), this is done automatically, otherwise it is set to 0.2.
phylotopology_only
The proportion of tree updates in which only the within-host minitree topology is sampled, and the transmission tree as well as coalescence times are kept unchanged.

Value
The phybreak-object provided as input, with variables and parameters changed due to the updating.

Author(s)
Don Klinkenberg <don@xs4all.nl>

References

Examples
First create a phybreak-object
simulation <- sim.phybreak(obsise = 5)
MCMCstate <- phybreak(data = simulation)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 50)
FMD_2001
Foot-and-Mouth Disease outbreak (2001)

Description
DNA nucleotide patterns and sampling days of FMD virus from 15 farms in the UK. The nucleotides per sample are not ordered as a virus sequence, but do contain the correct numbers of each nucleotide.

Usage
FMD_2001

Format
A matrix with 15 rows (one per farm) and 8196 column (one per nucleotide); the names contain sampling days.

References

FMD_2007
Foot-and-Mouth Disease outbreak (2007)

Description
DNA sequences and sampling days of FMD virus from 10 farms in the UK (11 sequences)

Usage
FMD_2007

Format
A list with two elements:
- **sequences** the sequences (class DNAbin)
- **dates** the sampling days (class Date)

References
get.phybreak

Accessing a phybreak object

Description
Accessing a phybreak object

Usage

get.tree(phybreak.object, samplenr = 0)
get.parameters(phybreak.object, samplenr = 0, whichpars = "posterior")
get.mcmc(phybreak.object, thin = 1, nkeep = Inf)
get.phylo(phybreak.object, samplenr = 0, simmap = FALSE)
get.multiPhylo(phybreak.object, thin = 1, nkeep = Inf)
get.seqdata(phybreak.object)

Arguments

phybreak.object An object of class phybreak.
samplenr The posterior tree sample to choose. If samplenr = 0, the current state is used.
whichpars Which parameters to return. Either a vector with parameter names, or "all" for all parameters, or "posterior" for parameters for which a posterior is sampled.
thin Thinning interval.
nkeep Number of samples to keep, counting from tail of the chain.
simmap Whether to include class "simmap" elements (package phytools), colouring the branches on the tree to indicate hosts. Is used by plotPhylo.

Functions

• get.tree: A data.frame with current (samplenr = 0) or sampled infectors and infection times.
• get.parameters: A named vector with current (samplenr = 0) or sampled parameter values.
• get.mcmc: An object of class "mcmc" (package coda), with sampled parameters, infection times, and infectors.
• get.phylo: Returns an object of class phylo ans optionally of class "simmap" (package phytools).
• get.multiPhylo: Returns an object of class multiphylo.
• get.seqdata: The sequence data in class "phyDat" (package phangorn).
Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
# First build a phybreak-object.
simulation <- sim.phybreak(obs.size = 5)
MCMCstate <- phybreak(data = simulation)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)

get.tree(MCMCstate)
get.parameters(MCMCstate)
codaobject <- get.mcmc(MCMCstate, thin = 2)
plot.phylo(get.phylo(MCMCstate))
get.seqdata(MCMCstate)

# Function from package phangorn:
phangorn::parsimony(get.phylo(MCMCstate), get.seqdata(MCMCstate))

tree0 <- get.phylo(MCMCstate)
seqdata <- get.seqdata(MCMCstate)
phangorn::pml(tree0, seqdata,
    rate = 0.75*get.parameters(MCMCstate)["mu"])
logLik(MCMCstate, genetic = TRUE, withinhost = FALSE,
    sampling = FALSE, generation = FALSE)
    # should give the same result as 'pml'
```

infectorsets

Sampled infectors for each host in a phybreak-object.

Description

The function takes a phybreak-object containing MCMC-samples, and returns for each host a table with posterior infectors, with support per infector.

Usage

