Package ‘phylosem’

Type Package
Title Phylogenetic Structural Equation Model
Version 1.1.2
Date 2023-12-19
Imports sem, ape, phylobase, phylopath
Depends TMB, R (>= 4.0.0)
Suggests semPlot, TreeTools, Rphylopars, phylolm, fishtree, phyr, knitr, rmarkdown, ggplot2, testthat, phylosignal, adephylo
Enhances phytools, DiagrammeR
LinkingTo RcppEigen, TMB
Description Applies phylogenetic comparative methods (PCM) and phylogenetic trait imputation using structural equation models (SEM), extending methods from Thorson et al. (2023) <doi:10.1111/2041-210X.14076>. This implementation includes a minimal set of features, to allow users to easily read all of the documentation and source code. PCM using SEM includes phylogenetic linear models and structural equation models as nested submodels, but also allows imputation of missing values. Features and comparison with other packages are described in Thorson and van der Bijl (2023) <doi:10.1111/jeb.14234>.
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
VignetteBuilder knitr
URL https://james-thorson-noaa.github.io/phylosem/
NeedsCompilation yes
Author James Thorson [aut, cre](https://orcid.org/0000-0001-7415-1010), Wouter van der Bijl [ctb](https://orcid.org/0000-0002-7366-1868)
Maintainer James Thorson <James.Thorson@noaa.gov>
Repository CRAN
Date/Publication 2023-12-20 12:10:02 UTC
\textbf{\textit{R} topics documented:}

\begin{itemize}
 \item \texttt{as_fitted_DAG} \hspace{1cm} \texttt{2}
 \item \texttt{as_phylo4d} \hspace{1cm} \texttt{3}
 \item \texttt{as_sem} \hspace{1cm} \texttt{3}
 \item \texttt{average} \hspace{1cm} \texttt{4}
 \item \texttt{average_compare_phylosem} \hspace{1cm} \texttt{4}
 \item \texttt{best} \hspace{1cm} \texttt{5}
 \item \texttt{best_compare_phylosem} \hspace{1cm} \texttt{5}
 \item \texttt{checkDepPackageVersion} \hspace{1cm} \texttt{6}
 \item \texttt{choice} \hspace{1cm} \texttt{6}
 \item \texttt{choice_compare_phylosem} \hspace{1cm} \texttt{7}
 \item \texttt{coef_phylosem} \hspace{1cm} \texttt{7}
 \item \texttt{compare_phylosem} \hspace{1cm} \texttt{8}
 \item \texttt{fit_tmb} \hspace{1cm} \texttt{9}
 \item \texttt{list_parameters} \hspace{1cm} \texttt{11}
 \item \texttt{Mlifehist_ver1_0} \hspace{1cm} \texttt{11}
 \item \texttt{parse_path} \hspace{1cm} \texttt{12}
 \item \texttt{phylosem} \hspace{1cm} \texttt{12}
 \item \texttt{print_phylosem} \hspace{1cm} \texttt{16}
 \item \texttt{reinstalling} \hspace{1cm} \texttt{17}
 \item \texttt{summary_phylosem} \hspace{1cm} \texttt{17}
 \item \texttt{TMBAIC} \hspace{1cm} \texttt{18}
 \item \texttt{vcov_phylosem} \hspace{1cm} \texttt{19}
\end{itemize}

\textbf{Index} \hspace{1cm} \texttt{20}

\begin{tabular}{ll}
\hline
\texttt{as_fitted_DAG} & \textit{Convert phylosem to phylopath output} \\
\hline
\end{tabular}

\textbf{Description}

Convert output from package phylosem to phylopath

\textbf{Usage}

\begin{verbatim}
as_fitted_DAG(object)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{object} \hspace{1cm} Output from \texttt{phylosem}
\end{itemize}

\textbf{Value}

Convert output to format supplied by \texttt{est_DAG}

as_phylo4d

Convert phylosem to phylo4d

Description
Convert output from package phylosem to phylo4d object from package phylobase

Usage
```
as_phylo4d(object, what = c("Estimate", "Std. Error"))
```

Arguments
- `object`: Output from `phylosem`
- `what`: Select what to convert (Estimate / Std. Error).

