Package ‘piecewiseSEM’

October 14, 2022

Type Package

Title Piecewise Structural Equation Modeling

Version 2.1.2

Date 2020-12-09

Maintainer Jon Lefcheck <lefcheckj@si.edu>

Description Implements piecewise structural equation modeling from a single list of structural equations, with new methods for non-linear, latent, and composite variables, standardized coefficients, query-based prediction and indirect effects. See <http://jslefche.github.io/piecewiseSEM/> for more.

Depends R (>= 4.0.0)

URL https://github.com/jslefche/

BugReports https://github.com/jslefche/piecewiseSEM/issues

Imports car, DiagrammeR, emmeans, igraph, lme4, multcomp, MASS, methods, nlme

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Jon Lefcheck [aut, cre],
 Jarrett Byrnes [aut],
 James Grace [aut]

Repository CRAN

Date/Publication 2020-12-09 17:00:02 UTC
Description

Fitting and evaluation of piecewise structural equation models, complete with goodness-of-fit tests, estimates of (standardized) path coefficients, and evaluation of individual model fits (e.g., through R-squared values). Compared with traditional variance-covariance based SEM, piecewise SEM allows for fitting of models to different distributions through GLM and/or hierarchical/nested random structures through (G)LMER. Supported model classes include: lm, glm, gls, pglS, sarLM, lme, glmmPQL, lmerMod, merModLmerTest, glmerMod.
The primary functions in the package are `psem` which unites structural equations in a single model. `summary.psem` can be used on an object of class `psem` to provide various summary statistics for evaluation and interpretation.

Author(s)

Jon Lefcheck <lefcheckj@si.edu>

References

AIC.psem

Generalized function for SEM AIC(c) score

Description

Generalized function for SEM AIC(c) score

Usage

```r
## S3 method for class 'psem'
AIC(object, ..., aicc = FALSE)
```
Arguments

object: a psem object

...: additional arguments to AIC

aicc: whether correction for small sample size should be applied. Default is FALSE

Description

Compute analysis of variance table for one or more structural equation models.

Usage

S3 method for class 'psem'
anova(object, ..., digits = 3, anovafun = "Anova")

Arguments

object: a psem object

...: additional objects of the same type

digits: number of digits to round results. Default is 3

anovafun: The function used for ANOVA. Defaults to Anova

Details

Additional models will be tested against the first model using a Chi-squared difference test.

Value

an F, LRT, or other table for a single model, or a list of comparisons between multiple models

Author(s)

Jon Lefcheck <lefcheckj@si.edu>, Jarrett Byrnes <jarrett.byrnes@umb.edu>

See Also

Anova
Examples

data(keeley)

mod1 <- psem(
 lm(rich ~ cover, data = keeley),
 lm(cover ~ firesev, data = keeley),
 lm(firesev ~ age, data = keeley),
 data = keeley
)

get type II Anova
anova(mod1)

conduct LRT
mod2 <- psem(
 lm(rich ~ cover, data = keeley),
 lm(cover ~ firesev, data = keeley),
 age ~ 1,
 data = keeley
)

anova(mod1, mod2)

as.psem

Convert list to psem object

Description

Convert list to psem object

Usage

as.psem(object, Class = "psem")

Arguments

object any R object

Class the name of the class to which object should be coerced
Derivation of the basis set

Description

Acquires the set of independence claims—or the 'basis set'—for use in evaluating the goodness-of-fit for piecewise structural equation models.

Usage

basisSet(modelList, direction = NULL)

Arguments

- `modelList`: A list of structural equations
- `direction`: a vector of claims defining the specific directionality of any independence claim(s)

Details

This function returns a list of independence claims. Each claim is a vector of the predictor of interest, followed by the response, and, if present, any conditioning variables.

Relationships among exogenous variables are omitted from the basis set because the directionality is unclear—e.g., does temperature cause latitude or does latitude cause temperature?—and the assumptions of the variables are not specified in the list of structural equations, so evaluating the relationship becomes challenging without further input from the user. This creates a circular scenario whereby the user specifies relationships among exogenous variables, raising the issue of whether they should be included as directed paths if they can be assigned directional relationships.

Paths can be omitted from the basis set by specifying them as correlated errors using `%~~%` or by assigning a directionality using the argument `direction`, e.g. `direction = c("X <- Y")`. This can be done if post hoc examination of the d-sep tests reveals nonsensical independence claims (e.g., arthropod abundance predicting photosynthetically-active radiation) that the user may wish to exclude from evaluation.