```r
infectorsets(phybreak.object, which.hosts = "all", percentile = 0.95,
    min.support = 0, sample.size = Inf, infector.name = TRUE,
    support = c("proportion", "count"))
```
Arguments

- **phybreak.object**: An object of class phybreak.
- **which.hosts**: A vector with hosts (positions in the dataset), or "all" for all hosts.
- **percentile**: Return infectors ordered by support, until a cumulative support indicated by percentile, support measured by proportion (value between 0 and 1).
- **minsupport**: Only return infectors with more support than minsupport. Values in the range [0,1] are interpreted as support in "proportion" of posterior samples, values > 1 as code "count" of posterior samples.
- **samplesize**: The number of samples to include (taken from the tail of the MCMC-chain).
- **infector.name**: Whether to return the names of the infectors, or their position in the dataset.
- **support**: Whether to return the support (= posterior probability) for each infector as a "proportion" or as a "count" of posterior trees in which that transmission link or transmission cluster is present.

Value

A named list with data.frames, each with a vector of infectors and a vector of supports.

Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
# First build a phybreak-object containing samples.
simulation <- sim.phybreak(obs.size = 5)
MCMCstate <- phylbreak(data = simulation$sequences, times = simulation$sample.times)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)
infectorsets(MCMCstate)
```

logLik.phybreak

Log-likelihood of a phybreak-object.

Description

The likelihood of a phybreak-object is calculated, with the option to include or exclude parts of the likelihood for genetic data, phylogenetic tree (within-host model), sampling times and generation times.
logLik.phybreak

Usage

```r
## S3 method for class 'phybreak'
logLik(object, genetic = TRUE, withinhost = TRUE,
       sampling = TRUE, generation = TRUE, ...)
```

Arguments

- `object`: An object of class `phybreak`.
- `genetic`: Whether to include the likelihood of the mutation model.
- `withinhost`: Whether to include the likelihood of within-host (coalescent) model.
- `sampling`: Whether to include the likelihood of the sampling model (sampling intervals).
- `generation`: Whether to include the likelihood of the transmission model (generation intervals).
- `...`: Some methods for this generic require additional arguments. None are used in this method.

Details

The sequence likelihood is calculated by Felsenstein’s pruning algorithm, assuming a prior probability of 0.25 for each nucleotide. The within-host likelihood is the likelihood of coalescence times given the within-host model and slope. The generation interval and sampling interval likelihood are log-densities of the gamma distributions for these variables.

Value

The log-likelihood as an object of class `logLik`.

Author(s)

Don Klinkenberg <don@xsTallNnl>

References

Examples

```r
# First build a phybreak-object containing samples.
simulation <- sim.phybreak(obs.size = 5)
MCMCstate <- phybreak(data = simulation)
logLik(MCMCstate)

MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
logLik(MCMCstate)

tree0 <- get.phylo(MCMCstate)
seqdata <- get.sequdata(MCMCstate)
pml(tree0, seqdata, rate = 0.75*get.parameters(MCMCstate)["mu"])
```
logLik(MCMCstate, genetic = TRUE, withinhost = FALSE,
sampling = FALSE, generation = FALSE) # should give the same result as 'pml'

M_tuberculosis_2013

Description

DNA SNP patterns and sampling days of an M. tuberculosis outbreak with 33 cases in Canada (Didelot et al, 2013). The dataset contained only 20 SNP patterns with unspecified nucleotides, so the sequences in this dataset contain only 'a' and 'c' on these 20 loci. Additional loci with only 'a' are added to a total sequence length of 440,000, which is 10

Usage

M_tuberculosis_2013

Format

A list with two elements:

- `sequences_Mtb` the sequences (class `DNAbin`)
- `dates_Mtb` the sampling days (class `Date`)

References

phybreak

Create a phybreak-object from data and prior distributions.

