Package ‘pkgndep’

October 13, 2023

Type Package
Title Analyze Dependency Heaviness of R Packages
Version 1.99.3
Date 2023-10-12
Depends R (>= 4.0.0)
Imports ComplexHeatmap (>= 2.6.0), GetoptLong, GlobalOptions, utils,
grid, hash, methods, BiocManager, brew, BiocVersion
Suggests knitr, rmarkdown, svglite, callr, rjson, Rook, igraph,
ggplot2, ggrepel, base64, testthat, cowplot

Description A new metric named 'dependency heaviness' is proposed that measures the number
of additional dependency packages that a parent package brings to its child package
and are unique to the dependency packages imported by all other parents.
The dependency heaviness analysis is visualized by a customized heatmap.
The package is described in <doi:10.1093/bioinformatics/btac449>.
We have also performed the dependency heaviness analysis on the CRAN/Bioconductor
package ecosystem and the results are implemented as a web-based database
which provides comprehensive tools for querying dependencies of individual R packages.
The systematic analysis on the CRAN/Bioconductor ecosystem is described in
<doi:10.1016/j.jss.2023.111610>. From 'pkgndep' version 2.0.0, the heaviness
database includes snapshots of the CRAN/Bioconductor ecosystems for many old R versions.

URL https://github.com/jokergoo/pkgndep
VignetteBuilder knitr
License MIT + file LICENSE
NeedsCompilation no
Author Zuguang Gu [aut, cre] (<https://orcid.org/0000-0002-7395-8709>)
Maintainer Zuguang Gu <z.gu@dkfz.de>
Repository CRAN
Date/Publication 2023-10-13 05:50:02 UTC
R topics documented:

ALL_BIOC_RELEASES .. 3
all_pkg_stat_snapshot ... 3
check_pkg ... 4
child_dependency ... 4
co_heaviness .. 5
dependency_database .. 6
dependency_heatmap ... 6
dependency_report .. 7
dependency_website .. 8
downstream_dependency ... 8
get_all_functions_imported_to_children 9
gini_index ... 10
heaviness ... 10
heaviness_database ... 11
heaviness_from_upstream 12
heaviness_on_children ... 12
heaviness_on_downstream 13
heaviness_report ... 14
is_parent ... 15
is_upstream .. 15
loaded_packages ... 16
load_all_pkg_dep .. 17
load_from_heaviness_db 17
load_heaviness_timeline 18
load_pkg_db .. 19
load_pkg_description ... 20
load_pkg_downstream_dependency_path_snapshot 20
load_pkg_namespace ... 21
load_pkg_stat_snapshot 21
parent_dependency ... 22
pkgndep ... 23
pkgndep_opt .. 24
plot.pkgndep ... 24
print.pkgndep .. 25
reformat_db ... 26
required_dependency_packages 27
upstream_dependency .. 27

Index 29
ALL_BIOCRELEASES
All Bioconductor releases

Description

All Bioconductor releases

Usage

```
ALL_BIOCRELEASES
```

Value

A data frame

Examples

```
ALL_BIOCRELEASES
```

all_pkg_stat_snapshot
The complete table of dependency heaviness for all CRAN/Bioconductor packages

Description

The complete table of dependency heaviness for all CRAN/Bioconductor packages

Usage

```
all_pkg_stat_snapshot()
```

Value

The returned data frame is directly from `load_pkg_stat_snapshot`, but with only a subset of columns of heaviness metrics.

Examples

```
# There is no example
NULL
```
check_pkg

Check whether a package is available

Description
Check whether a package is available

Usage
check_pkg(pkg, bioc = FALSE)

Arguments
pkg The name of the package.
bioc Whether it is a Bioconductor package.

Details
One of the suggestions to avoid heavy dependencies is to put parent packages that are not frequently used to 'Suggests' and to load them when the corresponding functions are used. Here the check_pkg function helps to check whether these parent packages are available and if not, it prints messages to guide users to install the corresponding packages.

