Package ‘pinbasic’

November 18, 2018

Title Fast and Stable Estimation of the Probability of Informed Trading (PIN)

Type Package

Version 1.2.2

Description Utilities for fast and stable estimation of the probability of informed trading (PIN) in the model introduced by Easley et al. (2002) <DOI:10.1111/1540-6261.00493> are implemented. Since the basic model developed by Easley et al. (1996) <DOI:10.1111/j.1540-6261.1996.tb04074.x> is nested in the former due to equating the intensity of uninformed buys and sells, functions can also be applied to this simpler model structure, if needed.

State-of-the-art factorization of the model likelihood function as well as most recent algorithms for generating initial values for optimization routines are implemented.

In total, two likelihood factorizations and three methodologies for starting values are included. Furthermore, functions for simulating datasets of daily aggregated buys and sells, calculating confidence intervals for the probability of informed trading and posterior probabilities of trading days’ conditions are available.

Depends R (>= 3.1)

Imports stats, fastcluster, lubridate, ggplot2, reshape2, scales, parallel, Rcpp (>= 0.12.9),

LinkingTo Rcpp

NeedsCompilation yes

License GPL-3 | file LICENSE

LazyData true

RoxygenNote 6.1.0

Suggests knitr, rmarkdown, formatR, utils

URL https://github.com/anre005/pinbasic/

BugReports https://github.com/anre005/pinbasic/issues

VignetteBuilder knitr

Author Andreas Recktenwald [aut, cre]
BSfrequent

Maintainer Andreas Recktenwald <arecktenwald8@85@gmail.com>
Repository CRAN
Date/Publication 2018-11-18 10:10:03 UTC

R topics documented:

BSfrequent ... 2
BSfrequent2015 ... 3
BSheavy .. 3
BSinfrequent ... 4
ggplot.posterior ... 4
ggplot.qpin .. 5
initial_vals ... 6
pinbasic ... 8
pin_calc ... 10
pin_confint ... 11
pin_est ... 12
pin_est_core ... 14
pin_ll ... 17
posterior ... 18
qpin ... 19
simulateBS .. 21

Index 23

BSfrequent Daily Buys and Sells

Description
A matrix containing three months of synthetic daily buys and sells data representing a frequently traded stock.

Usage
BSfrequent

Format
A matrix with 60 rows and 2 variables:

Buys daily buys
Sells daily sells

Source
own simulation
BSfrequent2015

Daily Buys and Sells

Description
A matrix containing one year of synthetic daily buys and sells data representing a frequently traded stock. Rownames equal the business days in 2015.

Usage
BSfrequent2015

Format
A matrix with 261 rows and 2 variables:

- **Buys** daily buys
- **Sells** daily sells

Source
own simulation

BSheavy

Daily Buys and Sells

Description
A matrix containing three months of synthetic daily buys and sells data representing a heavily traded stock.

Usage
BSheavy

Format
A matrix with 60 rows and 2 variables:

- **Buys** daily buys
- **Sells** daily sells

Source
own simulation
Daily Buys and Sells

Description
A matrix containing three months of synthetic daily buys and sells data representing an infrequently traded stock.

Usage
bsinfrequent

Format
A matrix with 60 rows and 2 variables:
- **Buys**: daily buys
- **Sells**: daily sells

Source
own simulation

Visualization of Posterior Probabilities

Description
Visualization of posterior probabilities returned by post_states with ggplot2

Usage
```r
## S3 method for class 'posterior'
ggplot(x)
```

Arguments
- `x` *numeric* matrix returned by `posterior`

Value
An object of class `ggplot`.

See Also
- `posterior`
ggplot.qpin

Examples

```r
## Not run: See Vignette \code{browseVignette(package = 'pinbasic')}
```

ggplot.qpin

PIN Visualization

Description
Visualization of quarterly estimates and probability of informed trading with ggplot2.

Usage

```r
## S3 method for class 'qpin'
ggplot(x)
```

Arguments

- `x` List returned by `qpin`

Details
Facets are grouped by probability parameters, intensity parameters and the probability of informed trading.