Description

phybreak takes as data either an `obkData`-object or a `phybreakdata`-object with sequences (individuals in rows, nucleotides in columns). Both `obkData` and `phybreakdata` contain at least sequences and sampling times, and potentially more. Parameter values are used as initial values in the MCMC-chain or kept fixed. All variables are initialized by random samples from the prior distribution, unless a complete tree is given in the data and should be used (use.tree = TRUE). It is also possible to provide only sequences as data, and sampling times separately.
phybreak

Usage

phybreak(dataset, times = NULL, mu = NULL, gen.shape = 3, gen.mean = 1,
sample.shape = 3, sample.mean = 1, wh.model = 3, wh.slope = 1,
est.gen.mean = TRUE, prior.mean.gen.mean = 1, prior.mean.gen.sd = Inf,
est.sample.mean = TRUE, prior.mean.sample.mean = 1,
prior.mean.sample.sd = Inf, est.wh.slope = TRUE, prior.wh.shape = 3,
prior.wh.mean = 1, use.tree = FALSE)

Arguments

dataset An object with sequences plus additional data. (class 'obkData' or 'phybreakdata'). All nucleotides that are not 'a', 'c', 'g', or 't', will be turned into 'n'. If the data are provided as an object of class 'obkData', these should contain sequences and sampling times as metadata with these sequences. The object may also contain infector and infection date vectors in the individuals slot, plus (at least) one tree in the 'trees' slot (class 'multiPhylo'). Data provided as an object of class 'phybreakdata' contain sequences and sampling.times, and potentially sim.infection.times, sim.infectors, and sim.tree. Prepare your data in this format by phybreakdata or by simulation with sim.phybreak.

It is also possible to provide only sequences as data, (class 'DNAbin', 'phyDat', or a matrix with nucleotides, each row a host, each column a nucleotide), and corresponding sampling times in the separate times argument.

times Vector of sampling times, needed if the data consist of only sequences. If the vector is named, these names will be used to identify the hosts.

mu Initial value for mutation rate (defined per site per unit of time). If NULL (default), then an initial value is calculated by dividing the number of SNPs by the product: 0.75 times 'total sequence length' times 'sum of edge lengths in the initial phylogenetic tree'. NOTE: mutation is defined as assignment of a random nucleotide at a particular site; this could be the nucleotide that was there before the mutation event. Therefore, the actual rate of change of nucleotides is \(0.75 \times \mu \).

gen.shape Shape parameter of the generation interval distribution (not estimated).

gen.mean Initial value for the mean generation interval, i.e. the interval between infection of a secondary case by a primary case.

sample.shape Shape parameter of the sampling interval distribution (not estimated), i.e. the interval between infection and sampling of a host.

sample.mean Initial value for the mean sampling interval.

wh.model The model for within-host pathogen dynamics (effective pathogen population size = \(N \times gE \) = actual population size * pathogen generation time), used to simulate coalescence events. Options are:

1. Effective size = 0, so coalescence occurs 'just before' transmission in the infector
2. Effective size = Inf, so coalescence occurs 'just after' transmission in the infectee
3. Effective size at time t after infection = wh.slope * t

wh.slope Initial value for the within-host slope, used if wh.model = 3.
est.gen.mean Whether to estimate the mean generation interval or keep it fixed.
prior.mean.gen.mean Mean of the (gamma) prior distribution of mean generation interval \(mG \) (only if est.gen.mean = TRUE).
prior.mean.gen.sd Standard deviation of the (gamma) prior distribution of mean generation interval \(mG \) (only if est.gen.mean = TRUE).
est.sample.mean Whether to estimate the mean sampling interval or keep it fixed.
prior.mean.sample.mean Mean of the (gamma) prior distribution of mean sampling interval \(mS \) (only if est.sample.mean = TRUE).
prior.mean.sample.sd Standard deviation of the (gamma) prior distribution of mean sampling interval \(mS \) (only if est.sample.mean = TRUE).
est.wh.slope Whether to estimate the within-host slope or keep it fixed.
prior.wh.shape Shape parameter of the (gamma) prior distribution of slope (only if est.wh.slope = TRUE).
prior.wh.mean Mean of the (gamma) prior distribution of slope (only if est.wh.slope = TRUE).
use.tree Whether to use the transmission and phylogenetic tree given in data of class 'obkData', to create a phybreak-object with an exact copy of the outbreak. This requires more data in data: the slot individuals with vectors infector and date, and the slot trees with at least one phylogenetic tree. Such data can be simulated with sim.phybreak.