Details
This package is intended to for use in using plots associated with package sem, e.g., using package `plotSEM` `semPlot::semPlotModel`

Value
Phylosem output to converted format supplied by `phylo4d`

as_sem

Convert phylosem to sem output

Description
Convert output from package phylosem to output from package sem

Usage
```
as_sem(object)
```

Arguments
- `object`: Output from `phylosem`

Value
Output converted to format supplied by `sem`
average.compare_phylosem

average
Choose model

Description

Choose model

Usage

```r
average(x, cut_off, avg_method)
```

Arguments

- `x`
 output from `compare_phylosem`
- `cut_off`
 threshold where any model with delta-AIC greater than this value is excluded from average
- `avg_method`
 see `average_DAGs`

Value

Returns an AIC-weighted average of fitted models from `compare_phylosem` after conversion to format from `est_DAG`

average.compare_phylosem

Choose model

Description

Choose model

Usage

```r
## S3 method for class 'compare_phylosem'
average(x, cut_off = 2, avg_method = "conditional")
```

Arguments

- `x`
 output from `compare_phylosem`
- `cut_off`
 threshold where any model with delta-AIC greater than this value is excluded from average
- `avg_method`
 see `average_DAGs`

Value

Returns an AIC-weighted average of fitted models from `compare_phylosem` after conversion to format from `est_DAG`
best

Extract best fitted model

Description

Extract best fitted model

Usage

`best(x)`

Arguments

- `x` output from `compare_phylosem`

Value

Returns best model from those fitted using `compare_phylosem`

best.compare_phylosem

Extract best fitted model

Description

Extract best fitted model

Usage

```r
## S3 method for class 'compare_phylosem'
best(x)
```

Arguments

- `x` output from `compare_phylosem`

Value

Returns best model from those fitted using `compare_phylosem`
checkDepPackageVersion

Check for version mismatch in dependent binary packages

Description

Copied from glmmTMB with permission

Usage

checkDepPackageVersion(
 dep_pkg = "TMB",
 this_pkg = "phylosem",
 write_file = FALSE,
 warn = TRUE
)

Arguments

dep_pkg upstream package
this_pkg downstream package
write_file (logical) write version file and quit?
warn give warning?

Value

logical: TRUE if the binary versions match

choice

Choose model

Description

Choose model

Usage

choice(x, choice)

Arguments

x output from compare_phylosem
choice Integer indicating model to extract

Value

Returns chosen model from those fitted using compare_phylosem
Description
Choose model

Usage
S3 method for class 'compare_phylosem'
choice(x, choice)

Arguments
x
output from compare_phylosem
choice
Integer indicating model to extract

Value
Returns chosen model from those fitted using compare_phylosem

Description
Extract path coefficients.

Usage
S3 method for class 'phylosem'
coef(object, standardized = FALSE, ...)

Arguments
object
Output from phylosem
standardized
Whether to standardize regression coefficients
... Not used

Value
Data-frame listing all path coefficients, their parameter index and estimated values
compare_phylosem

Compare phylogenetic structural equation models

Description

Fits several phylogenetic structural equation model for further comparison

Usage

compare_phylosem(
 sem_set,
 tree,
 data,
 family = rep("fixed", ncol(data)),
 covs,
 estimate_ou = FALSE,
 estimate_lambda = FALSE,
 estimate_kappa = FALSE,
 ...
)

Arguments

sem_set A named list of structural equation model specifications, where each element will be passed as argument sem to phylosem

family Character-vector listing the distribution used for each column of data, where each element must be fixed, normal, binomial, or poisson. family="fixed" is default behavior and assumes that a given variable is measured exactly. Other options correspond to different specifications of measurement error.

covs optional: a character vector of one or more elements, with each element giving a string of variable names, separated by commas. Variances and covariances among all variables in each such string are added to the model. For confirmatory factor analysis models specified via cfa, covs defaults to all of the factors in the model, thus specifying all variances and covariances among these factors. Warning: covs="x1, x2" and covs=c("x1", "x2") are not equivalent: covs="x1, x2" specifies the variance of x1, the variance of x2, and their covariance, while covs=c("x1", "x2") specifies the variance of x1 and the variance of x2 but not their covariance.