Examples

There is no example
NULL

child_dependency

Get child dependency for a package

Description
Get child dependency for a package

Usage
child_dependency(package, fields = NULL, online = FALSE)

Arguments
package Package name.
fields Which fields in DESCRIPTION? Values should be in Depends, Imports, LinkingTo, Suggests and Enhances. The value can also be set to strong or weak.
online Whether use the newest package database directly from CRAN/Bioconductor or the pre-computated package database? The version of the pre-computated package database can be set via pkgndep_opt$heaviness_db_version.
Value

A data frame with child packages as well as its heaviness on its child packages. If snapshot is set to FALSE, heaviness on child packages is set to NA.

Examples

```r
## Not run:
child_dependency("ComplexHeatmap")
## End(Not run)
```

co_heaviness

Co-heaviness for pairs of parent packages

Description

Co-heaviness for pairs of parent packages

Usage

```r
co_heaviness(x, rel = FALSE, a = 10, jaccard = FALSE)
```

Arguments

- **x**: An object returned by `pkgndep`.
- **rel**: Whether to return the absolute measure or the relative measure.
- **a**: A constant added for calculating the relative measure.
- **jaccard**: Whether to return Jaccard coefficient?

Details

Denote a package as P and its two strong parent packages as A and B, i.e., parent packages in "Depends", "Imports" and "LinkingTo", the co-heaviness for A and B is calculated as follows.

Denote S_A as the set of reduced dependency packages when only moving A to "Suggests" of P, and denote S_B as the set of reduced dependency packages when only moving B to "Suggests" of P, denote S_{AB} as the set of reduced dependency packages when moving A and B together to "Suggests" of P, the co-heaviness of A, B on P is calculated as $\text{length}(\text{setdiff}(S_{AB}, \text{union}(S_A, S_B)))$, which is the number of reduced package only caused by co-action of A and B.

Note the co-heaviness is only calculated for parent packages in "Depends", "Imports" and "LinkingTo".

When jaccard is set to TRUE, the function returns jaccard coefficient. $\text{setdiff}(S_{AB}, \text{union}(S_A, S_B))$ is actually the set of dependencies imported by and only by two parent packages A and B. Thus the jaccard coefficient is calculated as $\frac{\text{length}(\text{setdiff}(S_{AB}, \text{union}(S_A, S_B)))}{\text{length}(S_{AB})}$.

Examples

```r
## Not run:
# DESeq version 1.36.0, the dependencies have been changed in later versions.
x = readRDS(system.file("extdata", "DESeq2_dep.rds", package = "pkgndep"))
hm = co_heaviness(x)
ComplexHeatmap::Heatmap(hm)
co_heaviness(x, jaccard = TRUE)

## End(Not run)
```

dependency_database
Database of package dependency heaviness of all R packages

Description

Database of package dependency heaviness of all R packages

Usage

```r
dependency_database(version = pkgndep_opt$heaviness_db_version)
```

Arguments

- `version`
 Version of the heaviness database. See `pkgndep_opt$heaviness_db_version`.

Examples

```r
if(interactive()) {
  dependency_database()
}
```

dependency_heatmap
Make the dependency heatmap

Description

Make the dependency heatmap

Usage

```r
dependency_heatmap(x, pkg_fontsize = 10*cex, title_fontsize = 12*cex,
  legend_fontsize = 10*cex, fix_size = !dev.interactive(), cex = 1,
  help = TRUE, file = NULL, res = 144)
```
dependency_report

Arguments

- **x**: An object from `pkgndep`.
- **pkg_fontsize**: Font size for the package names.
- **title_fontsize**: Font size for the title.
- **legend_fontsize**: Font size for the legends.
- **fix_size**: Should the rows and columns in the heatmap have fixed size?
- **cex**: A factor multiplicated to all font sizes.
- **help**: Whether to print help message?
- **file**: A path of the figure. The size of the figure is automatically calculated.
- **res**: Resolution of the figure (only for png and jpeg).