Value

An object of class phybreak with the following elements

d a list with data, i.e. names, sequences, sampling times, and total number of SNPs.
v a list with current state of all nodes in the tree: times, hosts in which they reside, parent nodes, node types (sampling, coalescent, or transmission)
p a list with the parameter values
h a list with helper information for the MCMC-method: si.mu and si.wh for efficiently proposing \(\mu \) and slope, matrix dist with weights for infector sampling based on sequence distances, logicals est.mG, est.mS, and est.wh.slope whether to estimate mean generation interval \(mG \), mean sampling interval \(mS \), and within-host slope, and parameters for the priors of \(mG \), \(mS \), and slope.
s an empty list that will contain vector and matrices with the posterior samples; in matrices, the rows are nodes in the phylogenetic tree, the columns are the samples

Author(s)

Don Klinkenberg <don@xs4all.nl>
References

Examples

```r
simulation <- sim.phybreak(obs_size = 10)
MCMCstate <- phybreak(data = simulation)

simulation <- sim.phybreak(obs_size = 10)
MCMCstate <- phybreak(data = simulation, use.tree = TRUE)

sampletimedata <- c(0,2,2,4,4)
sampleSNPdata <- matrix(c("a","a","a","a","a",
"a","c","c","c","c",
"t","t","t","g","g"), nrow = 5)
dataset <- phybreakdata(sequences = sampleSNPdata, sample.times = sampletimedata)
MCMCstate <- phybreak(data = dataset)

### also possible without 'phybreakdata' as intermediate,
### but not with additional data (future implementation)
MCMCstate <- phybreak(data = sampleSNPdata, times = sampletimedata)
```

phybreakdata

Create a phybreakdata-object from raw data.

Description

phybreakdata takes as data sequences and sampling times and makes a phybreakdata object. If no host names are provided, each sample is assumed to be associated with a separate host. The number of sequences should be equal to the length of the sampling time vector, and the position identifies the host (unless named vectors are provided). Sample names can be provided separately; otherwise it will be tried to extract them from the sequences or sampling times. It is also possible to include (otherwise unobserved) simulated data: sim.infection times, sim.infectors, and a (phylogenetic) sim.tree. This is done automatically when using sim.phybreak.

Usage

```r
phybreakdata(sequences, sample.times, sample.names = NULL,
host.names = sample.names, sim.infection.times = NULL,
sim.infectors = NULL, sim.tree = NULL)
```

Arguments

- **sequences**
 Sequence data of class 'DNAbin', 'phyDat', or a matrix with nucleotides, each row a host, each column a nucleotide). In a matrix, nucleotides should be lower-case letters. All undefined nucleotides or ambiguity codes will be turned into 'n'.
phybreakdata

sample.times A vector of sampling times (numerical or Date).

sample.names A vector with sample names.

host.names A vector with host names. The vector identifies the host for each sample, so should be of the same length as sample.times.

sim.infection.times A vector with infection times (numerical or Date).

sim.infectors A vector with infectors, either by name or by position (use 0 for the index case).

sim.tree A tree of class 'phylo', with tip names identifying the hosts.

Value

An object of class phybreakdata with the following elements

sequences a 'phyDat'-object with the sequence data.

sample.times a named vector with the sample times.

sample.hosts a named vector with the hosts from whom the samples have been taken.

sim.infection.times a named vector with the (simulated) infection times (if provided).

sim.infectors a named vector with the (simulated) infectors (if provided).

sim.tree a 'phylo'-object with the (simulated) phylogenetic tree (if provided).

Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
sampletimedata <- c(0,2,2,4,4)
sampleSNPdata <- matrix(c("a","a","a","a","a",
"a","a","c","c","c",
"t","t","t","g","g"), nrow=5,
  dimnames = list(LETTERS[1:5], NULL))
dataset <- phybreakdata(sequences = sampleSNPdata, sample.times = sampletimedata)
```
Description

Identify the maximum clade credibility tree from a phybreak-object containing posterior samples.

Usage