Value
An object of class `ggplot`.

References
- Wickham, Hadley (2009)
 ggplot2: Elegant Graphics for Data Analysis
 Springer-Verlag New York
 doi: 10.1007/9780387981413
- Wickham, Hadley (2007)
 Reshaping Data with the reshape Package
 Journal of Statistical Software, Volume 21, Issue 12, pp. 1 - 20
 doi: 10.18637/jss.v021.i12
- Wickham, Hadley (2016)
 scales: Scale Functions for Visualization
 R package version 0.4.0

See Also
- `qpin`
Examples

```r
data('BSfrequent2015')

qpin_list <- qpin(numbuys = BSfrequent2015[,"Buys"], numsells = BSfrequent2015[,"Sells"],
                   dates = as.Date(rownames(BSfrequent2015), format = "%Y-%m-%d"))

library(ggplot2)
ggplot(qpin_list[["res"]])
```

Description

Generates set(s) of initial values which can be used in PIN optimization routines.

Usage

```r
initial_vals(numbuys = NULL, numsells = NULL, method = "HAC",
             length = 5, num_clust = 5, details = FALSE)
```

Arguments

- **numbuys**: `numeric`: vector of daily buys
- **numsells**: `numeric`: vector of daily sells
- **method**: `character` Switch between algorithms for generating initial values, valid choices are: `Grid`, `HAC` and `HAC_Ref`
- **length**: `numeric` length of equidistant sequence from 0.1 to 0.9 for parameters of grid search algorithm, defaults to 5, irrelevant for HAC and refined HAC method
- **num_clust**: `numeric` only relevant for refined HAC method, total number of clusters trading data is grouped into equals `num_clust` + 1
- **details**: `logical` only relevant for grid search, if TRUE and method = 'Grid' the number of infeasible sets of initial values are returned,
Value

Matrix with set(s) of initial values for PIN model optimization. If method = 'Grid' and details = TRUE a list with four elements is returned:

- **inits**: Matrix of sets of initial values
- **neg_eps**: Number of infeasible sets due to negative values for intensity of uninformed sells
- **irr_mu**: Number of infeasible sets due to intensity of informed trading larger than any daily buys and sells data
- **rem**: Total number of removed sets of initial values

References

- Ersan, Oguz and Alici, Asli (2016)
 An unbiased computation methodology for estimating the probability of informed trading (PIN)
 doi: 10.1016/j.intfin.2016.04.001

- Gan, Quan et al. (2015)
 A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering
 Quantitative Finance, Volume 15, Issue 11, pp. 1805 - 1821
 doi: 10.1080/14697688.2015.1023336

- Yan, Yuxing and Zhang, Shaojun (2012)
 An improved estimation method and empirical properties of the probability of informed trading
 Journal of Banking & Finance, Volume 36, Issue 2, pp. 454 - 467
 doi: 10.1016/j.jbankfin.2011.08.003

Examples

```r
# Loading simulated datasets

data("BSinfrequent")
data("BSfrequent")
data("BSheavy")

# Grid Search

grid <- initial_vals(numbuys = BSinfrequent[, "Buys"],
                    numsells = BSinfrequent[, "Sells"],
                    method = "Grid")

# Grid Search: Detailed Output

grid_detailed <- initial_vals(numbuys = BSinfrequent[, "Buys"],
                              numsells = BSinfrequent[, "Sells"],
                              method = "Grid", details = TRUE)

# HAC

hac <- initial_vals(numbuys = BSfrequent[, "Buys"],
```

initial_vals 7
pinbasic

A Package for Fast and Stable Estimation of the Probability of Informed Trading (PIN)