Details

If `fix_size` is set to TRUE. The size of the whole plot can be obtained by:

```
size = dependency_heatmap(x, fix_size = TRUE)
```

where `size` is a numeric vector of length two which are the width and height of the whole heatmap.

If `file` argument is set, the size of the figure is automatically calculated.

If there are no dependency packages stored in `x`, NULL is returned.

Value

A vector of two numeric values (in inches) that correspond to the width and height of the plot.

Examples

See examples in `pkgndep()`.

Dependency report for package dependency heaviness analysis

Usage

`dependency_report(...)`

Arguments

... Pass to `heaviness_report`.
Details

It is the same as heaviness_report.

Examples

```r
# There is no example
NULL
```

dependency_website
Database of package dependency heaviness of all R packages

Description

Database of package dependency heaviness of all R packages

Usage

```r
dependency_website(version = pkgndep_opt$heaviness_db_version)
```

Arguments

- `version`: Version of the heaviness database. See `pkgndep_opt$heaviness_db_version`.

Examples

```r
if(interactive()) {
  dependency_website()
}
```

downstream_dependency
Get downstream dependency for a package

Description

Get downstream dependency for a package

Usage

```r
downstream_dependency(package, online = FALSE)
```

Arguments

- `package`: Package name.
- `online`: Whether use the newest package database directly from CRAN/Bioconductor or the pre-computated package database? The version of the pre-computated package database can be set via `pkgndep_opt$heaviness_db_version`.
Details

Downstream packages with relations of Depends, Imports and LinkingTo are retrieved.

Value

A data frame with all downstream packages.

Examples

```r
## Not run:
downstream_dependency("ComplexHeatmap")
## End(Not run)
```

get_all_functions_imported_to_children

Get functions that are imported to its child packages

Description

Get functions that are imported to its child packages

Usage

```r
get_all_functions_imported_to_children(package)
```

Arguments

- `package` : Package name.

Details

The information is based on pre-computated results for a specific CRAN/Bioconductor snapshot. See `pkgndep$heaviness_db_version` for how to set the version of the snapshot.

Value

It returns a list of function names that are imported to every of its child packages.

Examples

```r
## Not run:
got_all_functions_imported_to_children("circlize")
## End(Not run)
```
gini_index

\textit{Gini index}

\textbf{Description}
Gini index

\textbf{Usage}
gini_index(v)

\textbf{Arguments}

\begin{itemize}
\item \texttt{v}
A numeric vector.
\end{itemize}

\textbf{Examples}
\begin{verbatim}
x = readRDS(system.file("extdata", "ComplexHeatmap_dep.rds", package = "pkgndep"))
gini_index(x$heaviness[x$which_required])
\end{verbatim}

\hline
heaviness

\textit{Heaviness from parent packages}

\textbf{Description}
Heaviness from parent packages

\textbf{Usage}
heaviness(x, rel = FALSE, a = 10, only_strong_dep = FALSE)

\textbf{Arguments}

\begin{itemize}
\item \texttt{x}
An object returned by \texttt{pkgndep}.
\item \texttt{rel}
Whether to return the absolute measure or the relative measure.
\item \texttt{a}
A constant added for calculating the relative measure.
\item \texttt{only_strong_dep}
Whether to only return the heaviness for strong parents.
\end{itemize}
Details

The heaviness from a parent package is calculated as follows: If package B is in the Depends/Imports/LinkingTo fields of package A, which means, package B is necessary for package A, denote \(v_1 \) as the total numbers of packages required for package A, and \(v_2 \) as the total number of required packages if moving package B to Suggests (which means, now B is not necessary for A). The absolute measure is simply \(v_1 - v_2 \) and relative measure is \((v_1 + a)/(v_2 + a) \).

In the second scenario, if B is in the Suggests/Enhances fields of package A, now \(v_2 \) is the total number of required packages if moving B to Imports, the absolute measure is \(v_2 - v_1 \) and relative measure is \((v_2 + a)/(v_1 + a) \).