```r
phylotree(phybreak.object, samplesize = Inf, support = c("proportion", "count"), phylo.class = FALSE)
```

Arguments

- **phybreak.object**: An object of class `phybreak`.
- **samplesize**: The number of posterior samples that is used, taken from the tail.
- **support**: Whether to return the support (= posterior probability) for each infector as a "proportion" or as a "count" of posterior trees in which that transmission link or transmission cluster is present.
- **phylo.class**: Whether to return an object of class "phylo", in which case a single tree from the posterior is returned (not with summary infection times).

Value

A `data.frame` with per item (=node) its parent and support per clade, and optionally summary node times. The first n nodes are the samples, the last n-1 nodes are the internal nodes.

Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
# First build a phybreak-object containing samples.
simulation <- sim.phybreak(obsiz = 5)
MCMCstate <- phybreak(data = simulation$sequences, times = simulation$sample.times)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)

phylotree(MCMCstate)
plot(phylotree(MCMCstate, phylo.class = TRUE))
```
Description
Plots a phybreak-object twice: (1) as transmission tree and (2) as phylogenetic tree, using the default graphical parameters of `plotTrans` and `plotPhylo`. The default is to plot the current state, but any posterior sample can be chosen, as well as various consensus trees. Consensus tree "edmonds" plots only a transmission tree, consensus tree "mcc" only a phylogenetic tree.

Usage
```r
## S3 method for class 'phybreak'
plot(x, plot.which = c("sample", "edmonds", "mpc", "mtcc", "mcc"), samplenr = 0, ...)
```

Arguments
- **x**: An object of class phybreak.
- **plot.which**: Either "sample" to plot the current state or a selected posterior sample, "mpc" or "mtcc" to plot a consensus transmission tree (see `transtree`) or "mcc" to plot the maximum clade credibility tree (see `phylotree`).
- **samplenr**: If `plot.which = "sample"`, this indicates which posterior tree should be plotted: `samplenr = 0` to plot the current state.
- **...**: Some methods for this generic require additional arguments. None are used in this method.

Author(s)
Don Klinkenberg <don@xs4all.nl>

References

Examples
```r
# First build a phybreak-object containing samples.
simulation <- sim.phybreak(obs.size = 5)
MCMCstate <- phybreak(data = simulation$sequences, times = simulation$sample.times)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)

plot(MCMCstate, plot.which = "mpc")
```
plot.phybreakdata

Description

Plots a phybreakdata-object twice: (1) as transmission tree and (2) as phylogenetic tree, using the default graphical parameters of `plotTrans` and `plotPhylo`. The default is to plot the current state, but any posterior sample can be chosen, as well as various consensus trees. Consensus tree "edmonds" plots only a transmission tree, consensus tree "mcc" only a phylogenetic tree.

Usage

```r
## S3 method for class 'phybreakdata'
plot(x, ...)```

Arguments

- `x`: An object of class `phybreakdata`.
- `...`: Some methods for this generic require additional arguments. None are used in this method.

Author(s)

Don Klinkenberg <don@xs4all.nl>

References


Examples

```r
First build a phybreak-object containing samples.
simulation <- sim.phybreak(0bsize = 5)
MCMCstate <- phybreak(data = simulation$sequences, times = simulation$sample.times)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)

plot(MCMCstate, plot.which = "mpc")```
Description

Plots a phybreak-object as phylogenetic tree with coloured branches indicating hosts. The default is to plot the current state, but any posterior sample can be chosen, as well as various consensus trees.

Usage

```r
plotPhylo(x, plot.which = c("sample", "mpc", "mtcc", "mcc"), samplenr = 0, ...)
```

Arguments

- `x` An object of class phybreak.
- `plot.which` Either "sample" to plot the current state or a selected posterior sample, "mpc" or "mtcc" to plot a consensus transmission tree (see `transtree`) or "mcc" to plot the maximum clade credibility tree (see `phylotree`).
- `samplenr` If `plot.which` = "sample", this indicates which posterior tree should be plotted: `samplenr` = 0 to plot the current state.
- `...` Additional options for `plotSimmap`.

Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
#First build a phybreak-object containing samples.
simulation <- sim.phybreak(obs.size = 5)
MCMCstate <- phylbreak(data = simulation$sequences, times = simulation$sample.times)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)

plot(MCMCstate, plot.which = "mpc")
```
plotTrans

Plotting a phybreak object transmission tree.

Description

Plots a phybreak-object as transmission tree. The default is to plot the current state, but any posterior sample can be chosen, as well as various consensus trees; in that case, coloured arrows indicate posterior support.

Usage

plotTrans(x, plot.which = c("sample", "edmonds", "mpc", "mtcc"), samplenr = 0, mar = 0.1 + c(4, 0, 0, 0), label.cex = NULL, label.space = 0.15, label.adj = 0, arrow.lwd = 1, arrow.length = NULL, arrow.col = NULL, sample.pch = 4, sample.lwd = NULL, sample.cex = label.cex, polygon.col = "gray", polygon.border = NA, line.lty = 3, xlab = "Time", axis.cex = 1, title.cex = 1, ...)

Arguments

x An object of class phybreak.
plot.which Either "sample" to plot the current state or a selected posterior sample, "mpc" or "mtcc" to plot a consensus transmission tree (see transtree) or "mcc" to plot the maximum clade credibility tree (see phylotree).
samplenr If plot.which = "sample", this indicates which posterior tree should be plotted: samplenr = 0 to plot the current state.
mar Plot margins.
label.cex Size of host names, as in par("cex"). Defaults to a value between 0.5 and 1 depending on outbreak size.
label.space Scales the space at the right-hand side to place the host names.
label.adj Left-right adjustment of host names.
arow.lwd Arrow width.
arow.length Arrow point length, as default automatically scaled with outbreak size.
arow.col Arrow colour. Defaults to "black" if plot.which = sample, and otherwise to five colours c("blue", "green", "orange", "red", "purple") indicating posterior support of infectors in bins of 0.2 width, from low to high support. Any vector of colours will be divided into equal-sized bins.
sample.pch Character par("pch") used for sampling events.
sample.lwd Line width of sampling event character.
sample.cex Size of sampling event character.
polygon.col Color of polygons indicating generation interval distributions.
polygon.border Border of polygon.
sample.phybreak

line.lty Line type of horizontal host lines.
xlab X-axis title.
axis.cex Size of tick labels.
title.cex Size of X-axis title.
... Further graphical parameters (see details).

Details

Graphical parameters can be added by using names in the format prefix.parameter for the different parts of the plot. The parameter will then be passed on to the appropriate graphics function, e.g. arrow.lty to change the line type of the arrows. The following prefixes can be used: label for the host labels, arrow for the arrows, sample for the sampling time indicators, polygon for the generation interval distributions, line for the horizontal host lines, axis for the X-axis, and title for the X-axis title.

Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

First build a phybreak-object containing samples.
simulation <- sim.phybreak(obsizes = 5)
MCMCstate <- phybreak(data = simulation$sequences, times = simulation$sample.times)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)
plot(MCMCstate, plot.which = "mpc")

Sample from a phybreak MCMC-chain.

Description

Function to take (additional) samples from the posterior distribution of a phylogenetic and transmission tree (plus associated parameters), within a phybreak-object.

Usage

sample.phybreak(phybreak.object, nsample, thin = 1, keepphylo = NULL,
 phylotopology_only = 0)
Arguments

- **phybreak.object**: An object of class `phybreak`.
- **nsample**: The number of samples to take.
- **thin**: The thinning to use (values after every thin’th iteration will be included in the posterior). Each iteration does one update of all parameters and tree updates with each host as focal host once.
- **keepphylo**: The proportion of tree updates keeping the phylotree intact. If there is more than one sample per host, keepphylo should be 0. If set to NULL (default), this is done automatically, otherwise it is set to 0.2.
- **phylotopology_only**: The proportion of tree updates in which only the within-host minitree topology is sampled, and the transmission tree as well as coalescence times are kept unchanged.

Value

The `phybreak`-object used to call the function, including (additional) samples from the posterior.

Author(s)

- Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
# First create a phybreak-object
simulation <- sim.phybreak(obsSize = 5)
MCMCstate <- phybreak(data = simulation)

MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)
```

Description

Simulate outbreaks of class 'phybreakdata', with the outbreak model of `phybreak`.