estimate_ou Boolean indicating whether to estimate an autoregressive (Ornstein-Uhlenbeck) process using additional parameter lnalpha, corresponding to the model="OUrandomRoot" parameterization from phylolm as listed in doi:10.1093/sysbio/syu005

data phylogenetic structure, using class as.phylo

Warning: covs="x1, x2" and covs=c("x1", "x2") are not equivalent: covs="x1, x2" specifies the variance of x1, the variance of x2, and their covariance, while covs=c("x1", "x2") specifies the variance of x1 and the variance of x2 but not their covariance.

data-frame providing variables being modeled. Missing values are inputted as NA. If an SEM includes a latent variable (i.e., variable with no available measurements) then it still must be inputted as a column of data with entirely NA values.
fit_tmb

estimate_lambda

Boolean indicating whether to estimate additional branch lengths for phylogenetic tips (a.k.a. the Pagel-lambda term) using additional parameter logitlambda

estimate_kappa

Boolean indicating whether to estimate a nonlinear scaling of branch lengths (a.k.a. the Pagel-kappa term) using additional parameter lnkappa

...

Additional arguments passed to phylosem

Value

An object (list) of class 'compare_phylosem', containing a list of output from phylosem

fit_tmb

Optimize a TMB model

Description

fit_tmb runs a TMB model and generates standard diagnostics

Usage

```r
fit_tmb(
  obj,
  fn = obj$fn,
  gr = obj$gr,
  startpar = NULL,
  lower = -Inf,
  upper = Inf,
  getsd = TRUE,
  control = list(eval.max = 10000, iter.max = 10000, trace = 1),
  bias.correct = FALSE,
  bias.correct.control = list(sd = FALSE, split = NULL, nsplit = NULL, vars_to_correct = NULL),
  savedir = NULL,
  loopnum = 2,
  newtonsteps = 0,
  n = Inf,
  getReportCovariance = FALSE,
  getJointPrecision = FALSE,
  getHessian = FALSE,
  quiet = FALSE,
  start_time_elapsed = as.difftime("0:0:0"),
  ...
)
```
Arguments

obj The compiled TMB object
fn Function to be minimized. Must return a scalar value.
gr Optional function that takes the same arguments as objective and evaluates the gradient of objective at its first argument. Must return a vector as long as startpar
startpar Starting values for fixed effects (default NULL uses obj$par)
lower, upper vectors of lower and upper bounds, replicated to be as long as start. If unspecified, all parameters are assumed to be unconstrained.
getsd Boolean indicating whether to run standard error calculation; see sdreport for details
control A list of control parameters. For details see nlminb
bias.correct Boolean indicating whether to do epsilon bias-correction; see sdreport and fit_tmb for details
bias.correct.control tagged list of options for epsilon bias-correction, where vars_to_correct is a character-vector of ADREPORT variables that should be bias-corrected
savedir directory to save results (if savedir=NULL, then results aren’t saved)
loopnum number of times to re-start optimization (where loopnum=3 sometimes achieves a lower final gradient than loopnum=1)
newtonsteps Integer specifying the number of extra newton steps to take after optimization (alternative to loopnum). Each newtonstep requires calculating the Hessian matrix and is therefore slow. But for well-behaved models, each Newton step will typically decrease the maximum gradient of the loglikelihood with respect to each fixed effect, and therefore this option can be used to achieve an arbitrarily low final gradient given sufficient time for well-behaved models. However, this option will also perform strangely or have unexpected consequences for poorly-behaved models, e.g., when fixed effects are at upper or lower bounds. There is no need to increase the value of newtonsteps if the model appears to be converged (i.e., has low final gradient and none of the standard errors are NA values)
n sample sizes (if n != Inf then n is used to calculate BIC and AICc)
getReportCovariance Get full covariance matrix of ADREPORTed variables?
getJointPrecision Optional. Return full joint precision matrix of random effects and parameters?
getHessian return Hessian for usage in later code
quiet Boolean whether to print additional messages results to terminal
start_time_elapsed how much time has elapsed prior to calling fit_tmb, for use, e.g., when calling fit_tmb multiple times in sequence, where start_time_elapsed = opt_previous$time_for_run
... list of settings to pass to sdreport
list_parameters

Value
the standard output from \texttt{nlminb}, except with additional diagnostics and timing info, and a new slot containing the output from \texttt{sdreport}.