Value

A numeric vector.

Examples

```r
x = readRDS(system.file("extdata", "ComplexHeatmap_dep.rds", package = "pkgndep"))
heaviness(x)
heaviness(x, rel = TRUE)
```

heaviness_database

Database of package dependency heaviness of all R packages

Usage

```r
heaviness_database(version = pkgndep_opt$heaviness_db_version)
```

Arguments

- `version` Version of the heaviness database. See `pkgndep_opt$heaviness_db_version`.

Examples

```r
if(interactive()) {
  heaviness_database()
}
```
heaviness_from_upstream

Heaviness from all upstream packages

Description
Heaviness from all upstream packages

Usage
heaviness_from_upstream(package)

Arguments
package A package name.

Details
It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via pkgndep_opt$heaviness_db_version.

Value
A named vector.

Examples
There is no example
NULL

heaviness_on_children Heaviness on all child packages

Description
Heaviness on all child packages

Usage
heaviness_on_children(package, add_values_attr = FALSE, total = FALSE)

Arguments
package A package name.
add_values_attr Whether to include "values" attribute? Internally used.
total Whether to return the total heaviness?
heaviness_on_downstream

Details

It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via `pkgndep_opt$heaviness_db_version`.

Value

The value is the mean heaviness of the package on all its child packages.

Examples

```r
## Not run:
heaviness_on_children("ComplexHeatmap")
## End(Not run)
```

heaviness_on_downstream

Heaviness on all downstream packages

Description

Heaviness on all downstream packages

Usage

```r
heaviness_on_downstream(package, add_values_attr = FALSE, via = NULL,
                        total = FALSE, internal = FALSE)
```

Arguments

- `package` A package name.
- `add_values_attr` Whether to include "values" attribute? Internally used.
- `via` Whether to only consider downstream packages via a intermediate package?
- `total` Whether to return the total heaviness?
- `internal` Whether to use internally calculated heaviness?

Details

It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via `pkgndep_opt$heaviness_db_version`.
Value

The value is the mean heaviness of the package on all its downstream packages. Denote n as the number of all its downstream packages, k_i as the number of required packages for package i, v_1 as the total number of required packages for all downstream packages, i.e. $v_1 = \sum_{i=1}^{n} k_i$. Denote p_i as the number of required packages if moving package to Suggests, and v_2 as the total number of required packages, i.e. $v_2 = \sum_{i=1}^{n} p_i$. The final heaviness on downstream packages is $(v_1 - v_2)/n$.

Note since the interaction from package to its downstream packages may go through several intermediate packages, which means, the reduction of required packages for a downstream package might be joint effects from all its upstream packages, thus, to properly calculate the heaviness of a package to its downstream packages, we first make a copy of the package database and move package to Suggests for all packages which depends on package. Then for all downstream packages of package, dependency analysis by pkgndep is redone with the modified package database. Finally, the heaviness on downstream packages is collected and the mean heaviness is calculated.

Examples

```r
## Not run:
heaviness_on_downstream("ComplexHeatmap")

## End(Not run)
```

heaviness_report

HTML report for package dependency heaviness analysis

Description

HTML report for package dependency heaviness analysis

Usage

```r
heaviness_report(pkg, file = NULL)
```

Arguments

- **pkg**
 - An object from pkgndep.

- **file**
 - The path of the html file. If it is not specified, the report will be automatically opened in the web browser.

Value

The path of the HTML file of the report.

Examples

```r
if(interactive()) {
  x = readRDS(system.file("extdata", "ComplexHeatmap_dep.rds", package = "pkgndep"))
  heaviness_report(x)
}
```
is_parent

Test the parent-child relationship

Usage

\texttt{is_parent(parent, child, ...)}

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>A vector of package names.</td>
</tr>
<tr>
<td>child</td>
<td>A single package name.</td>
</tr>
<tr>
<td>...</td>
<td>Pass to \texttt{parent_dependency}.</td>
</tr>
</tbody>
</table>

Value

A logical vector.