Usage

```r
sim.phybreak(obsize = 50, popsize = NA, samplesperhost = 1, R0 = 1.5,
shape.gen = 10, mean.gen = 1, shape.sample = 10, mean.sample = 1,
additional.sample.delay = 0, wh.model = 3, wh.slope = 1, mu = 1e-04,
sequence.length = 10000, output.class = c("phybreakdata", "obkdata"))
```

Arguments

- **obsize**: The outbreak size (number of cases) to obtain. If `obsize` = `NA`, `popsize` should be provided.
- **popsize**: The population size in which to simulate. If it is not defined (default), an optimal population size will be chosen based on R0 and `obsize`. Be aware that choosing a `popsize` and an `obsize` can severely increase the simulation time, depending on R0.
- **samplesperhost**: Number of samples to be taken per host, either a vector or a single number.
- **R0**: The basic reproduction ratio used for simulation. The offspring distribution is Poisson.
- **shape.gen**: The shape parameter of the gamma-distributed generation interval.
- **mean.gen**: The mean generation interval.
- **shape.sample**: The shape parameter of the gamma-distributed sampling interval.
- **mean.sample**: The mean sampling interval (for the first sample of each host).
- **additional.sample.delay**: Sampling intervals since first sampling times of each host. Values in this vector will be used first for all additional samples of host 1, then of host 2, etc.
- **wh.model**: The model for within-host pathogen dynamics (effective pathogen population size = N*gE = actual population size * pathogen generation time), used to simulate coalescence events. Options are:
 1. Effective size = 0, so coalescence occurs ‘just before’ transmission, in the infector
 2. Effective size = Inf, so coalescence occurs ‘just after’ infection, in the infectee
 3. Effective size at time t after infection = wh.slope * t
- **wh.slope**: Within-host increase of effective population size, used if `wh.model` = 3.
- **mu**: Expected number of mutations per nucleotide per unit of time along each lineage.
- **sequence.length**: Number of available nucleotides for mutations.
- **output.class**: Class of the simulation output. If package `OutbreakTools` is available, it is possible to choose class ‘obkData’
thin_phybreak

Value

The simulation output, either as an object of class 'phybreakdata' with sequences (class 'phyDat') and sampling times (which would be the observations), and infection times, infectors, and phylogenetic tree of class `phylo`; or as an object of class 'obkData' (package OutbreakTools), containing the outbreak data in the following slots:

- **individuals** a data.frame with individual labels as row names, a vector infector, and a vector date containing the infection times (starting 01-01-2000)
- **dna** an object of class 'obkSequences', with SNP data in dna and sampling times in meta$date
- **trees** an object of class `multiphylo`, containing a single tree of class `phylo`

Author(s)

Don Klinkenberg <don@xsTallNnl>

References

Examples

```r
simulation <- sim.phybreak()
```

```
thin_phybreak xL thin ] 1L nkeep ] infI
```

Arguments

- **x** An object of class `phybreak`.
- **thin** The thinning interval to use.
- **nkeep** the number of most recent samples to keep. If nkeep = Inf (default), the whole chain is thinned and returned. Otherwise, samples from the tail are kept.

Value

The `phybreak`-object provided as input, but with fewer posterior samples.
Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
# First create a phybreak-object
simulation <- sim.phybreak(obs.size = 5)
MCMCstate <- phybreak(data = simulation$sequences, times = simulation$sample.times)
MCMCstate <- burnin.phybreak(MCMCstate, ncycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, nsample = 50, thin = 2)
MCMCstate <- thin.phybreak(MCMCstate, thin = 2)
```

transtree

Create a consensus transmission tree.

Description

Various methods to create summary transmission trees from a phybreak-object containing posterior samples.

Usage