References
For more details see doi:10.1016/j.fishres.2015.11.016

\begin{verbatim}
Value
List fixed and random effects

Description
list_parameters lists all fixed and random effects

Usage
list_parameters(Obj, verbose = TRUE)

Arguments
Obj Compiled TMB object
verbose Boolean, whether to print messages to terminal

Value
Tagged-list of fixed and random effects, returned invisibly and printed to screen

\end{verbatim}

Mlifehist_ver1_0

\begin{verbatim}
Description

Usage
data(Mlifehist_ver1_0)
\end{verbatim}
parse_path Parse path

Description

parse_path is copied from sem::parse.path

Usage

```r
parse_path(path)
```

Arguments

- `path` text to parse

Details

Copied with permission from John Fox under licence GPL (>= 2)

Value

Tagged-list defining variables and direction for a specified path coefficient

phylosem Fit phylogenetic structural equation model

Description

Fits a phylogenetic structural equation model

Usage

```r
glyphosem(
  sem, 
  tree, 
  data, 
  family = rep("fixed", ncol(data)), 
  covs = colnames(data), 
  estimate_ou = FALSE, 
  estimate_lambda = FALSE, 
  estimate_kappa = FALSE, 
  data_labels = rownames(data), 
  quiet = FALSE, 
  newtonsteps = 1, 
  tmb_inputs = NULL, 
  run_model = TRUE, 
  ... 
)
```
Arguments

sem
structural equation model structure, passed to either `specifyModel` or `specifyEquations` and then parsed to control the set of path coefficients and variance-covariance parameters.

tree
phylogenetic structure, using class `as.phylo`.

data
data-frame providing variables being modeled. Missing values are inputted as NA. If an SEM includes a latent variable (i.e., variable with no available measurements) then it still must be inputted as a column of data with entirely NA values.

family
Character-vector listing the distribution used for each column of data, where each element must be `fixed`, `normal`, `binomial`, or `poisson`. `family="fixed"` is default behavior and assumes that a given variable is measured exactly. Other options correspond to different specifications of measurement error.

covs
optional: a character vector of one or more elements, with each element giving a string of variable names, separated by commas. Variances and covariances among all variables in each such string are added to the model. For confirmatory factor analysis models specified via `cfa`, `covs` defaults to all of the factors in the model, thus specifying all variances and covariances among these factors. Warning: `covs="x1, x2"` and `covs=c("x1", "x2")` are not equivalent: `covs="x1, x2"` specifies the variance of `x1`, the variance of `x2`, and their covariance, while `covs=c("x1", "x2")` specifies the variance of `x1` and the variance of `x2` but not their covariance.

estimate_ou
Boolean indicating whether to estimate an autoregressive (Ornstein-Uhlenbeck) process using additional parameter `lnalpha`, corresponding to the model="OUrandomRoot" parameterization from `phylolm` as listed in doi:10.1093/sysbio/syu005

estimate_lambda
Boolean indicating whether to estimate additional branch lengths for phylogenetic tips (a.k.a. the Pagel-lambda term) using additional parameter `logitlambda`

estimate_kappa
Boolean indicating whether to estimate a nonlinear scaling of branch lengths (a.k.a. the Pagel-kappa term) using additional parameter `lnkappa`

data_labels
For each row of `data`, listing the corresponding name from `tree$tip.label`. Default pulls `data_labels` from `rownames(data)`.

quiet
if `FALSE`, the default, then the number of input lines is reported and a message is printed suggesting that `specifyEquations` or `cfa` be used.