Value

A list of independence claims.

Author(s)

Jon Lefcheck <lefcheckj@si.edu>

References

See Also

dSep

BIC.psem

Generalized function for SEM BIC score

Description

Generalized function for SEM BIC score

Usage

S3 method for class 'psem'
BIC(object, ...)

Arguments

object a psem object
...
additional arguments to BIC

cbind_fill

Bind data.frames of differing dimensions

Description

From: https://stackoverflow.com/a/31678079

Usage

cbind_fill(...)

Arguments

... data.frames to be bound, separated by commas
@keywords internal
cerror

Correlated errors

Description
Calculates partial correlations and partial significance tests.

Usage
```r
cerror(formula., modelList, data = NULL)
```

Arguments
- `formula.`: A formula specifying the two correlated variables using `%~~%`.
- `modelList`: A list of structural equations.
- `data`: A `data.frame` containing the data used in the list of equations.

Details
If the variables are exogenous, then the correlated error is the raw bivariate correlation.
If the variables are endogenous, then the correlated error is the partial correlation, accounting for
the influence of any predictors.
The significance of the correlated error is conducted using `cor.test` if the variables are exogenous. Otherwise, a t-statistic is constructed and compared to a t-distribution with N - k - 2 degrees of
freedom (where N is the total number of replicates, and k is the total number of variables informing
the relationship) to derive a P-value.

Value
Returns a `data.frame` containing the (partial) correlation and associated significance test.

Author(s)
Jon Lefcheck <lefccheckj@si.edu>

See Also
`%~~%`

Examples
```r
# Generate example data
dat <- data.frame(x1 = runif(50),
                  x2 = runif(50), y1 = runif(50),
                  y2 = runif(50))

# Create list of structural equations
```
sem <- psem(
 lm(y1 ~ x1 + x2, dat),
 lm(y2 ~ y1 + x1, dat)
)
Look at correlated error between x1 and x2
(exogenous)
cerror(x1 %~~% x2, sem, dat)
Same as cor.test
with(dat, cor.test(x1, x2))
Look at correlated error between x1 and y1
(endogenous)
cerror(y1 %~~% x1, sem, dat)
Not the same as cor.test
(accounts for influence of x1 and x2 on y1)
with(dat, cor.test(y1, x1))
Specify in psem
sem <- update(sem, x1 %~~% y1)
coefs(sem)
```

---

**coefs**

*Extract path coefficients*

**Description**

Extracts (standardized) path coefficients from a psem object.

**Usage**