Description

Utilities for fast and stable estimation of the probability of informed trading (PIN) in the model introduced by Easley, Hvidkjaer and O’Hara (EHO, 2002) are implemented. Since the model developed by Easley, Kiefer, O’Hara and Paperman (EKOP, 1996) is nested in the EHO model due to equating the intensity of uninformed buys and sells, functionalities can also be applied to this simpler model structure, if needed. State-of-the-art factorization of the model likelihood function as well as hierarchical agglomerative clustering algorithm for generating initial values for optimization routines are provided. In total, two different likelihood factorizations and three methodologies generating starting values are implemented. The probability of informed trading can be estimated for arbitrary length of daily buys and sells data with \texttt{pin_est} function which is a wrapper around the workhorse function \texttt{pin_est_core}. No information about the time span of the underlying data is required to perform optimizations. However, recommendation given in the literature is using at least data for 60 trading days to ensure convergence of the likelihood maximization. The \texttt{qpin} function delivers quarterly estimates. The number of available quarters in the data are detected utilizing functions from the \texttt{lubridate} package. Quarterly estimates can be visualized with the \texttt{ggplot} function. Datasets of daily aggregated numbers of buys and sells can be simulated with \texttt{simulateBS}. Calculation of confidence intervals for the probability of informed trading can be enabled by \texttt{confint} argument in optimization routines (\texttt{pin_est_core}, \texttt{pin_est} and \texttt{qpin}) or by calling \texttt{pin_confint} directly. Additionally, posterior probabilities for conditions of trading days can be computed with \texttt{posterior} and plotted with \texttt{ggplot}.

Functions

\texttt{ggplot_posterior} Visualization method for results of \texttt{posterior} with \texttt{ggplot2}.
\texttt{ggplot_qpin} Visualization method for results of \texttt{qpin} with \texttt{ggplot2}.
\texttt{initial_vals} Generating initial values by brute force grid search, hierarchical agglomerative clustering algorithm or refined hierarchical agglomerative clustering technique.
\texttt{posterior} Calculation of posterior probabilities of trading days’ conditions.
\texttt{pin_calc} Computing the probability of informed trading (PIN).
\texttt{pin_confint} Calculation of confidence intervals for the probability of informed trading.

Code Examples

```r
numsells = BSfrequent[, "Sells"],
method = "HAC")

# Refined HAC
hac_ref <- initial_vals(numbuys = BSheavy[, "Buys"],
numsells = BSheavy[, "Sells"],
method = "HAC\_Ref")
```
pin_est_core Core function of maximization routines for PIN likelihood function. It grants the most control over optimization procedure. However, the settings chosen in **pin_est** will be sufficient in most applications.

pin_est User-friendly wrapper around **pin_est_core**. Default method for creating initial values is set to hierarchical agglomerative clustering, the likelihood formulation defaults to the one proposed by Lin and Ke (2011).

pin_ll Evaluating likelihood function values either utilizing the factorization by Easley et al. (2010) or Lin and Ke (2011).

qpin Returns quarterly estimates, function is a wrapper around **pin_est** and inherits its optimization settings.

simulateBS Simulate datasets of aggregated daily buys and sells.

Datasets

BSinfrequent A matrix containing three months of synthetic daily buys and sells data representing an infrequently traded stock.

BSfrequent A matrix containing three months of synthetic daily buys and sells data representing a frequently traded stock.

BSheavy A matrix containing three months of synthetic daily buys and sells data representing a heavily traded stock.

BSfrequent2015 A matrix containing one year of synthetic daily buys and sells data representing a frequently traded stock. Rownames equal the business days in 2015.

Source of all included datasets: own simulation

Author

Andreas Recktenwald (Saarland University, Statistics & Econometrics)

Email: <a.recktenwald@mx.uni-saarland.de>

Github

https://github.com/anre005/pinbasic

References

Easley, David et al. (2002)
Is Information Risk a Determinant of Asset Returns?
The Journal of Finance, Volume 57, Number 5, pp. 2185 - 2221
doi: 10.1111/15406261.00493

Easley, David et al. (1996)
Liquidity, Information, and Infrequently Traded Stocks
The Journal of Finance, Volume 51, Number 4, pp. 1405 - 1436

Easley, David et al. (2010)
Factoring Information into Returns
Description

Calculates the probability of informed trading.