Examples

```r
# There is no example
NULL
```

is_upstream

Test upstream-downstream relationship

Usage

\texttt{is_upstream(upstream, package, ...)}

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>upstream</td>
<td>A vector of package names.</td>
</tr>
<tr>
<td>package</td>
<td>A single package name.</td>
</tr>
<tr>
<td>...</td>
<td>Pass to \texttt{upstream_dependency}.</td>
</tr>
</tbody>
</table>
Value

A logical vector.

Examples

```r
# There is no example
NULL
```

loaded_packages

Description

Loaded packages

Usage

```r
loaded_packages(pkg, verbose = TRUE)
```

Arguments

- `pkg`
 A package name.

- `verbose`
 Whether to print messages.

Details

It loads `pkg` into a new R session and collects which other packages are loaded by parsing the output from `sessionInfo`.

Value

A data frame.

Examples

```r
loaded_packages("ComplexHeatmap")
```
load_all_pkg_dep

Description
Load dependency analysis results of all packages

Usage
load_all_pkg_dep(hash = TRUE)

Arguments
hash Whether to convert the named list to a hash table by hash.

Details
It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via pkgndep_opt$heaviness_db_version.

Value
A list (as a hash table) of pkgndep objects where each element corresponds to the analysis on one package.

Examples
Not run:
lt = load_all_pkg_dep()
length(lt)
head(names(lt))
lt[["ggplot2"]]
End(Not run)

load_from_heaviness_db

Description
Load pre-computed objects

Usage
load_from_heaviness_db(file)
Arguments

file File name.

Details

The pathway of the file can be set via \texttt{pkgndep_opt\$db_file_template}.
Internally used.

Examples

\begin{verbatim}
There is no example
NULL
\end{verbatim}

\begin{verbatim}
load_heaviness_timeline
\end{verbatim}

\emph{Load heaviness statistics at all time points}

Description

Load heaviness statistics at all time points

Usage

\begin{verbatim}
load_heaviness_timeline()
\end{verbatim}

Details

Used internally.

Value

A list of data frames.

Examples

\begin{verbatim}
There is no example
NULL
\end{verbatim}
load_pkg_db

Description

Load package database

Usage

load_pkg_db(lib = NULL, online = TRUE, db = NULL, verbose = TRUE)

Arguments

lib Local library path. If the value is NA, only remote package database is used.

online If the value is TRUE, it will directly use the newest package database file from CRAN/Bioconductor. If the value is FALSE, it uses the pre-computed package database on a specific CRAN/Bioconductor snapshot. The version of the pre-computed package database can be set via pkgndep_opt$heaviness_db_version.

db A pre-computed pkg_db object.

verbose Whether to print messages.

Details

It loads the package database from CRAN/Bioconductor and locally installed packages.

The database object internally is cached for repeated use of other functions in this package.

Value

A pkg_db class object. See reformat_db for how to use the pkg_db object.

Examples

Not run:
pkg_db = load_pkg_db(lib = NA)
pkg_db

End(Not run)
load_pkg_description
Load DESCRIPTION files of all packages

Description

Load DESCRIPTION files of all packages

Usage

`load_pkg_description()`

Details

It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via `pkgndep_opt$heaviness_db_version`.

Value

A list of character vectors.

Examples

```r
## Not run:
lt = load_pkg_description()
lt[1:2]
## End(Not run)
```

load_pkg_downstream_dependency_path_snapshot
Load downstream dependency paths for all packages

Description

Load downstream dependency paths for all packages

Usage

`load_pkg_downstream_dependency_path_snapshot()`

Details

It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via `pkgndep_opt$heaviness_db_version`.

Value

A list.
load_pkg_namespace

Load NAMESPACE files of all packages

Usage

load_pkg_namespace()

Details

It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via `pkgndep_opt$heaviness_db_version`.

Value

A list of character vectors.