newtonsteps
Integer specifying the number of extra newton steps to take after optimization (alternative to `loopnum`). Each newtonstep requires calculating the Hessian matrix and is therefore slow. But for well-behaved models, each Newton step will typically decrease the maximum gradient of the loglikelihood with respect to each fixed effect, and therefore this option can be used to achieve an arbitrarily low final gradient given sufficient time for well-behaved models. However, this option will also perform strangely or have unexpected consequences for poorly-behaved models, e.g., when fixed effects are at upper or lower bounds. There is no need to increase the value of `newtonsteps` if the model appears to be converged (i.e., has low final gradient and none of the standard errors are NA values)
tmb_inputs optional tagged list that overrides the default constructor for TMB inputs (use at
your own risk)
run_model Boolean indicating whether to estimate parameters (the default), or instead to
return the model inputs and compiled TMB object without running;
... Additional parameters passed to fit_tmb

Details
Note that parameters logitlambda, lnkappa, and lnalpha if estimated are each estimated as hav-
ing a single value that applies to all modeled variables. This differs from default behavior in phylolm, where these parameters only apply to the "response" and not "predictor" variables. This also
differs from default behavior in phylopath, where a different value is estimated in each call to
phylolm during the d-separation estimate of path coefficients. However, it is consistent with de-
fault behavior in Rphylopars, and estimates should be comparable in that case. These additional
parameters are estimated with unbounded support, which differs somewhat from default bounded
estimates in phylolm, although parameters should match if overriding phylolam defaults to use
unbounded support. Finally, phylosem allows these three parameters to be estimated in any combi-
nation, which is expanded functionality relative to the single-option functionality in phylolam.
Also note that phylopath by default uses standardized coefficients. To achieve matching parameter
estimates between phylosem and phylopath, standardized each variable to have a standard deviation
of 1.0 prior to fitting with phylosem.

Value
An object (list) of class ‘phylosem’. Elements include:

data Copy of argument data
SEM_model SEM model parsed from sem using specifyModel or specifyEquations
obj TMB object from MakeADFun
tree Copy of argument tree
tmb_inputs The list of inputs passed to MakeADFun
opt The output from fit_tmb
report The output from obj$report()
parhat The output from objenvparList() containing maximum likelihood estimates and em-
pirical Bayes predictions

References
**Introducing the package, its features, and comparison with other software (to cite when using
phylosem):**
Thorson, J. T., & van der Bijl, W. (In press). phylosem: A fast and simple R package for phy-
logenetic inference and trait imputation using phylogenetic structural equation models. Journal of
Evolutionary Biology. doi:10.1111/jeb.14234

Statistical methods for phylogenetic structural equation models
Thorson, J. T., Maureaud, A. A., Frelat, R., Merigot, B., Bigman, J. S., Friedman, S. T., Palomares,

Earlier development of computational methods, originally used for phlogenetic factor analysis:

Earlier development of phylogenetic path analysis:

Interface involving SEM ‘arrow notation’ is repurposed from:

Coercing output to phylo4d depends upon:

Laplace approximation for parameter estimation depends upon:

Examples

```r
# Load data set
data(rhino, rhino_tree, package="phylopath")

# Run phylosem
model = 
  DD -> RS, p1
  BM -> LS, p2
  BM -> NL, p3
  NL -> DD, p4

psem = phylosem( sem = model,
  data = rhino[,c("BM","NL","DD","RS","LS")],
  tree = rhino_tree )

# Convert and plot using phylopath
library(phylopath)
my_fitted_DAG = as_fitted_DAG(psem)
coef_plot( my_fitted_DAG )
```
plot(my_fitted_DAG)

Convert to phylo4d to extract estimated traits and Standard errors
for all ancestors and tips in the tree.
In this rhino example, note that species are labeled s1-s100
and ancestral nodes are not named.
(traits_est = as_phylo4d(psem))
(traits_SE = as_phylo4d(psem, what="Std. Error"))

Convert to sem and plot
library(sem)
my_sem = as_sem(psem)
pathDiagram(model = my_sem,
 style = "traditional",
 edge.labels = "values")
effects(my_sem)

Plot using semPlot
if(require(semPlot)){
 myplot = semPlotModel(my_sem)
 semPaths(my_sem,
 nodeLabels = myplot@Vars$name)
}

print.phylosem

Print parameter estimates and standard errors.