Usage

```
pin_calc(param = NULL)
```
pin_confint

Arguments

- **param** numeric: (named) vector of model parameters (valid names: 'alpha', 'delta', 'epsilon_b', 'epsilon_s', 'mu'), length must equal 5

Details

If names are not set for param or one or more of the vector names do not match the valid choices, they are internally set to 'alpha', 'delta', 'epsilon_b', 'epsilon_s', 'mu' (in this order).

Value

numeric: probability of informed trading

References

pin_confint PIN confidence intervals

Description

Computes confidence intervals for the probability of informed trading by simulation

Usage

```
pin_confint(param = NULL, numbuys = NULL, numsells = NULL, method = "HAC", lower = rep(0, 5), upper = c(1, 1, rep(Inf, 3)), n = 10000, seed = NULL, level = 0.95, ncores = 1)
```

Arguments

- **param** numeric: (named) vector of model parameters (valid names: 'alpha', 'delta', 'epsilon_b', 'epsilon_s', 'mu'), length must equal 5
- **numbuys** numeric: vector of daily buys
- **numsells** numeric: vector of daily sells
- **method** character Switch between algorithms for generating initial values, valid choices are: 'Grid', 'HAC' and 'HAC_Ref'
- **lower** numeric: lower bounds for optimization, must have length of 5
upper numeric: upper bounds for optimization, must have length of 5
n integer: Number of simulation runs, defaults to 10000
seed interpreted as integer or NULL: defaults to NULL, for more details see set.seed
level numeric: Confidence level, defaults to 0.95
ncores integer: Number of cpu cores utilized in computation, defaults to 1

Details

If names are not set for param or one or more of the vector names do not match the valid choices, they are internally set to ‘alpha’, ‘delta’, ‘epsilon_b’, ‘epsilon_s’, ‘mu’ (in this order). By default, only one core is utilized in computations (ncores = 1). Confidence intervals can also be calculated in parallel, however, this only pays off for large values of n.

Value

numeric: confidence interval

pin_est Estimating PIN

Description

Estimates the probability of informed trading (PIN) for daily buys and sells trading data for arbitrary number of trading days.

Usage

pin_est(numbuys = NULL, numsells = NULL, nlminb_control = list(), confint = FALSE, ci_control = list(), posterior = TRUE)

Arguments

numbuys numeric: vector of daily buys
numsells numeric: vector of daily sells
nlminb_control list: Control list for nlminb
confint logical: Compute confidence intervals for PIN? Defaults to FALSE
ci_control list: see pin_est_core
posterior logical: Should posterior probabilities for conditions of trading days be computed?
Details

User-friendly wrapper around workhorse function \texttt{pin_est_core}. \texttt{nlminb} function in the \texttt{stats} package is used for maximization. In the literature, at least data for 60 trading days is recommended to ensure convergence of optimization. No information about the trading days’ dates is needed. Vectors for \texttt{numbuys} and \texttt{numsells} need to have same length. Calculation of confidence interval for the probability of informed trading is disabled by default. For more details see \texttt{pin_est_core} or \texttt{pin_confint}.

Value

A list with the following components:

- **Results** Matrix containing the parameter estimates as well as their estimated standard errors, t-values and p-values.
- **ll** Value of likelihood function returned by \texttt{nlminb}
- **pin** Estimated probability of informed trading
- **conv** Convergence code for \texttt{nlminb} optimization
- **message** Convergence message returned by the \texttt{nlminb} optimizer
- **iterations** Number of iterations until convergence of \texttt{nlminb} optimizer
- **init_vals** Vector of initial values
- **confint** If \texttt{confint} = TRUE; confidence interval for the probability of informed trading

References

Easley, David et al. (2002)
Is Information Risk a Determinant of Asset Returns?
\textit{The Journal of Finance}, Volume 57, Number 5, pp. 2185 - 2221
doi: 10.1111/15406261.00493

Easley, David et al. (1996)
Liquidity, Information, and Infrequently Traded Stocks
\textit{The Journal of Finance}, Volume 51, Number 4, pp. 1405 - 1436

Easley, David et al. (2010)
Factoring Information into Returns
doi: 10.1017/S0022109010000074

Ersan, Oguz and Alici, Asli (2016)
An unbiased computation methodology for estimating the probability of informed trading (PIN)
doi: 10.1016/j.intfin.2016.04.001