```r
coefs(
 modelList,
 standardize = "scale",
 standardize.type = "latent.linear",
 test.statistic = "F",
 test.type = "II",
 intercepts = FALSE
)
```

**Arguments**

- `modelList` A list of structural equations, or a model.
- `standardize` The type of standardization: none, scale, range. Default is scale.
standardize.type
The type of standardized for non-Gaussian responses: latent.linear, Menard.OE. Default is latent.linear.

test.statistic
the type of test statistic generated by Anova

test.type
the type of test for significance of categorical variables from Anova. Default is type "II".

intercepts
Whether intercepts should be included in the coefficients table. Default is FALSE.

Details

P-values for models constructed using lme4 are obtained using the Kenward-Roger approximation of the denominator degrees of freedom as implemented in the Anova function.

Different forms of standardization can be implemented using the standardize argument:

- none No standardized coefficients are reported.
- scale Raw coefficients are scaled by the ratio of the standard deviation of x divided by the standard deviation of y. See below for cases pertaining to GLM.
- range Raw coefficients are scaled by a pre-selected range of x divided by a preselected range of y. The default argument is range which takes the two extremes of the data, otherwise the user must supply must a named list where the names are the variables to be standardized, and each entry contains a vector of length == 2 to the ranges to be used in standardization.

For binary response models (i.e., binomial responses), standardized coefficients are obtained in one of two ways:

- latent.linear Referred to in Grace et al. (in review) as the standard form of the latent-theoretic (LT) approach. In this method, there is assumed to be a continuous latent propensity, y*, that underlies the observed binary responses. The standard deviation of y* is computed as the square-root of the variance of the predictions (on the linear or 'link' scale) plus the distribution-specific assumed variance (for logit links: pi^2/3, for probit links: 1).
- Menard.OE Referred to in Grace et al. (in review) as the standard form of the observed-empirical (OE) approach. In this method, error variance is based on the differences between predicted scores and the observed binary data. The standard deviation used for standardization is computed as the square-root of the variance of the predictions (on the linear scale) plus the correlation between the observed and predicted (on the original or 'response' scale) values of y.

For categorical predictors: significance is determined using ANOVA (or analysis of deviance). Because n-1 coefficients are reported for n levels, the output instead reports model-estimated means in the Estimate column. This is done so all n paths in the corresponding path diagram have assignable values.

The means are generated using function emmeans in the emmeans package. Pairwise contrasts are further conducted among all levels using the default correction for multiple testing. The results of those comparisons are given in the significance codes (e.g., "a", "b", "ab") as reported in the multcomp::clsd function.
dSep

Value

Returns a data.frame of coefficients, their standard errors, degrees of freedom, and significance tests.

Author(s)

Jon Lefcheck <lefcheckj@si.edu>, Jim Grace

References


See Also

Anova, emmeans, cld

Examples

mod <- psem(
  lm(rich ~ cover, data = keeley),
  lm(cover ~ firesev, data = keeley),
  lm(firesev ~ age, data = keeley),
  data = keeley
)

coops(mod)

Description

Evaluation of conditional independence claims to be used in determining the goodness-of-fit for piecewise structural equation models.

Usage

dSep(
  modelList,
  basis.set = NULL,
  direction = NULL,
  conserve = FALSE,
  conditioning = FALSE,
  .progressBar = TRUE
)
Arguments

- `modelList`: A list of structural equations created using `psem`.
- `basis.set`: An optional list of independence claims.
- `direction`: A vector of claims defining the specific directionality of independence claims; for use in special cases (see Details). Default is FALSE.
- `conserve`: Whether the most conservative P-value should be returned; for use in special cases (see Details). Default is FALSE.
- `conditioning`: Whether the conditioning variables should be shown in the summary table. Default is FALSE.
- `.progressBar`: An optional progress bar. Default is TRUE.

Details

In cases involving non-normally distributed responses in the independence claims that are modeled using generalized linear models, the significance of the independence claim is not reversible (e.g., the P-value of Y ~ X is not the same as X ~ Y). This is due to the transformation of the response via the link function. In extreme cases, this can bias the goodness-of-fit tests. `summary.psem` will issue a warning when this case is present and provide guidance for solutions.

One solution is to specify the directionality of the relationship using the `direction` argument, e.g. `direction = c("X <- Y")`. Another is to run both tests (Y ~ X, X ~ Y) and return the most conservative (i.e., lowest) P-value, which can be toggled using the `conserve = TRUE` argument.

Value

Returns a `data.frame` of independence claims and their significance values.

Author(s)

Jon Lefcheck <lefcheckj@si.edu>, Jarrett Byrnes

References


See Also

`basisSet`
evaluateClasses  

Evaluate model classes and stop if unsupported model class

Description
Evaluate model classes and stop if unsupported model class

Usage
evaluateClasses(modelList)

Arguments
modelList  a list of structural equations or a model object

fisherC  

Summarize tests of directed separation using Fisher’s C statistic

Description
Summarize tests of directed separation using Fisher’s C statistic

Usage
fisherC(
  dTable,
  add.claims = NULL,
  basis.set = NULL,
  direction = NULL,
  conserve = FALSE,
  conditional = FALSE,
  .progressBar = FALSE
)

Arguments
dTable  a data.frame containing tests of directed separation from dSep
add.claims  an optional vector of additional independence claims (i.e., P-values) to be added to the basis set
basis.set  An optional list of independence claims.
direction  a vector of claims defining the specific directionality of any independence claim(s)
conserve  whether the most conservative P-value should be returned. Default is FALSE
conditional  whether the conditioning variables should be shown in the table. Default is FALSE
.progressBar  an optional progress bar. Default is FALSE
Value

a vector corresponding to the C statistic, d.f., and P-value

getDAG  
Generate adjacency matrix from list of structural equations

Description

Generate adjacency matrix from list of structural equations

Usage

getDAG(modelList)

Arguments

modelList A list of structural equations

infCrit  
Information criterion values for SEM

Description

Information criterion values for SEM

Usage

infCrit(
    modelList,
    Cstat,
    add.claims = NULL,
    basis.set = NULL,
    direction = NULL,
    conserve = FALSE,
    conditional = FALSE,
    .progressBar = FALSE
  )
**Arguments**

- **modelList**: a list of structural equations
- **Cstat**: Fisher's C statistic obtained from `fisherC`
- **add.claims**: an optional vector of additional independence claims (P-values) to be added to the basis set
- **basis.set**: An optional list of independence claims.
- **direction**: a vector of claims defining the specific directionality of any independence claim(s)
- **conserve**: whether the most conservative P-value should be returned (See Details) Default is FALSE
- **conditional**: whether the conditioning variables should be shown in the table. Default is FALSE
- **.progressBar**: an optional progress bar. Default is FALSE

**Value**

A vector of AIC, AICc, BIC, d.f., and sample size

---

**keeley**

*Data set from Grace & Keeley (2006)*

**Description**

Data set from Grace & Keeley (2006)

**Usage**

keeley

**Format**

A data.frame with 90 observations of 8 variables.

- **distance**: Distance to coast
- **elev**: Elevation from sea level
- **abiotic**: Abiotic favorability
- **age**: Age of stand before fire
- **hetero**: Plot heterogeneity
- **firesev**: Severity of fire
- **cover**: Cover of plants
- **rich**: Plant species richness
Description
Data set from Grace & Jutila (1999)

Usage
meadows

Format
A data.frame with 354 observations of 4 variables.

- **grazed**: Whether meadows were exposed to grazing: 0 = no, 1 = yes
- **mass**: Plant biomass in g m$^{-2}$
- **elev**: Elevation of the plot above mean sea level
- **rich**: Plant species richness per m$^{2}$

Description
Multigroup Analysis for Piecewise SEM

Usage
multigroup(
  modelList,
  group,
  standardize = "scale",
  standardize.type = "latent.linear",
  test.type = "III"
)

Arguments
- **modelList**: a list of structural equations
- **group**: the name of the grouping variable in quotes
- **standardize**: The type of standardization: none, scale, range. Default is scale.
- **standardize.type**: The type of standardized for non-Gaussian responses: latent.linear, Menard.OE. Default is latent.linear.
- **test.type**: what kind of ANOVA should be reported. Default is type III
**Author(s)**
Jon Lefcheck <lefcheckj@si.edu>

**Examples**