Description

Print parameter estimates

Usage

```r
## S3 method for class 'phylosem'
print(x, ...)
```

Arguments

- `x` Output from `phylosem`
- `...` Not used

Value

prints (and invisibly returns) output from `fit_tmb`
Description

The phylosem package depends on several upstream packages, which it uses in a way that depends heavily on their internal (binary) structure. Sometimes, therefore, installing an update to one of these packages will require that you re-install a *binary-compatible* version of phylosem, i.e. a version that has been compiled with the updated version of the upstream package.

- If you have development tools (compilers etc.) installed, you should be able to re-install a binary-compatible version of the package by running `install.packages("phylosem", type="source")`. If you want to install the development version of phylosem instead, you can use `remotes::install_github("James-Thorson-NOAA/phylosem")`. (On Windows, you can install development tools following the instructions at https://cran.r-project.org/bin/windows/Rtools/; on MacOS, see https://mac.r-project.org/tools/.)

- If you do not have development tools and can’t/don’t want to install them (and so can’t install packages with compiled code from source), you can revert the upstream package(s) to their previous binary version. For example, using the checkpoint package:

```r
## load (installing if necessary) the checkpoint package
while (!require("checkpoint")) install.packages("checkpoint")
## retrieve build date of installed version of phylosem
bd <- as.character(asDateBuilt(packageDescription("phylosem", fields="Built"))
oldrepo <- getOption("repos")
use_mran_snapshot(bd) ## was setSnapshot() pre-checkpoint v1.0.0
install.packages("TMB")
options(repos=oldrepo) ## restore original repo
```

A similar recipe (substituting Matrix for TMB and TMB for phylosem) can be used if you get warnings about an incompatibility between TMB and Matrix.

Details

Copied from glmmTMB with permission

```
summary.phylosem  summarize phylosem
```

Description

Summarize phylosem output from phylosem, including calculating intercepts at the tree root
summary(object, ...)

Arguments

- **object**: Output from `phylosem`
- **...**: Not used

Value

Data-frame containing all estimated intercepts, path coefficients, and variance-covariance parameters as well as their standard errors

TMBAIC

Calculate marginal AIC for a fitted model

Description

TMBAIC calculates AIC for a given model fit

Usage

```r
TMBAIC(opt, k = 2, n = Inf)
```

Arguments

- **opt**: the output from `nlminb` or `optim`
- **k**: the penalty on additional fixed effects (default=2, for AIC)
- **n**: the sample size, for use in AICc calculation (default=Inf, for which AICc=AIC)

Value

AIC, where a parsimonious model has a AIC relative to other candidate models
vcov.phylosem

Extract Variance-Covariance Matrix

Description

extract the covariance of fixed effects, or both fixed and random effects.

Usage

```r
## S3 method for class 'phylosem'
vcov(object, which = c("fixed", "random", "both"), ...)
```

Arguments

- `object`: output from `phylosem`
- `which`: whether to extract the covariance among fixed effects, random effects, or both
- `...`: ignored, for method compatibility
Index

* data
 Mlifehist_ver1_0, 11
 as.phylo, 8, 13
 as_fitted_DAG, 2
 as_phylo4d, 3
 as_sem, 3
 average, 4
 average.compare_phylosem, 4
 average_DAGs, 4
 best, 5
 best.compare_phylosem, 5
 checkDepPackageVersion, 6
 choice, 6
 choice.compare_phylosem, 7
 coef.phylosem, 7
 compare_phylosem, 4–7, 8
 est_DAG, 2, 4
 fit_tmb, 9, 10, 14, 16
 list_parameters, 11
 MakeADFun, 14
 Mlifehist_ver1_0, 11
 nlminb, 10, 11
 parse_path, 12
 phylo4d, 3
 phylosem, 2, 3, 7–9, 12, 16, 18
 print.phylosem, 16
 reinstalling, 17
 sdreport, 10, 11
 sem, 3
 specifyEquations, 13, 14
 specifyModel, 13, 14
 summary.phylosem, 17
 TMBAIC, 18
 vcov.phylosem, 19