Gan, Quan et al. (2015)
A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering
doi: 10.1080/14697688.2015.1023336
Lin, Hsiou-Wei William and Ke, Wen-Chyan (2011)
A computing bias in estimating the probability of informed trading
doi: 10.1016/j.finmar.2011.03.001

Yan, Yuxing and Zhang, Shaojun (2012)
An improved estimation method and empirical properties of the probability of informed trading
Journal of Banking & Finance, Volume 36, Issue 2, pp. 454 - 467
doi: 10.1016/j.jbankfin.2011.08.003

See Also
- nlminb, initial_vals, pin_est_core, qpin

Examples

```r
# Loading simulated data for frequently traded stock
data("BSfrequent")

# Optimization with HAC initial values and Lin-Ke likelihood factorization
pin_freq <- pin_est(numbuys = BSfrequent[,"Buys"],
                     numsells = BSfrequent[,"Sells"])
```

Description

Core function for optimization routines

Usage

```r
pin_est_core(numbuys = NULL, numsells = NULL,
             factorization = "Lin_Ke", init_vals = NULL, lower = rep(0, 5),
             upper = c(1, 1, rep(Inf, 3)), num_best_res = 1,
             only_converged = TRUE, nlminb_control = list(), confint = FALSE,
             ci_control = list(), posterior = TRUE)
```

Arguments

- `numbuys` numeric: vector of daily buys
- `numsells` numeric: vector of daily sells
- `factorization` character: factorization of likelihood function: either 'EHO' or 'Lin_Ke', defaults to 'Lin_Ke'
- `init_vals` numeric: matrix of initial values: either generated by `initial_vals` or user-defined matrix with five columns for which colnames must consist of: alpha, delta, epsilon_b, epsilon_s, mu
lower numeric: lower bounds for optimization, must have length of 5

upper numeric: upper bounds for optimization, must have length of 5

num_best_res Number of optimization runs for which results should be returned, either numeric or 'all', only relevant if init_vals = 'Grid', defaults to 1

only_converged logical: Return only results for which the likelihood converged? Defaults to TRUE

nlminb_control list: Control list for nlminb

confint logical: Compute confidence intervals for PIN? Defaults to FALSE

ci_control list: see Details

posterior logical: Should posterior probabilities for conditions of trading days be computed?

Details

Grants the most control over optimization procedure. User-friendly wrappers for estimation with trading data of arbitrary length and quarterly data are implemented with pin_est and qpin, respectively. nlminb function in the stats package is used for maximization. Vectors for numbuys and numsells need to have same length.

Confidence intervals for the probability of informed trading are calculated via Monte-Carlo-Simulation if confint = TRUE. Settings of the confidence interval simulation can be specified via a named list for ci_control. Valid list names are n, seed, level and ncores which pass number of simulation runs (defaults to 10000), seed for RNG (defaults to seed = NULL), confidence level (defaults to 0.95) and number of cpu cores utilized (defaults to 1).

Value

If num_best_res = 1, a list with following elements is returned:

- **Results** Matrix containing the parameter estimates as well as their estimated standard errors, t-values and p-values.
- **ll** Value of likelihood function returned by nlminb
- **pin** Estimated probability of informed trading
- **conv** Convergence code for nlminb optimization
- **message** Convergence message returned by the nlminb optimizer
- **iterations** Number of iterations until convergence of nlminb optimizer
- **init_vals** Vector of initial values
- **confint** If confint = TRUE; confidence interval for the probability of informed trading

If num_best_res > 1, a named list of lists is returned. Each component of the outer list is again a list structured as shown above. Naming scheme for the outer list is 'Best1',..., 'Bestnum_best_res'.
References

Easley, David et al. (2002)
Is Information Risk a Determinant of Asset Returns?
The Journal of Finance, Volume 57, Number 5, pp. 2185 - 2221
doi: 10.1111/15406261.00493

Easley, David et al. (1996)
Liquidity, Information, and Infrequently Traded Stocks
The Journal of Finance, Volume 51, Number 4, pp. 1405 - 1436