```r
data(meadows)

jutila <- psem(
 lm(rich ~ elev + mass, data = meadows),
 lm(mass ~ elev, data = meadows)
)

jutila.multigroup <- multigroup(jutila, group = "grazed")

jutila.multigroup
```

---

**Description**

Extracts partial residuals from a model or psem object for a given x and y.

**Usage**

```r
partialResid(formula., modelList, data = NULL)
```

**Arguments**

- `formula.`: A formula where the lhs is the response and the rhs is the predictor whose partial effect is desired.
- `modelList`: A list of structural equations.
- `data`: A data.frame used to fit the equations.

**Details**

This function computes the partial residuals of $y \sim x + Z$ in a two-step procedure to remove the variation explained by $Z$: (1) remove $x$ from the equation and model $y \sim Z$, and (2) replace $y$ with $x$ and model $x \sim Z$.

**Value**

Returns a data.frame of residuals of $y \sim Z$ called `yresids`, of $x \sim Z$ called `xresids`.

**Author(s)**
Jon Lefcheck <lefcheckj@si.edu>
See Also
cerror

Examples

```r
Generate data
dat <- data.frame(y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100))

Build model
model <- lm(y ~ x1 + x2, dat)

Compute partial residuals of y ~ x1
yresid <- resid(lm(y ~ x2, dat))

xresid <- resid(lm(x1 ~ x2, dat))

plot(yresid, xresid)

Use partialResid
presid <- partialResid(y ~ x1, model)

plot(presid) # identical plot!
```

plot.psem

Plotting of Piecewise Structural Equation Models

Description

plot.psem uses [DiagrammeR] to generate path diagrams of 'piecewiseSEM' fits within R.

Usage