Examples

```r
## Not run:
lt = load_pkg_namespace()
lt[1:2]
## End(Not run)
```

load_pkg_stat_snapshot

Load all package dependency statistics

Usage

load_pkg_stat_snapshot()
Details

It is calculated based on a specific CRAN/Bioconductor snapshot. The version is set via `$heaviness_db_version`.

Value

A data frame.

Examples

```r
## Not run:
df = load_pkg_stat_snapshot()
head(df)

## End(Not run)
```

parent_dependency

Get parent dependency for a package

Description

Get parent dependency for a package

Usage

```r
parent_dependency(package, fields = NULL, online = FALSE)
```

Arguments

- `package` Package name.
- `fields` Which fields in DESCRIPTION? Values should be in `Depends`, `Imports`, `LinkingTo`, `Suggests` and `Enhances`. The value can be also set to `strong` or `weak`.
- `online` Whether use the newest package database directly from CRAN/Bioconductor or the pre-computated package database? The version of the pre-computated package database can be set via `$heaviness_db_version`.

Value

A data frame with parent packages as well as their heaviness on package. If snapshot is set to FALSE, heaviness on child packages is set to NA.

Examples

```r
## Not run:
parent_dependency("ComplexHeatmap")

## End(Not run)
```
pkgndep

Package dependency analysis

Usage

pkgndep(package, verbose = TRUE, online = TRUE, load = FALSE, parse_namespace = TRUE)

Arguments

package

Package name. The value can be 1. a CRAN/Bioconductor package, 2. an installed package, 3. a path of a local package, 4. URL of a GitHub repository.

verbose

Whether to show messages.

online

If the value is TRUE, it will directly use the newest package database file from CRAN/Bioconductor. Note the default Bioconductor version is the one corresponding to the current R version. If you want to use a higher bioc version, you need to set the global option pkgndep_opt$bioc_version. If the value of online is FALSE, a snapshot of the CRAN/Bioconductor package database will be used. The version of the package database snapshot can be via the global option pkgndep_opt$heaviness_db_version.

load

If the value is TRUE, the package is loaded into a fresh new R session and the function will check which upstream packages are also loaded into the R session. Note it is possible that an "Imports" package is not loaded or a "Suggests" package is loaded in the R session when loading package.

parse_namespace

Whether to also parse the NAMESPACE file. It is only used internally.

Value

A pkgndep object.

Examples

Not run:
x = pkgndep("ComplexHeatmap")

End(Not run)
The 'x' variable generated by 'pkgndep()' is already saved in this package.
x = readRDS(system.file("extdata", "ComplexHeatmap_dep.rds", package = "pkgndep"))
x
dependency_heatmap(x)
pakgndep_opt

Global parameters for pakgndep

Usage

pakgndep_opt(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)

Arguments

... Arguments for the parameters, see "details" section
RESET Reset to default values.
READ.ONLY Please ignore.
LOCAL Please ignore.
ADD Please ignore.

Details

There are following parameters:

bioc_version The bioconductor version. By default it is the version corresponding to the R version under use. Please note this option is only for switching between biocon release version and development version, while not for switching to very old biocon versions.

heaviness_db_version The version of the heaviness database. The value can be the corresponding biocon version, the R version or the corresponding date for the biocon release. All supported values are in the object ALL_BIOC_RELEASES.

Examples

pakgndep_opt

plot.pakgndep

Make the dependency heatmap

Usage

S3 method for class 'pakgndep'
plot(x, ...)

plot.pakgndep
Arguments

x An object from \texttt{pkgndep}.

... Other arguments.

Details

Please use \texttt{dependency_heatmap} instead.

Examples

\begin{verbatim}
There is no example
NULL
\end{verbatim}

\begin{verbatim}
print.pkgndep \hspace{1cm} Print method
\end{verbatim}

Description

Print method

Usage

\begin{verbatim}
S3 method for class 'pkgndep'
print(x, ...)
\end{verbatim}

Arguments

x An object from \texttt{pkgndep}.