Easley, David et al. (2010)
Factoring Information into Returns
Journal of Financial and Quantitative Analysis, Volume 45, Issue 2, pp. 293 - 309
doi: 10.1017/S0022109010000074

Ersan, Oguz and Alici, Asli (2016)
An unbiased computation methodology for estimating the probability of informed trading (PIN)
doi: 10.1016/j.intfin.2016.04.001

Gan, Quan et al. (2015)
A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering
Quantitative Finance, Volume 15, Issue 11, pp. 1805 - 1821
doi: 10.1080/14697688.2015.1023336

Lin, Hsiou-Wei William and Ke, Wen-Chyan (2011)
A computing bias in estimating the probability of informed trading
doi: 10.1016/j.finmar.2011.03.001

Revolution Analytics and Steve Weston (2015)
doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package
R package version 1.0.10

Revolution Analytics and Steve Weston (2015)
foreach: Provides Foreach Looping Construct for R
R package version 1.4.3 Yan, Yuxing and Zhang, Shaojun (2012)
An improved estimation method and empirical properties of the probability of informed trading
Journal of Banking & Finance, Volume 36, Issue 2, pp. 454 - 467
doi: 10.1016/j.jbankfin.2011.08.003

See Also

nlminb, initial_vals pin_est qpin pin_confint

Examples

Loading simulated data for frequently traded stock
data("BSfrequent")

Generate several matrices of initial values utilizing all methods implemented
likelihood factorizations

Description

Evaluates likelihood function either utilizing factorization by Easley et al. (2010) or Lin and Ke (2011).
Usage

```r
pin_ll(param = NULL, numbuys = NULL, numsells = NULL,
        factorization = "Lin_Ke")
```

Arguments

- `param`
 - numeric: (named) vector of model parameters (valid names: 'alpha', 'delta',
 'epsilon_b', 'epsilon_s', 'mu'), length must equal 5
- `numbuys`
 - numeric: vector of daily buys
- `numsells`
 - numeric: vector of daily sells
- `factorization`
 - character: switch between EHO ('EHO') and Lin-Ke ('Lin_Ke') factorization

Details

If names are not set for `param` or one or more of the vector names do not match the valid choices,
they are internally set to 'alpha', 'delta', 'epsilon_b', 'epsilon_s', 'mu' (in this order).
Vectors for `numbuys` and `numsells` need to have same length.

Value

- numeric: likelihood function value

References

- Easley, David et al. (2010)
 Factoring Information into Returns
 Journal of Financial and Quantitative Analysis, Volume 45, Issue 2, pp. 293 - 309
 doi: 10.1017/S0022109010000074

- Lin, Hsiou-Wei William and Ke, Wen-Chyan (2011)
 A computing bias in estimating the probability of informed trading
 doi: 10.1016/jфинм.2011.03.001

posterior

Posterior Probabilities

Description

Calculates posterior probabilities of conditions of trading days

Usage

```r
posterior(param = NULL, numbuys = NULL, numsells = NULL)
```
Arguments

param: numeric: (named) vector of model parameters (valid names: 'alpha', 'delta', 'epsilon_b', 'epsilon_s', 'mu'), length must equal 5
numbuys: numeric: vector of daily buys
numsells: numeric: vector of daily sells

details

For more details see corresponding section in vignette

Value

numeric matrix with columns 'no', 'good' and 'bad' representing posterior probabilities for the corresponding trading day conditions

See Also

ggplot.posterior

Examples

Not run: See Vignette code(browseVignette(package = 'pinbasic'))

qpin

Quarterly PIN estimates

Description

Estimation of model parameters and probability of informed trading for quarterly data.