```r
S3 method for class 'psem'
plot(
 x,
 return = FALSE,
 node_attrs = data.frame(shape = "rectangle", color = "black", fillcolor = "white"),
 edge_attrs = data.frame(style = "solid", color = "black"),
 ns_dashed = T,
 alpha = 0.05,
 show = "std",
 digits = 3,
 add_edge_label_spaces = TRUE,
 ...
)
```
Arguments

- **x**: a [psem()] object
- **return**: whether to return the output from [DiagrammeR::create_graph()] for modification and later plotting
- **node_attrs**: List of node attributes to override defaults of rectangular nodes with black outline and white fill. See [here](http://visualizers.co/diagrammer/articles/node-edge-data-frames.html) and [here](http://visualizers.co/diagrammer/articles/graphviz-mermaid.html) for a more complete rundown of options.
- **edge_attrs**: List of edge attributes to override defaults of solid black arrows. See [here](http://visualizers.co/diagrammer/articles/node-edge-data-frames.html) and [here](http://visualizers.co/diagrammer/articles/graphviz-mermaid.html) for a more complete rundown of options.
- **ns_dashed**: If TRUE, paths that are not different from 0 will be dashed rather than solid, unless the whole is overridden in 'edge_attrs'
- **alpha**: The alpha level for assessing whether a path is different from 0
- **show**: What types of path coefficients are shown? Default "std" is standardized coefficients. For unstandardized, use "unstd".
- **digits**: How many significant digits should be shown?
- **add_edge_label_spaces**: Should spaces by added on either side of edge labels? Default is 'TRUE' as otherwise paths too often overlap edges.
- **...**: Other arguments to [DiagrammeR::render_graph()]

Value

Returns an object of class [DiagrammeR::dgr_graph]

Author(s)

Jarrett Byrnes <jarrett.byrnes@umb.edu>

Examples

```r
data(keeley)

mod <- psem(
 lm(rich ~ cover, data=keeley),
 lm(cover ~ firesev, data=keeley),
 lm(firesev ~ age, data=keeley),
 data = keeley
)

plot(mod)

More customized plot

plot(mod, node_attrs = list(
 shape = "rectangle", color = "black",
...)
print.basisSet

fillcolor = "orange", x = 3, y=1:4))

print.anova.psem

Print anova

Description

Print anova

Usage

S3 method for class 'anova.psem'
print(x, ...)

Arguments

x
an object of class anova.psem

...
further arguments passed to or from other methods

print.basisSet

Print basis set

Description

Print basis set

Usage

S3 method for class 'basisSet'
print(x, ...)

Arguments

x
a basis set

...
further arguments passed to or from other methods
print.multigroup.psem Print multigroup

Description
Print multigroup

Usage
S3 method for class 'multigroup.psem'
print(x, ...)

Arguments
x an object to print

... additional arguments to print

print.psem Print psem

Description
Print psem

Usage
S3 method for class 'psem'
print(x, ...)

Arguments
x an object of class psem

... further arguments passed to or from other methods
print.summary.psem

S3 method for class 'summary.psem'
print(x, ...)

Arguments

x an object of class summary.psem
...

further arguments passed to or from other methods

psem

Fitting piecewise structural equation models

Description

psem is used to unite a list of structural equations into a single structural equation model.

Usage

psem(...)

Arguments

...

A list of structural equations

Details

psem takes a list of structural equations, which can be model objects of classes: lm, glm, gls, pglss, sarlm, lme, glmmPQL, lmerMod, lmerModLmerTest, glmerMod.

It also takes objects of class formula, formula.cerror, corresponding to additional variables to be included in the tests of directed separation (\(X \sim 1\)) or correlated errors (\(X1 \%^\% X2\)).

The function optionally accepts data objects of classes: matrix, data.frame, SpatialPointsDataFrame, comparative.data, or these are derived internally from the structural equations.

Value

Returns an object of class psem
Residual values from fit models

Residual values from fit models

S3 method for class 'psem'
residuals(object, ...)

Arguments

- **object**: a `psem` object
- **...**: additional arguments to `residuals`

Value

A `data.frame` of residuals for endogenous variables as columns

```r
mod <- psem(
  lm(rich ~ cover, data = keeley),
  lm(cover ~ firesev, data = keeley),
  lm(firesev ~ age, data = keeley),
  data = keeley
)

summary(mod)
```
rsquared

R-squared for linear regression

Description

Returns (pseudo)-R² values for all linear, generalized linear, and generalized linear mixed effects models.

Usage

rsquared(modelList, method = NULL)

Arguments

modelList a regression, or a list of structural equations.
method The method used to compute the R² value (See Details)

Details

For mixed models, marginal R² considers only the variance by the fixed effects, and the conditional R² by both the fixed and random effects.