```r
transtree(phybreak.object, method = c("count", "edmonds", "mpc", "mtcc"),
sample.size = Inf, infector.name = TRUE, support = c("proportion", "count"),
infection.times = c("all", "infector", "infector.sd"),
time.quantiles = c(0.025, 0.5, 0.975), phylo.class = FALSE)
```

Arguments

- **phybreak.object**
 An object of class phybreak.
- **method**
 The method used to create the tree (see details).
- **samplesize**
 The number of posterior samples that is used, taken from the tail.
- **infector.name**
 Whether to return the infector names, or the position in the vector of hosts.
- **support**
 Whether to return the support (= posterior probability) for each infector as a "proportion" or as a "count" of posterior trees in which that transmission link or transmission cluster is present.
infection.times

Whether to base the summary infection times on "all" samples, or only on samples in which the "infector" was the same as in the consensus tree. A third option is "infector.sd", in which case only posterior trees with the same infector or transmission cluster as in the consensus tree were used to calculate a mean and standard deviation. In that case and if method = "mpc" or method = "mtcc", also the infection times in the first sampled tree with consensus tree topology are given.

time.quantiles

Used only if infection.times = "all" or "infector".

phylo.class

Whether to return an object of class "phylo", in which case a single tree ("mpc" or "mtcc") from the posterior is returned (not with summary infection times). This option is used by plotPhylo.

Details

Four methods are supported for transmission tree reconstruction (who infected whom).

• "count" gives the most frequent infector from the posterior samples. Note that this may result in an improper tree (multiple roots and/or cycles). Support is measured by the frequency of the infector in the posterior distribution.

• "edmonds" starts from the most frequent infector (method "count"), multiple roots and cycles are removed by selecting one by one the next most frequent option that minimizes the loss in support (Edmonds’ algorithm). Support is measured by the frequency of the infector in the posterior distribution.

• "mpc" gives the maximum parent credibility tree as described in Hall et al (2015). This is the tree in the set of posterior samples that has maximum support = product of frequencies among all posterior samples. Support is measured by the frequency of the infector in the posterior distribution.

• "mtcc" gives the maximum transmission cluster credibility tree. This is equivalent to the maximum clade credibility (mcc) phylogenetic tree, with clusters defined as host + all progeny. Support is measured by the frequency of the cluster in the posterior distribution.

Value

If phylo.class = FALSE, a data.frame with per item (=host) its infector and support per infector (or cluster), and summary infection times. If phylo.class = TRUE, a class "phylo" object, a single tree ("mpc" or "mtcc") from the posterior is returned (not with summary infection times).

Author(s)

Don Klinkenberg <don@xs4all.nl>

References

Examples

```r
# First build a phybreak-object containing samples.
simulation <- sim.phybreak(obs.size = 5)
MCMCstate <- phybreak(data = simulation)
MCMCstate <- burnin.phybreak(MCMCstate, n.cycles = 20)
MCMCstate <- sample.phybreak(MCMCstate, n.sample = 50, thin = 2)

transtree(MCMCstate, method = "edmonds")
transtree(MCMCstate, method = "mpc", infection.times = "infector.sd")
plot(MCMCstate, plot.which = "mpc")
```
Index

*Topic datasets
 AvianFluH7N7_2003, 2
 FMD_2001, 4
 FMD_2007, 4
 M_tuberculosis_2013, 9
 AvianFluH7N7_2003, 2
 burnin.phybreak, 3
 FMD_2001, 4
 FMD_2007, 4
 get.mcmc (get.phybreak), 5
 get.multiphylo (get.phybreak), 5
 get.parameters (get.phybreak), 5
 get.phybreak, 5
 get.phylo (get.phybreak), 5
 get.seqdata (get.phybreak), 5
 get.tree (get.phybreak), 5
 infectorsets, 6
 logLik.phybreak, 7
 M_tuberculosis_2013, 9
 multiphylo, 5, 22
 phybreak, 9
 phybreakdata, 9, 10, 12
 phylo, 5, 22
 phyloTree, 14, 15, 17, 18
 plot.phybreak, 15
 plot.phybreakdata, 16
 plotPhylo, 5, 15, 16, 17, 24
 plotSimmap, 17
 plotTrans, 15, 16, 18
 sample.phybreak, 3, 19
 sim.phybreak, 10–12, 20
 thin_phybreak, 22
 transtree, 15, 17, 18, 23