... Other arguments.

Value

No value is returned.

Examples

\begin{verbatim}
See examples in \texttt{pkgndep()}.
\end{verbatim}
reformat_db

Format the package database

Usage

reformat_db(db, version = NULL)

Arguments

db
A data frame returned from available.packages or installed.packages.

version
Version of the database, a self-defined text.

Details

It reformats the data frame of the package database into a pkg_db class object.

Value

A pkg_db class object. There are the following methods:

pkg_db$meta(package, field=NULL) field can take values in "Package", "Version" and "Repository".

pkg_db$dependency_table(package) Get the dependency table.

pkg_db$rev_dependency_table(package) Get the reverse dependency table.

pkg_db$package_dependencies(package, recursive=FALSE, reverse=FALSE, which="strong", simplify=FALSE)
All the arguments are the same as in package_dependencies. Argument simplify controls whether to return a data frame or a simplified vector.

Examples

```r
## Not run:

db = available.packages()
db2 = reformat_db(db)

# a pkg_db object generated on 2021-10-28 can be loaded by load_pkg_db()
db2 = load_pkg_db(online = FALSE)
db2$meta("ComplexHeatmap")
db2$dependency_table("ComplexHeatmap")
db2$rev_dependency_table("ComplexHeatmap")
db2$package_dependencies("ComplexHeatmap")
db2$package_dependencies("ComplexHeatmap", recursive = TRUE)
```

End(Not run)
required_dependency_packages

Required dependency packages

Usage

required_dependency_packages(x, all = FALSE)

Arguments

x An object from pkgndep.
all Whether to include the packages required if also including packages from "Suggests"/"Enhances" field.

Details

The function returns all upstream packages.

Value

A vector of package names.

Examples

```r
# Not run:
x = readRDS(system.file("extdata", "ComplexHeatmap_dep.rds", package = "pkgndep"))
required_dependency_packages(x)
```

End(Not run)

upstream_dependency Get upstream dependency for a package

Description

Get upstream dependency for a package

Usage

upstream_dependency(package, online = FALSE)
Arguments

- **package**: Package name.
- **online**: Whether use the newest package database directly from CRAN/Bioconductor or the pre-computed package database? The version of the pre-computed package database can be set via `pkgndep_opt$heaviness_db_version`.

Details

Upstream packages with relations of "Depends", "Imports" and "LinkingTo" are retrieved.

Value

A data frame with all upstream packages.

Examples

```r
## Not run:
upstream_dependency("ComplexHeatmap")
```

End(Not run)
Index

ALL_BIOC_RELEASES, 3, 24
all_pkg_stat_snapshot, 3
available.packages, 26

check_pkg, 4, 4
child_dependency, 4
c0_heaviness, 5
dependency_database, 6
dependency_heatmap, 6, 25
dependency_report, 7
dependency_website, 8
downstream_dependency, 8
get_all_functions_imported_to_children, 9
gini_index, 10

hash, 17
heaviness, 10
heaviness_database, 11
heaviness_from_upstream, 12
heaviness_on_children, 12
heaviness_on_downstream, 13
heaviness_report, 7, 8, 14

installed.packages, 26
is_parent, 15
is_upstream, 15

load_all_pkg_dep, 17
load_from_heaviness_db, 17
load_heaviness_timeline, 18
load_pkg_db, 19
load_pkg_description, 20
load_pkg_downstream_dependency_path_snapshot, 20
load_pkg_namespace, 21
load_pkg_stat_snapshot, 3, 21
loaded_packages, 16

package_dependencies, 26
parent_dependency, 15, 22
pkgndep, 5, 7, 9, 10, 14, 23, 25, 27
pkgndep_opt, 4, 6, 8, 11–13, 17–23, 24, 28
plot.pkgndep, 24
print.pkgndep, 25
reformat_db, 19, 26
required_dependency_packages, 27
sessionInfo, 16
upstream_dependency, 15, 27