Usage

qpin(numbuys = NULL, numsells = NULL, dates = NULL, nlminb_control = list(), confint = FALSE, ci_control = list(), posterior = TRUE)

Arguments

numbuys: numeric: vector of daily buys
numsells: numeric: vector of daily sells
dates: see Details
nlminb_control: list: Control list for nlminb
confint: logical: Compute confidence intervals for PIN? Defaults to FALSE
ci_control: list: see pin_est_core
posterior: logical: Should posterior probabilities for conditions of trading days be computed?
Details

Wrapper around `pin_est` function and therefore inherits its settings for optimization. Data is split into quarters with the `quarter` function from `lubridate` package. According to the help page of this function dates argument must be a date-time object of class POSIXct, POSIXlt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts, its, ti, jul, timeSeries, fix or anything else that can be converted with `as.POSIXlt`.

`nlminb` function in the `stats` package is used for maximization. Vectors for `numbuys` and `numsells` need to have same length.

Calculation of confidence interval for the probability of informed trading is disabled by default. For more details see `pin_est_core` or `pin_confint`.

Value

A list of lists with class `‘qpin’`. The length of the outer list equals the number of available quarters in the data. Naming scheme for the outer list is ‘Year.QuarterNumber’, where QuarterNumber equals an integer from 1 to 4. The inner list is structured as follows:

- **Results** Matrix containing the parameter estimates as well as their estimated standard errors, t-values and p-values.
- **ll** Value of likelihood function returned by `nlminb`
- **pin** Value(s) of the estimated probability of informed trading
- **conv** Convergence code for `nlminb` optimization
- **message** Convergence message returned by the `nlminb` optimizer
- **iterations** Number of iterations until convergence of `nlminb` optimizer
- **init_vals** Vector of initial values
- **confint** If `confint = TRUE`; confidence interval for the probability of informed trading

References

Easley, David et al. (2002)
Is Information Risk a Determinant of Asset Returns?
The Journal of Finance, Volume 57, Number 5, pp. 2185 - 2221
doi: 10.1111/15406261.00493

Easley, David et al. (1996)
Liquidity, Information, and Infrequently Traded Stocks
The Journal of Finance, Volume 51, Number 4, pp. 1405 - 1436

Easley, David et al. (2010)
Factoring Information into Returns
Journal of Financial and Quantitative Analysis, Volume 45, Issue 2, pp. 293 - 309
doi: 10.1017/S0022109010000074

Ersan, Oguz and Alici, Asli (2016)
An unbiased computation methodology for estimating the probability of informed trading (PIN)
doi: 10.1016/j.intfin.2016.04.001
simulateBS

Simulate trading data

Description

Simulates a matrix consisting of synthetic data for daily buys and sells

Usage

```
simulateBS(param, ndays)
```
Arguments

\texttt{param} \hspace{1cm} \textit{numeric}: (named) vector of model parameters (valid names: 'alpha', 'delta', 'epsilon_b', 'epsilon_s', 'mu'), length must equal 5

\texttt{ndays} \hspace{1cm} \textit{integer}: Number of trading days for which aggregated buys and sells are simulated, defaults to 60

Details

If names are not set for \texttt{param} or one or more of the vector names do not match the valid choices, they are internally set to 'alpha', 'delta', 'epsilon_b', 'epsilon_s', 'mu' (in this order).

Value

\textit{numeric}: Matrix with \texttt{ndays} rows and two columns which are named 'Buys' and 'Sells'.
Index

*Topic datasets
 BSfrequent, 2
 BSfrequent2015, 3
 BSheavy, 3
 BSinfrequent, 4

BSfrequent, 2, 9
BSfrequent2015, 3, 9
BSheavy, 3, 9
BSinfrequent, 4, 9

ggplot, 4, 5, 8
ggplot.posterior, 4, 8, 19
ggplot.qpin, 5, 8

initial_vals, 6, 8, 14, 16, 21

lubridate, 8

dlminb, 12–16, 19–21

pin_calc, 8, 10
pin_confint, 8, 11, 13, 16, 20, 21
pin_est, 8, 9, 12, 15, 16, 20, 21
pin_est_core, 8, 9, 12–14, 14, 19–21
pin_ll, 9, 17
pinbasic, 8
pinbasic-package (pinbasic), 8
posterior, 4, 8, 18

qpin, 5, 8, 9, 14–16, 19
quarter, 20, 21

set.seed, 12
simulateBS, 8, 9, 21

year, 21