For GLMs (glm), supported methods include:

- mcfadden 1 - ratio of likelihoods of full vs. null models
- coxsnell McFadden’s R² but raised to 2/N. Upper limit is < 1
- nagelkerke Adjusts Cox-Snell R² so that upper limit = 1. The DEFAULT method

For GLMERs fit to Poisson, Gamma, and negative binomial distributions (glmer, glmmPQL, glmer.nb), supported methods include:

- delta Approximates the observation variance based on second-order Taylor series expansion. Can be used with many families and link functions
- lognormal Observation variance is the variance of the log-normal distribution
- trigamma Provides most accurate estimate of the observation variance but is limited to only the log link. The DEFAULT method

For GLMERs fit to the binomial distribution (glmer, glmmPQL), supported methods include:

- theoretical Assumes observation variance is pi²/3
- delta Approximates the observation variance as above. The DEFAULT method

Value

Returns a data.frame with the response, its family and link, the method used to estimate R², and the R² value itself. Mixed models also return marginal and conditional R² values.
rsquared

Author(s)

Jon Lefcheck <lefcheckj@si.edu>

References

Nakagawa, Shinichi, Paul CD Johnson, and Holger Schielzeth. “The coefficient of determination R
2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and

Examples

```r
## Not run:
# Create data
dat <- data.frame(
  ynorm = rnorm(100),
  ypois = rpois(100, 100),
  x1 = rnorm(100),
  random = letters[1:5]
)

# Get R2 for linear model
rsquared(lm(ynorm ~ x1, dat))

# Get R2 for generalized linear model
rsquared(glm(ypois ~ x1, "poisson", dat))
rsquared(glm(ypois ~ x1, "poisson", dat), method = "mcfadden") # McFadden R2

# Get R2 for generalized least-squares model
rsquared(glsl(ynorm ~ x1, dat))

# Get R2 for linear mixed effects model (nlme)
r_squared(nlme::lme(ynorm ~ x1, random = ~ 1 | random, dat))

# Get R2 for linear mixed effects model (lme4)
r_squared(lme4::lmer(ynorm ~ x1 + (1 | random), dat))

# Get R2 for generalized linear mixed effects model (lme4)
r_squared(lme4::glmer(ypois ~ x1 + (1 | random), family = poisson, dat))
rsquared(lme4::glmer(ypois ~ x1 + (1 | random), family = poisson, dat), method = "delta")

# Get R2 for generalized linear mixed effects model (glmmPQL)
r_squared(MASS::glmmPQL(ypois ~ x1, random = ~ 1 | random, family = poisson, dat))

## End(Not run)
```
shipley
Data set from Shipley (2006)

Description

Data set from Shipley (2006)

Usage

shipley

Format

A data.frame with 1900 observations of 9 variables.

- **site**: Site of observation
- **tree**: Individual tree of observation
- **lat**: Latitude
- **year**: Year of observation
- **Date**: Julian date of first bud burst
- **DD**: Cumulative degree days until first bud burst
- **Growth**: Increase in stem diameter
- **Survival**: Proportional survival
- **Live**: Alive (1) or dead (0)

summary.psem
Summarizing piecewise structural equation models

Description

Returns information necessary to interpret piecewise structural equation models, including tests of directed separation, path coefficients, information criterion values, and R-squared values of individual models.

Usage

```r
# S3 method for class 'psem'
summary(
  object,
  ..., 
  basis.set = NULL,
  direction = NULL,
  conserve = FALSE,
)```

conditioning = FALSE,
add.claims = NULL,
standardize = "scale",
standardize.type = "latent.linear",
test.statistic = "F",
test.type = "II",
intercepts = FALSE,
.progressBar = TRUE
)

Arguments

object a list of structural equations
... additional arguments to summary
basis.set an optional basis set
direction a vector of claims defining the specific directionality of any independence claim(s)
conserve whether the most conservative P-value should be returned (See Details) Default is FALSE
conditioning whether all conditioning variables should be shown in the table Default is FALSE
add.claims an optional vector of additional independence claims (P-values) to be added to the basis set
standardize whether standardized path coefficients should be reported Default is "scale"
standardize.type the type of standardized for non-Gaussian responses: latent.linear (default), Mendard.OE
test.statistic the type of test statistic generated by Anova
test.type the type of test ("II" or "III") for significance of categorical variables (from car::Anova)
intercepts whether intercepts should be included in the coefficient table Default is FALSE
.progressBar an optional progress bar. Default is TRUE

Details

The forthcoming argument groups splits the analysis based on an optional grouping factor, conducts separate d-sep tests, and reports goodness-of-fit and path coefficients for each submodel. The procedure is approximately similar to a multigroup analysis in traditional variance-covariance SEM. Coming in version 2.1.

In cases involving non-normally distributed responses in the independence claims that are modeled using generalized linear models, the significance of the independence claim is not reversible (e.g., the P-value of \( Y \sim X \) is not the same as \( X \sim Y \)). This is due to the transformation of the response via the link function. In extreme cases, this can bias the goodness-of-fit tests. summary.psem will issue a warning when this case is present and provide guidance for solutions. One solution is to specify the directionality of the relationship using the direction argument, e.g. direction = c("X <- Y"). Another is to run both tests (\( Y \sim X, X \sim Y \)) and return the most conservative (i.e., lowest) P-value, which can be toggled using the conserve = TRUE argument.
In some cases, additional claims that were excluded from the basis set can be added back in using the argument `add.claims`. These could be, for instance, independence claims among exogenous variables. See Details in `basisSet`.

Standardized path coefficients are scaled by standard deviations.

**Value**

The function `summary.psem` returns a list of summary statistics:

- **dTable**: A summary table of the tests of directed separation, from `dSep`.
- **CStat**: Fisher's C statistic, degrees of freedom, and significance value based on a Chi-square test.
- **IC**: Information criterion (Akaike, Bayesian, corrected Akaike) as well as degrees of freedom and sample size.
- **coefficients**: A summary table of the path coefficients, from `link(coefs)`.
- **R2**: (Pseudo)-R2 values, from `rsquared`.

**Author(s)**

Jon Lefcheck <lefcheckj@si.edu>

**References**


**See Also**

The model fitting function `psem`.

---

```
update.psem
```

**Update psem model object with additional values.**

**Description**

Update psem model object with additional values.

**Usage**

```r
S3 method for class 'psem'
update(object, ...)
```
Arguments

object a psem object
... additional arguments to update

Examples

mod <- psem(
  lm(rich ~ cover, data = keeley),
  lm(cover ~ firesev, data = keeley),
  lm(firesev ~ age, data = keeley),
  data = keeley
)

update(mod, firesev ~ age + cover)

%~~%  Correlated error operator

Description

Specifies correlated errors among predictors

Usage

e1 %~~% e2

Arguments

e1 one variable to be correlated
e2 the other variable to be correlated

Details

For use in psem to identify correlated sets of variables.

Author(s)

Jon Lefcheck <lefcheckj@si.edu>

See Also

cerror
Examples

# Generate example data
dat <- data.frame(x1 = runif(50),
                  x2 = runif(50),
                  y1 = runif(50),
                  y2 = runif(50))

# Create list of structural equations
sem <- psem(
    lm(y1 ~ x1 + x2, dat),
    lm(y2 ~ y1 + x1, dat)
)

# Look at correlated error between x1 and x2
# (exogenous)
cerror(x1 %~~% x2, sem, dat)

# Same as cor.test
with(dat, cor.test(x1, x2))

# Look at correlated error between x1 and y1
# (endogenous)
cerror(y1 %~~% x1, sem, dat)

# Not the same as cor.test
# (accounts for influence of x1 and x2 on y1)
with(dat, cor.test(y1, x1))

# Specify in psem
sem <- update(sem, x1 %~~% y1)

coefs(sem)
Index

* data
  keeley, 15
  meadows, 16
  shipley, 26

* package
  piecewiseSEM-package, 2

%~~%, 8, 23, 29
'~~' (%~~%), 29

AIC.psem, 3
Anova, 4, 11, 27
anova.psem, 4
as.psem, 5

basisSet, 6, 12, 28
BIC.psem, 7

cbind_fill, 7
cerror, 8, 18, 29
cld, 11
coeffs, 9
dSep, 7, 11, 28

dmeans, 11
evaluateClasses, 13

fisherC, 13
getDAG, 14

infCrit, 14
keeley, 15

meadows, 16
multigroup, 16

partialResid, 17
piecewiseSEM (piecewiseSEM-package), 2
piecewiseSEM-package, 2
plot.psem, 18

print.anova.psem, 20
print.basisSet, 20
print.multigroup.psem, 21
print.psem, 21
print.summary.psem, 22
psem, 3, 22, 23, 28
residuals.psem, 23
rsquared, 24, 28

shipley, 26
summary.psem, 23, 26

update.psem, 28